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Abstract: Cement stabilized rammed earth (CRSE) is a sustainable, low energy consuming construction
technique which utilizes inorganic soil, usually taken directly from the construction site, with a small
addition of Portland cement as a building material. This technology is gaining popularity in various
regions of the world, however, there are no uniform standards for designing the composition of the
CSRE mixture. The main goal of this article is to propose a complete algorithm for designing CSRE
with the use of subsoil obtained from the construction site. The article’s authors propose the use of
artificial neural networks (ANN) to determine the proper proportions of soil, cement, and water in a
CSRE mixture that provides sufficient compressive strength. The secondary purpose of the paper
(supporting the main goal) is to prove that artificial neural networks are suitable for designing CSRE
mixtures. For this purpose, compressive strength was tested on several hundred CSRE samples, with
different particle sizes, cement content and water additions. The input database was large enough to
enable the artificial neural network to produce predictions of high accuracy. The developed algorithm
allows us to determine, using relatively simple soil tests, the composition of the mixture ensuring
compressive strength at a level that allows the use of this material in construction.

Keywords: rammed earth; cement stabilized rammed earth; artificial neural networks; sustainable
building material

1. Introduction

Technologies for erecting buildings using raw earth were popular in all civilizations of the world
until the beginning of the 20th century. Nowadays, every third person in the world lives in a house built
from the earth while in the developing countries the number is more than half of the population [1].
Thanks to the widespread availability of earth, numerous objects made from it are located on every
inhabited continent (Figure 1).
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Figure 1. Areas of occurrence of numerous buildings made of earth (yellow color). The black 
points marked the earth architecture inscribed in the UNESCO World Heritage List [2]. 

Striving for the most extensive use of natural materials, buildings made of earth can be an 
alternative option to other natural materials such as wood, which due to its flammability must be 
impregnated, whereas earth is non-flammable [3]. On the other hand, building structures made of 
earth are considered to not be durable. However, it is worth noting that in many regions of the world 
impressive ancient buildings made of earth can be admired. The best-known example is the Great 
Wall of China (Figure 2), of which numerous fragments erected in the rammed earth technology 
about 4000 years ago have survived until the present day.  

 
Figure 2. The Great Wall of China erected with rammed earth technology. 

In the regions of the world with hot and dry climates, there are not only buildings, but whole 
cities built with technologies using the earth. The most well-known city of this type is Shibam in 
Yemen (Figure 3). Some buildings of this city, erected in the 19th and 20th centuries, with 
technologies using the earth, are even 11 stories tall. This confirms that it is possible to use the land 
as a material for building multi-story residential buildings. Other examples of constructions built 

Figure 1. Areas of occurrence of numerous buildings made of earth (yellow color). The black points
marked the earth architecture inscribed in the UNESCO World Heritage List [2].

Striving for the most extensive use of natural materials, buildings made of earth can be an
alternative option to other natural materials such as wood, which due to its flammability must be
impregnated, whereas earth is non-flammable [3]. On the other hand, building structures made of
earth are considered to not be durable. However, it is worth noting that in many regions of the world
impressive ancient buildings made of earth can be admired. The best-known example is the Great
Wall of China (Figure 2), of which numerous fragments erected in the rammed earth technology about
4000 years ago have survived until the present day.
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In the regions of the world with hot and dry climates, there are not only buildings, but whole
cities built with technologies using the earth. The most well-known city of this type is Shibam in
Yemen (Figure 3). Some buildings of this city, erected in the 19th and 20th centuries, with technologies
using the earth, are even 11 stories tall. This confirms that it is possible to use the land as a material for
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building multi-story residential buildings. Other examples of constructions built with technologies
using the earth that belong to the history of architecture, including the proportions of soil, cement, and
water that were used in the past, can be found in references [4,5].
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technologies using earth.

Over the centuries, many building technologies that use earth have been developed in various
regions of the world. Their variety results, among other factors, from the type of land and climate
conditions prevailing in the area [6]. Construction techniques using earth can be divided into three
main groups [7]:

- Techniques that use earth in load-bearing monolithic constructions.
- Techniques that use earth in load-bearing masonry structures.
- Techniques that use earth as a non-bearing construction material in combination with a supporting

structure of another material.

This paper focuses on one of the technologies of erecting load-bearing monolithic earth structures
i.e., cement stabilized rammed earth (CSRE). CSRE is a highly sustainable construction technique
characterized by low energy demand and a small amount of waste generated during the construction
process. The structure consists of rammed layers of moist mixture made in a formwork set on a stable
foundation (Figure 4). A basic component of the mixture is the subsoil that lies under the layer of
humus usually taken directly from the construction site. The limiting factor determining the suitability
of the subsoil for rammed earth technology is the quantity of organic substances. The organic soil
is biodegradable, easily absorbs water, and is highly compressible. Therefore, its presence in the
soil mixture should not exceed 1% of the total weight of the soil [8]. Depending on the particle size
distribution of the soil, the mixture is modified by adding appropriate aggregate fractions and Portland
cement. The components are mixed together in an air-dry state, and then water is added to ensure the
proper moisture content of the mixture. Layers of the mixture are filled in the formwork and then
compacted by mechanical means. After proper compaction of the layer, successive ones are added
until the planned height of the element is reached. The formwork is then removed. Since compaction
leads to closer packing of soil grains, this process eventually leads to increased mechanical strength [4].
Durability of a monolithic wall made of CSRE with adequate load capacity depends on the particle
size of the soil used and the addition of Portland cement [9]. With CSRE technology it is possible
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to construct monolithic walls that contain communication openings, since erecting walls in layers
provides the possibility of easy assembly of reinforcement [10].

Materials 2019, 12, x FOR PEER REVIEW 4 of 27 

 

  
Figure 4. A scheme for erecting a wall using rammed earth technology. Different layers of the CARE 
monolithic wall are marked with different colors. Steps when erecting a wall: (a) Formwork is built 
and filled with a layer of moist soil-cement mixture. (b) The layer of moist mixture is compressed. (c) 
The next layer of moist soil-cement mixture is added. (d) Successive layers of moist earth are added 
and compressed. (e) The formwork is removed leaving the monolithic CSRE wall. 

A significant part of building project expenses is associated with transport of materials to the 
construction site. Therefore, one of the ways to reduce those costs is to reduce the need for 
transportation. Cement stabilized rammed earth technology allows for erecting monolithic load-
bearing walls using locally available material, which is a very good solution in less urbanized areas 
located far from wholesalers. 

The compressive strength is a significant mechanical feature of a structural building material. 
The results of laboratory tests for the compressive strength of cement stabilized rammed earth are 
presented in numerous publications (Table 1). However, results obtained by individual authors are 
difficult to compare due to differences in: 

− Shapes of the tested samples, 
− Energy used in ramming samples and the related volume density of samples, 
− Particle size distribution of the earth used in the mixture, 
− Mineral and chemical composition of the earth, 
− Moisture content of the earth mixture, 
− Moisture content of the samples at the time of the test, 
− Content and type of Portland cement,  
− Duration and conditions of samples storage before strength tests. 

The lack of information on some of those parameters is the main challenge in analyzing the 
results published. For example, from the tests included in Table 1, only article [11] lists the chemical 
composition of the earth. In references [12,13] it is presented that differences in the chemical 
composition of the clay used can have a significant impact on the obtained value of compressive 
strength. 

Table 1. Compressive strength results of CSRE from various references [11,14–18]. 

Reference 
Particle Size 

Distribution of 
Earth  

Shape and 
Dimensions of 
Samples [cm] 

Moisture 
Content of 

the Mixture 
[%} 

Compaction 
Method 

Density of 
Samples  
[kg/m3] 

Cement 
Addition 

Curing 
Conditions 

Compressive 
Strength 

[MPa] 

[11] 
Sand 64% 
Silt 18% 

Clay 18% 

cuboid  
10 × 10 × 20 

9.5 
hydraulic press 

(15 MPa) 
Max. 1877 8% 

27 days, 
70% RH 

18.4 (AVG.) 

[14] 
Gravel < 19 mm 

Gravel 32% 
7.8 

pneumatic 
rammer 

- 8% 
2 days in 

forms, 
10 (AVG.) 

Figure 4. A scheme for erecting a wall using rammed earth technology. Different layers of the CARE
monolithic wall are marked with different colors. Steps when erecting a wall: (a) Formwork is built and
filled with a layer of moist soil-cement mixture. (b) The layer of moist mixture is compressed. (c) The
next layer of moist soil-cement mixture is added. (d) Successive layers of moist earth are added and
compressed. (e) The formwork is removed leaving the monolithic CSRE wall.

A significant part of building project expenses is associated with transport of materials to
the construction site. Therefore, one of the ways to reduce those costs is to reduce the need for
transportation. Cement stabilized rammed earth technology allows for erecting monolithic load-bearing
walls using locally available material, which is a very good solution in less urbanized areas located far
from wholesalers.

The compressive strength is a significant mechanical feature of a structural building material.
The results of laboratory tests for the compressive strength of cement stabilized rammed earth are
presented in numerous publications (Table 1). However, results obtained by individual authors are
difficult to compare due to differences in:

- Shapes of the tested samples,
- Energy used in ramming samples and the related volume density of samples,
- Particle size distribution of the earth used in the mixture,
- Mineral and chemical composition of the earth,
- Moisture content of the earth mixture,
- Moisture content of the samples at the time of the test,
- Content and type of Portland cement,
- Duration and conditions of samples storage before strength tests.

The lack of information on some of those parameters is the main challenge in analyzing the
results published. For example, from the tests included in Table 1, only article [11] lists the chemical
composition of the earth. In references [12,13] it is presented that differences in the chemical composition
of the clay used can have a significant impact on the obtained value of compressive strength.
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Table 1. Compressive strength results of CSRE from various references [11,14–18].

Reference Particle Size
Distribution of Earth

Shape and
Dimensions of
Samples [cm]

Moisture
Content of the

Mixture [%]

Compaction
Method

Density of
Samples
[kg/m3]

Cement
Addition Curing Conditions Compressive

Strength [MPa]

[11]
Sand 64%
Silt 18%

Clay 18%

cuboid
10 × 10 × 20 9.5 hydraulic press

(15 MPa) Max. 1877 8% 27 days,
70% RH 18.4 (AVG.)

[14]
Gravel < 19 mm

Gravel 32%
Sand 66%

Clay + Silt 2%

Cylinder
d = 10,
h = 20

7.8
pneumatic

rammer
-

8%
2 days in forms,

7 days tightly wrapped,
19 days in an air-dry condition

10 (AVG.)

8.2 10–12 (AVG.)

8.5 7–8 (AVG.)

[15]
Gravel 26–50%
Sand 46–70%

Silt + Clay 4 %

Cylinder
d = 10/15,
h = 20/30

8.85–9.15
(OMC)

pneumatic
rammer 2091 10%

28 days in an air-dry
condition,
13–25 ◦C

13.8 (AVG.)

[16]

Gravel 45%
Sand 40%

Silt 5%
Clay 10%

wall element 50
× 50 × 11

5.4
(OMC)

pneumatic
rammer 2156–2139 4.5% 7 days tightly wrapped, min.

20 days in an air-dry condition 6.68 (AVG.)

[17]

>19 mm 4.3%
Gravel 32.2%
Sand 59.4%

Clay +Silt 8.4%

wall element
100 × 65 × 16

9.5–11.0
(OMC)

Mechanized
rammer, layers

15 [cm] high
1800–2000

6%
8%

10%

In an air-dry condition

2.06 (CH)
2.94 (CH)
3.09 (CH)

>19mm 17.9%
Gravel 56%
Sand 29.6%

Silt + Clay 14.4%

6%
8%

10%

1.69 (CH)
1.64 (CH)
2.35 (CH)

>19mm 6.4%
Gravel 50.5%

P 30.4%
π + I 19.1%

6%
8%

10%

1.52 (CH)
1.72 (CH)
1.92 (CH)

[18]
Gravel 20%
Sand 50%

Silt 25% Clay 5%

cylinder
d = 15
h = 30

5.3
(OMC)

pneumatic
rammer

2005–2012 4.5%
6 days in an air-dry condition 5.25 (AVG.)

12 days in an air-dry condition 16 (AVG.)

AVG.—average value of compressive strength; CH—characteristic value of compressive strength; OMC—optimum moisture content; RH—relative humidity.
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Determining the proper moisture content of the soil-cement mixture is one of the key issues in
rammed earth technology. The moisture content determines its workability and, as a result, affects the
most important properties of the material, including its compressive strength. The optimum moisture
content (OMC) for a rammed earth mixture is critical in achieving maximum dry density through
dynamic compaction [19]. If too little water is in the mixture, then the soil cannot achieve the same
level of compaction due to the greater degree of friction between the soil particles [20]. If too much
water is added, then capillary water occupies the soil pore spaces reducing the level of achievable
compaction and increasing the level of porosity in ready dried wall [20]. The optimum moisture
content of a CSRE mixture depends on the particle size of the soil [19,21], as well as the cement content
and compaction method used [22]. The data presented in the Table 1 shows that for a similar method
of sample compaction, the optimum moisture content increases along with the amount of the cement
added. The density of the samples made of CSRE mixtures with a similar moisture and cement content
depends primarily on the soil particle size.

Although it is possible to determine precisely the optimum moisture content of the mixture under
conditions found during construction, the problem is that these conditions are highly variable for
longer periods of time. They are influenced by, among other factors, atmospheric conditions, that are
usually unpredictable. It is worth noting that this phenomenon has been noticed in the standards.
Currently, the largest accumulation of knowledge in modern rammed earth construction is thought to
exist within Australia and New Zealand [19]. The New Zealand Standard [23] allows for moisture
content to differ by 3% from the planned optimum. According to the authors of the article, the range
of a soil mixture’s moisture content allowed by this standard is too wide. This can be confirmed
by the test results [24], where the compressive strength values of samples from soil mixtures with a
moisture content of 2% lower or 2% higher than the optimal value differ from each other by 50%. As
a consequence of the high tolerance in the moisture content of the CSRE mixture, the compressive
strength to be used in the design of a standard earth wall construction is only 0.5 MPa [25], regardless
of the compressive strength results of the CSRE samples obtained in laboratory tests. It is worth noting
that according to reference [23], for a series with a minimum of 5 samples with a ratio of height to
width of 1:1, the lowest value of compressive strength should be greater than 1,3 MPa, and therefore
more than 260% of the design compressive strength value.

Designing concrete is itself a complex process. However the methods of design and factors critical
for the compressive strength are well known. Applying CSRE as a structural material is, for the time
being, an experimental process. The amount of cement is much lower in CSRE than in concrete and
therefore a difference of, e.g., 5 kg of cement for 1 m3, influences the properties of CSRE much more
than the properties of concrete. In general, CSRE seems to be a construction material that is very
sensitive to changes in composition, where the aggregate skeleton and the way of compaction play very
important in reaching the required compressive strength. The correlation factors for the compressive
strengths of samples calculated for water content and cement to be added show that these variables
are weakly or not at all correlated with compressive strength. Even the Spearman’s correlation factor
calculated for the w/c ratio and compressive strength (for 373 CSRE samples described further in this
paper) is not significant (−0.622).

As the absolute value of the correlation factor with a single component of CSRE (water or cement)
is below 0.5, its influence on the compressive strength is meaningless. The absolute value of the
correlation of the water-to-cement ratio is higher than 0.5, so the influence of compressive strength
can be observed, but is still not a strong one. The higher w/c is, the lower the compressive strength.
These Spearman’s correlation values confirm that the other properties of CSRE mixtures also have a
significant influence on the compressive strength.

A possible way of finding a composition of a CSRE mixture that meets compressive strength
criterion is a prediction based on the obtained results of the samples’ tests. In concrete, the type
and amount of cement used are of crucial importance to the compressive strength obtained. In the
case of CSRE, the amount of cement is smaller, so that the remaining properties of the mixture, such
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as particle size distribution, humidity, energy, and the method of ramming, as well as the mineral
composition of the applied earth significantly influence the obtained compressive strength. In the
absence of standards for the design of cement stabilized rammed earth and the individual approach
of researchers to this problem, the authors propose the use of artificial neural networks (ANN) to
determine the desired composition of a mixture. The more the nature of the process is unknown
and the greater the complexity of the process, the more benefits using ANN provides (compared to
statistical models, expert systems, Figure 5) [26,27].
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According to the aforementioned figure, Artificial Neural Networks (ANN) are widely applied as
a predictive tool in the construction industry. They have been applied for predicting:

- Delays in the completion date of construction works [28,29],
- Construction costs [30,31],
- Level of deterioration of multi-story buildings [32],
- Loss of a client in the case of collusion [33],
- Energy demand for housing purposes [34,35],
- Financial results of construction companies [36].

Properties of construction materials can be predicted with the use of ANN [37,38]. There are
successful examples of ANN use in designing specific concrete where recycled aggregates were also
considered [39]. The above mentioned application of ANN is also a solid base for expecting good
results in the CSRE mixture designing.

2. Materials and Methods

2.1. Database of CSRE Test Results

2.1.1. Materials

Hall and Djerbib [19] point out that for sample production, if soils obtained from different locations
were to be used, it would be difficult to analyze the laboratory test results due to the large number
of variables introduced, including but not limited to the mineralogical composition. Therefore, in
laboratory tests inorganic soil mixture of clay, sand, and gravel was obtained from the construction site.
Each of these components were then dried to a constant mass and mixed in ten proportions to obtain
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particle-size distribution curves shown in the Figure 6. Each soil was named numerically in relation to
its sand: gravel: silty clay ratio out of a total 10 components. For example, symbol 613 means that the
mixture consists of 6 parts sand, 1 part gravel, and 3 parts clay by weight. For each of these mixtures,
3 to 10% by weight of Portland cement CEM I 42.5R was added. Afterwards, water was added to these
mixtures to ensure an optimum moisture content, i.e., the moisture of the mixture, which, guaranteed
the highest dry density for the adopted method of ramming the samples. For comparative purposes,
the tests were also carried out on mixtures with a moisture content 2% higher and 2% lower than the
optimal level.Materials 2019, 12, x FOR PEER REVIEW 8 of 27 
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2.1.2. Preparation of Samples

CSRE samples were prepared in cubic molds, 100 mm × 100 mm × 100 mm. The formation of
the samples was carried out by ramming the mixture into three equal layers using a 6.5 kg rammer.
The parameters of the rammer were selected on the basis of New Zealand Standard [23]. The samples
were formed by freely lowering the rammer from a height of 30 cm to the surface of the moist mixture.
For this method of compaction, the optimum moisture content in individual mixtures was 7% to 10%
depending on the particle size distribution and the amount of cement.

For each series, 10 samples were made. The authors participated in the preparation of all samples.
Therefore, the influence of the sample preparation method on the compressive strength results can be
ruled out. The samples to be tested were demolded after 24 h. Then they were cured for 27 days in a
condition of relatively high humidity of 95% (±2%) and temperature of 20 ◦C (±1 ◦C).

2.1.3. Results of Testing the Samples

Since the rammed earth keeps the layered structure, the samples were loaded in the direction of
the ramming. 373 compressive strength results were obtained for the prepared samples. The results of
some of these samples are shown in Table 2. The results obtained served as a database for calculations
using ANN.
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Table 2. Results of compressive strength for some chosen samples.

Sample
Number

Particle Size Distribution [%]
Cement

Addition
[%]

Moisture
Content

[%]

Density of
the Sample

[kg/m3]

Compressive
Strength

[MPa]
Clay

φ > 0.002
[mm]

Silt
φ ≥ 0.002
φ < 0.063

[mm]

Sand
φ ≥ 0.063
φ < 2.0
[mm]

Gravel
φ ≥ 2.0
φ < 4.0
[mm]

6 0.105 0.192 0.403 0.300 3 9 2295 4.01
81 0.105 0.192 0.403 0.300 6 8 2240 6.45

108 0.105 0.210 0.585 0.100 6 8 2218 5.43
125 0.105 0.210 0.585 0.100 6 10 2299 5.55
144 0.105 0.219 0.676 0.000 6 10 2265 5.16
179 0.140 0.244 0.416 0.200 9 10 2301 5.97
219 0.105 0.192 0.403 0.300 9 9 2274 5.91
245 0.105 0.192 0.403 0.300 9 12 2240 5.55
328 0.070 0.176 0.754 0.000 9 8 2241 9.75
364 0.105 0.192 0.403 0.300 10 13 2282 7.06

The cement content in the samples of CSRE varied from 3% to 10% and their moisture content
from 6% to 14%. The mean compressive strength was 6.00 MPa with a standard deviation of 2.093 MPa.
The compressive strength varied from 2.400 to 13.011 MPa (Figure 7).
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All tested samples were analyzed and tested. Their features are summarized in Table 3. Appendix A
(Table A1) comprises the full set of data.

Previous analysis [28,40,41] was the basis of the decision to standardize the input data with the
linear method. The following Formula (1) was used:

ai =
a0i

maxa0i
f or 1 ≤ i ≤ 373 (1)

where: ai—the standardized value of a (from the i experiments); a0i—the original value of a feature
observed for i experiment.

The standardization process–done separately for each feature–completed the preparation of data
for feeding them to ANN.
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Table 3. The summary of the features’ values calculated for all 373 samples.

Feature Minimum Maximum Mean Average Standard Deviation

Clay [% of the total weight of aggregates] 0.070 0.140 0.107 0.015
Silt [% of the total weight of aggregates] 0.149 0.253 0.206 0.021

Sand [% of the total weight of aggregates] 0.403 0.754 0.516 0.109
Gravel [% of the total weight of aggregates] 0.000 0.300 0.172 0.117

Cement addition [% of the total weight] 3.00 10.00 7.57 2.11
Moisture content [% of the total weight] 6.00 14.00 9.86 1.74

Density [kg/m3] 2054.00 2406.33 2250.33 56.43
Compressive strength [MPa] 2.40 13.01 6.00 2.09

2.2. Proposed Solution

2.2.1. Algorithm

The authors propose an algorithmic procedure consisting of five steps that make it possible to
design the composition of the CSRE. In laboratory tests, it is possible to determine the moisture of the
CSRE mixture by adding an appropriate amount of water to the mixed dry ingredients of the mixture.
Practically, CSRE requires adaptation of the mix design method to the real conditions prevailing at the
construction site. The unique parameters of a construction site include its soil particle-size distribution
and the moisture content in the soil.

The authors propose the algorithm (Figure 8) in which the laboratory test results can be used
to determine the composition of the soil mixture through the use of field tests. From these tests, the
particle-size distribution of the soil (content of clay, silt, sand and, gravel fractions) and its moisture
content are obtained (STEP I). In the process of preparation of the mixture on the construction site, it
should be considered that the addition of water depends on the natural moisture of the soil. In order
to design CSRE mixture with a certain compressive strength based on the subsoil used, it is necessary
to determine:

- The amount of Portland cement to be added,
- The amount of water,
- The ramming energy needed to obtain a specific dry density of the compacted soil mixture.

The following features are assumed in the proposed calculation algorithm (STEP II):

- The amount of cement to be added,
- The density of compacted sample,
- The compressive strength.

The density of the compacted mixture is a function of the energy used for compaction. The study
of this obvious relation is not the subject of this article, however, such a relationship was observed
during the experiments. Therefore the density of the compacted sample is used as one input of the
ANN and it represents the energy used for the compaction process. Next (STEP III), the moisture
content of the mixture intended for compaction is calculated using the artificial neural network (ANN).
The inputs to the ANN are: the particle-side distribution (percentage content of clay, silt, sand, and
gravel fractions), and the values of the three aforementioned assumed parameters. In STEP IV, the
addition of water is calculated based on the determined amount of cement, the assumptions, and the
local moisture of the soil. In the next step (STEP V), the method requires the preparation of a CSRE
sample with a designed composition and checking if it can be compacted to the assumed dry density.
If so, the recipe for preparing the CSRE element with the assumed compressive strength is determined.
If the assumed density cannot be achieved, then the calculation of the moisture content should be
repeated (back to STEP II), taking the density obtained in STEP V. The procedure between STEP II
and STEP V should be repeated until the assumed density is achieved. If it cannot be obtained as a
result of the procedure repetition, the assumed amount of cement to be added to the mixture should be
modified. Then, the artificial neural network will predict a different moisture content.
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2.2.2. Creating the Artificial Neural Networks

A multi-layer perceptron (MLP) ANN consists of neurons (nodes)—see Figure 9—where input
values are transformed by a so-called activation function giving the value as an output from the neuron.
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Figure 9. The scheme of a neuron (node) with three inputs and one output where x1, x2, x3 are input
signals from the previous ANN’s layer, w1, w2, w3 are their weights, wy the value of activation function
i.e., outgoing signal from the node to consecutive layer or output of the net [28].
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The argument of the activation function is calculated as shown in Formula (2). Inputs are
multiplied by weights and summed up.

f

 n∑
i

xi ∗wi

 = wy (2)

xi—the value of input i to the neuron; wi—the weight assigned to input i to the neuron; wy—the value
of activation function i.e., output from the neuron.

The most commonly applied activation function is a logistic Formula (3).

f (x) =
1

1 + e−x (3)

e—the base of natural logarithm.
But other functions are applied too e.g., hyperbolic tangent, linear function.
In MLP, ANN neurons are grouped in layers: an input layer, a hidden layer (one or more), and an

output layer (see Figure 10).
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Figure 10. Exemplary ANN (multi-layer perceptron, MLP) with 3 input nodes, 6 nodes in one hidden
layer, 1 output node. The ANN of this architecture is marked as (3-6-1).

The activation function is not applied in the nodes of the input layer. Observing a given
phenomenon, the data (parameters accompanying the phenomenon) is collected, as well as the results.
When N sets of data are collected, together with N results, the ANN can be fed with them. The
metaheuristic algorithms (built in the software) try to find the set of weights (described above) that
minimize the error i.e., the difference between real effect of the phenomenon and the output calculated
by ANN for all N cases. The accuracy of predictions achieved from ANN can be verified by comparing
them to the observed real cases. The most often applied type of error used for evaluating the accuracy
of predictions is the mean squared error (MSE) which is calculated from the Formula (4):

MSE =

∑N
i=1(ci − ri)

2

N
(4)

ci—predicted value calculated for i sample; ri—real value observed during i observation; N—number
of observations.

To do so, a portion of cases from the collected dataset should be excluded for the verification
ANN accuracy (so called validation). Another portion from the dataset that should be excluded is the
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part called the test dataset. It provides protection from overtraining (overfitting) ANN. The remaining
part of collected data is called a training dataset, as it is used for finding the weights. While the
built-in algorithm searches for the best weights, the MSE calculated for training dataset is continuously
compared to the MSE for the testing dataset. When the MSE for the testing dataset starts to rise, it
defines the end of the training process [42]. If the increasing continues, it could lead to overfitting, as
shown in Figure 11.
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Then the set of weights found is kept and ANN is ready to use for predictions. The accuracy is
evaluated based on the MSE for validating the dataset, which is not used in the training process at all.

3. Results

As an output from the ANN, the moisture content was chosen as the dependent variable. The
other seven types of data checked for each sample (i.e., clay content, silt content, sand content, gravel
content, cement content, density and compressive strength) serves as input–independent variables.
The ANN predictions were calculated with the use of STATISTICA software (ver. 13, Dell Inc., Round
Rock, TX, USA). The data were randomly divided into three subsets (training, testing, validating) with
a proportion of 70:15:15 [43], so in the validating subsets there were 55 samples. The software allows
the application of only one hidden layer. The features of five of the best predicting ANN (MLP type)
found are presented in Table 4.

Table 4. The best predicting ANN found.

ANN
Number

No. of
Neurons in
the Hidden

Layer

Correlation
of the

Training
Dataset

Correlation
of the

Testing
Dataset

Correlation
of the

Validating
Dataset

Activation
Function in
the Hidden

Layer

Activation
Function in
the Output

Layer

1 13 0.9104 0.8877 0.8557 tanh linear
2 6 0.9031 0.8798 0.8831 tanh linear
3 10 0.9233 0.8817 0.8522 tanh tanh
4 4 0.9053 0.8626 0.8503 tanh linear
5 23 0.9431 0.9183 0.8579 tanh exponential

The small differences between correlation factors for training, testing and validating datasets (and
original values of the moisture content) ensure that the results found are not overfitted. The differences
between the original and projected values of the moisture content are shown in Figure 12 (results for
all 5 nets and all subsets).
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Before the prediction errors were calculated, the prediction values (for the validating dataset)
had been back converted to have the original unit i.e., moisture content given in a percentage. The
MSE and the square root of it, called the RMSE (root mean squared error), are good for comparing
the accuracy achieved by different ANNs. Nevertheless, the three other types of errors can be more
informative for a researcher who would like to use predicting features of ANN for a new set of data
where the result is unknown. These types of errors are as follows (5,6,7):

- Mean absolute error (MAE)

MAE =

∑N
i=1|ci − ri|

N
(5)

- Mean absolute percentage error (MAPE)

MAPE =

∑N
i=1

∣∣∣∣ ci−ri
ri

∣∣∣∣
N

∗ 100% (6)

- Maximum absolute percentage error (maxAPE)

maxAPE =

∣∣∣∣∣ci − ri
ri

∣∣∣∣∣ ∗ 100% f or 1 ≤ i ≤ N (7)

The values for the above-mentioned errors are shown in Table 5 for all five of the best predicting
ANNs found.

The lowest value of error is highlighted for each error type. The ANN No. 2 (7-6-1) was chosen
for further predictions as three types of errors calculated (for the validating dataset) are the lowest.
The net No. 5 gives the lowest maxAPE. We decided to omit it, based on the fact that the accuracy of
predictions made for the lowest and the highest moisture content (as can be seen in Figure 12) are the
poorest. Observing the best MSE, MAE and MAPE for ANN No 2, it can be said that extreme moisture
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content barely influenced the training process. Based on the chosen ANN (7-6-1), the predictions of
desired moisture content can be obtained.

Table 5. The errors of predictions calculated.

ANN No. 1 2 3 4 5

MSE 0.996 0.796 0.951 0.976 0.928
MAE 0.744 0.565 0.657 0.722 0.668

MAPE [%] 8.19 6.52 7.34 8.03 7.16
maxAPE [%] 46.03 73.28 73.75 61.79 43.38

4. Discussion

Below is the exemplary process for designing CSRE based on the proposed algorithm and
ANN predictions.

STEP I. Let us assume (for the purpose of exemplary calculation) that according to the Figure 8,
the soil found at the location of a future structure made of CSRE is characterized by the following
aggregate fractions content: clay 10.5%, silt 20.1%, sand 49.4%, gravel 20.0%. The original moisture
content checked was 3.00 [%].

STEP II. Real values (from STEP I) are to be extended by assuming the following properties: the
compressive strength to achieve (e.g., 7.885 MPa), the addition of cement (e.g., 9%), and the density
after the ramming process (e.g., 2238 kg/m3).

STEP III. The chosen ANN (7-6-1) produced the required moisture content at 7.89 [%]. Then,
considering the original moisture content of the soil (3%), the addition of the water can be calculated.

STEP IV. Considering the original moisture content of the soil from the construction site (3.00 [%]),
the mass of water to be added to obtain the desired moisture content of the CSRE mixture with the
assumed cement addition, can be calculated based on the Formula (8):

mx =
y

1− y

(
mg + mc

)
−mw (8)

where: mg + mc—the mass of moist subsoil from the construction site, [kg]; mg—the mass of the dried
subsoil, [kg]; mw—the mass of water in the subsoil [kg] determined as the difference in mass of the
moist subsoil and the dried subsoil, [kg]; mc—the mass of the cement added, [kg]; mx—mass of water
that should be added to the CSRE mixture to achieve the desired moisture content specified by the
ANN, [kg]; y—predicted moisture content of the CSRE mixture with the use of ANN, [%].

For 100 [kg] of subsoil with a moisture content of 3%, the mass of dry soil and the mass of water
in the soil can be calculated from the following Formula (9):

w =
mw

mg + mw
(9)

Thus, the mass of water in this soil is:

3% =
mw

100
→ mw = 3 [kg] (10)

Then, the mass of dry soil can be calculated:

mg + mw = 100 → mg = 97 [kg] (11)

For this dry soil, the mass of cement to be added is:

mc = 97× 9% = 8.73 [kg] (12)
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To obtain the moisture content of the CSRE mixture containing 100 [kg] of subsoil with a moisture
content of 3% and 8.73 [kg] of cement added, the following amount of water should be added:

mx =
7.89%

1− 7.89%
(97 + 8.73) − 3 � 6.06 [kg] (13)

STEP V. As the process of ramming the mixture influences the density of the compacted CSRE,
and it is not yet standardized, predictions were made for the set of assumed density, varying from
2118 to 2358 [kg/m3]. The predicted moisture content results are shown in Figure 13.
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Figure 13. Predicted final moisture content for given density varied from 2118 to 2358 [kg/m3] for
required compressive strength 7.885 [MPa] and assumed 9 [%] addition of cement.

The above density-moisture curve has been found by predicting the moisture content for a given
density through the use of the ANN. The density can be checked after adding all the components
of the CSRE and compacting the mixture. If the pair of parameters (density and moisture) fits any
point on the curve presented in Figure 13, the assumed compressive strength should be achieved. The
algorithm then comes to a stop. The composition of the CSRE based on the site’s subsoil is found. If
any combination of the predicted moisture content and the assumed density is not possible to achieve
(the pair moisture-density does not fit any point on the curve), the assumptions should be changed–the
algorithm comes back to STEP II.

The proposed method requires that, the following simultaneous changes to the assumptions
of three values should be made (in STEP II): required compressive strength, cement addition, and
the density to achieve. These changes may cause some trouble for the user. The density may be
evaluated before the assumption is made based on trial soil compaction where only water is added.
The compressive strength and the cement added is positively (but not strongly) corelated, as stated
above. The following Table 6—based on the 373 samples prepared and checked—shows the ranges of
compressive strength achieved for different portions of cement added.

Table 6. Results of compressive test of 373 samples of CSRE.

Cement
Addition [%]

Number of
Samples

Compressive Strength [MPa]

Min Max Mean av. Standard dev.

3 36 2.438 4.200 3.215 0.456
6 120 2.400 8.741 5.439 1.304
9 174 2.649 13.011 6.874 2.232

10 43 4.030 9.450 6.357 1.557
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It is suggested to base the three assumptions on the 373 experiments done by the authors and
summarized in Table 6, as well as on the subsoil on site (checking the density after compaction with
only water added).

5. Conclusions

The article presents the possibility of using artificial neural networks for designing cement
stabilized rammed earth mixtures. Using artificial neural networks, the moisture content of the CSRE
mixture was predicted to ensure the assumed compressive strength. The input database was large
enough that the artificial neural network found by the software Statistica produced predictions of high
accuracy. The mean absolute error MAE was 0.565 [%] of the designed moisture content. It should
be emphasized that the prediction errors obtained are smaller than the accuracy when preparing the
CSRE mixture under the conditions prevailing at the construction site (e.g., due to changing weather
conditions). The algorithm was created for designing cement stabilized rammed earth with the use
of subsoil obtained from the construction site. The developed algorithm allows us to determine,
using relatively simple soil tests (analysis of grain size and humidity), the composition of the mixture
ensuring compressive strength at a level that allows the use of this material in construction. It should
be emphasized that the equipment necessary to assess density and particle size distribution is more
simple, accessible, and affordable to provide on site, than equipment for compressive strength testing.
Software for artificial neural networks (not commonly used in finding a CSRE recipe) that excludes the
need of using compressive strength test machinery, is a step toward the real application of CSRE as a
structure material. The variety of the soil types that can be found, and—for the time being—the low
popularity of CSRE, create some uncertainty in the compressive strength level that can be achieved
on a building site. The large size of the database of the samples tested, as well as high accuracy of
ANN predictions achieved and presented above, made the authors believe that the created method of
designing CSRE will be successfully applied for random soils gathered from variety of locations. The
forthcoming research is to be aimed at simplification of the process of designing the CSRE mixture in a
way that would hopefully allow builders to prepare the recipe on site.
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Appendix A

Table A1. The set of features of 373 samples and the compressive test result are presented in Appendix A.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

1 0.105 0.192 0.403 0.300 3.0 9.0 2296.29 4.1791

2 0.105 0.192 0.403 0.300 3.0 9.0 2300.48 3.5000

3 0.105 0.192 0.403 0.300 3.0 9.0 2277.39 3.2511

4 0.105 0.192 0.403 0.300 3.0 9.0 2270.35 3.1841

5 0.105 0.192 0.403 0.300 3.0 9.0 2309.10 4.1584

6 0.105 0.192 0.403 0.300 3.0 9.0 2295.20 4.0098

7 0.105 0.192 0.403 0.300 3.0 9.0 2311.22 4.2000
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

8 0.105 0.192 0.403 0.300 3.0 9.0 2277.22 3.5821

9 0.105 0.192 0.403 0.300 3.0 9.0 2295.75 3.1841

10 0.105 0.201 0.494 0.200 3.0 9.0 2252.05 2.5742

11 0.105 0.201 0.494 0.200 3.0 9.0 2273.63 2.5373

12 0.105 0.201 0.494 0.200 3.0 9.0 2168.93 2.6500

13 0.105 0.201 0.494 0.200 3.0 9.0 2284.03 2.8570

14 0.105 0.201 0.494 0.200 3.0 9.0 2260.27 2.7861

15 0.105 0.201 0.494 0.200 3.0 9.0 2275.85 2.8570

16 0.105 0.201 0.494 0.200 3.0 9.0 2280.89 2.7227

17 0.105 0.201 0.494 0.200 3.0 9.0 2282.96 2.7363

18 0.105 0.201 0.494 0.200 3.0 9.0 2258.95 2.4378

19 0.105 0.201 0.494 0.200 3.0 9.0 2267.48 2.4998

20 0.105 0.210 0.585 0.100 3.0 9.0 2252.37 3.2338

21 0.105 0.210 0.585 0.100 3.0 9.0 2246.32 3.0846

22 0.105 0.210 0.585 0.100 3.0 9.0 2221.56 3.4314

23 0.105 0.210 0.585 0.100 3.0 9.0 2248.51 2.9208

24 0.105 0.210 0.585 0.100 3.0 9.0 2267.34 3.1500

25 0.105 0.210 0.585 0.100 3.0 9.0 2288.72 3.3500

26 0.105 0.210 0.585 0.100 3.0 9.0 2275.49 3.3000

27 0.105 0.210 0.585 0.100 3.0 9.0 2251.15 3.3333

28 0.105 0.210 0.585 0.100 3.0 9.0 2250.36 3.1683

29 0.105 0.219 0.676 0.000 3.0 10.0 2232.84 3.3333

30 0.105 0.219 0.676 0.000 3.0 10.0 2212.64 3.3663

31 0.105 0.219 0.676 0.000 3.0 10.0 2238.93 3.3333

32 0.105 0.219 0.676 0.000 3.0 10.0 2252.73 3.2672

33 0.105 0.219 0.676 0.000 3.0 10.0 2250.86 3.4171

34 0.105 0.219 0.676 0.000 3.0 10.0 2237.22 3.4826

35 0.105 0.219 0.676 0.000 3.0 10.0 2254.71 3.4328

36 0.105 0.219 0.676 0.000 3.0 10.0 2225.45 3.2177

37 0.140 0.253 0.507 0.100 6.0 11.0 2271.13 5.4000

38 0.140 0.253 0.507 0.100 6.0 11.0 2294.90 5.3000

39 0.140 0.253 0.507 0.100 6.0 11.0 2306.25 5.4500

40 0.140 0.253 0.507 0.100 6.0 11.0 2313.54 5.1500

41 0.140 0.253 0.507 0.100 6.0 11.0 2317.35 4.6500

42 0.140 0.253 0.507 0.100 6.0 11.0 2293.48 4.8000

43 0.140 0.244 0.416 0.200 6.0 11.0 2285.29 6.6000

44 0.140 0.244 0.416 0.200 6.0 11.0 2303.33 6.1000

45 0.140 0.244 0.416 0.200 6.0 11.0 2393.55 6.8000

46 0.140 0.244 0.416 0.200 6.0 11.0 2283.51 6.9000

47 0.140 0.244 0.416 0.200 6.0 11.0 2314.29 6.9000

48 0.105 0.192 0.403 0.300 6.0 8.0 2258.96 7.1802

49 0.105 0.192 0.403 0.300 6.0 8.0 2235.14 7.4666

50 0.105 0.192 0.403 0.300 6.0 8.0 2271.98 7.1465

51 0.105 0.192 0.403 0.300 6.0 8.0 2263.90 5.9293

52 0.105 0.192 0.403 0.300 6.0 8.0 2292.21 8.0000

53 0.105 0.192 0.403 0.300 6.0 8.0 2219.88 6.5238

54 0.105 0.192 0.403 0.300 6.0 8.0 2229.85 6.3367

55 0.105 0.192 0.403 0.300 6.0 8.0 2220.22 6.4764

56 0.105 0.192 0.403 0.300 6.0 8.0 2249.58 7.4777

57 0.105 0.192 0.403 0.300 6.0 8.0 2245.61 6.5906
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

58 0.105 0.192 0.403 0.300 6.0 8.0 2197.84 6.2933

59 0.105 0.192 0.403 0.300 6.0 8.0 2269.15 7.8710

60 0.105 0.192 0.403 0.300 6.0 8.0 2297.66 7.2144

61 0.105 0.192 0.403 0.300 6.0 9.0 2250.73 5.1026

62 0.105 0.192 0.403 0.300 6.0 9.0 2309.66 6.0000

63 0.105 0.192 0.403 0.300 6.0 9.0 2295.93 4.6488

64 0.105 0.192 0.403 0.300 6.0 9.0 2315.21 5.2528

65 0.105 0.192 0.403 0.300 6.0 9.0 2281.72 5.3810

66 0.105 0.192 0.403 0.300 6.0 10.0 2325.72 5.7921

67 0.105 0.192 0.403 0.300 6.0 10.0 2348.72 5.8506

68 0.105 0.192 0.403 0.300 6.0 10.0 2406.33 6.0290

69 0.105 0.192 0.403 0.300 6.0 10.0 2294.47 5.9406

70 0.105 0.192 0.403 0.300 6.0 10.0 2196.75 5.7711

71 0.105 0.192 0.403 0.300 6.0 10.0 2209.44 5.5224

72 0.105 0.192 0.403 0.300 6.0 10.0 2343.65 5.7426

73 0.105 0.192 0.403 0.300 6.0 10.0 2320.41 5.8125

74 0.105 0.192 0.403 0.300 6.0 10.0 2324.06 5.9701

75 0.105 0.192 0.403 0.300 6.0 10.0 2311.22 5.5500

76 0.105 0.192 0.403 0.300 6.0 10.0 2183.26 5.7711

77 0.105 0.192 0.403 0.300 6.0 10.0 2252.00 3.7000

78 0.105 0.192 0.403 0.300 6.0 10.0 2339.00 3.4000

79 0.105 0.192 0.403 0.300 6.0 10.0 2264.00 2.6500

80 0.105 0.192 0.403 0.300 6.0 10.0 2348.00 2.5500

81 0.105 0.192 0.403 0.300 6.0 8.0 2240.28 6.4500

82 0.105 0.192 0.403 0.300 6.0 8.0 2281.42 7.0289

83 0.105 0.192 0.403 0.300 6.0 8.0 2292.33 7.9206

84 0.105 0.192 0.403 0.300 6.0 8.0 2228.54 6.4436

85 0.105 0.192 0.403 0.300 6.0 8.0 2307.74 7.4650

86 0.105 0.192 0.403 0.300 6.0 8.0 2235.59 6.3053

87 0.105 0.192 0.403 0.300 6.0 8.0 2248.50 8.7413

88 0.105 0.192 0.403 0.300 6.0 8.0 2301.87 7.8764

89 0.105 0.192 0.403 0.300 6.0 8.0 2272.27 6.9069

90 0.105 0.201 0.494 0.200 6.0 10.0 2259.70 4.2000

91 0.105 0.201 0.494 0.200 6.0 10.0 2284.58 3.8500

92 0.105 0.201 0.494 0.200 6.0 10.0 2283.05 4.1870

93 0.105 0.201 0.494 0.200 6.0 10.0 2274.75 3.8308

94 0.105 0.201 0.494 0.200 6.0 10.0 2264.63 4.0500

95 0.105 0.201 0.494 0.200 6.0 10.0 2273.00 3.2500

96 0.105 0.201 0.494 0.200 6.0 10.0 2249.00 3.5500

97 0.105 0.201 0.494 0.200 6.0 10.0 2361.00 3.4000

98 0.105 0.201 0.494 0.200 6.0 11.0 2254.81 4.5500

99 0.105 0.201 0.494 0.200 6.0 11.0 2270.31 5.1741

100 0.105 0.201 0.494 0.200 6.0 11.0 2260.67 4.4058

101 0.105 0.201 0.494 0.200 6.0 11.0 2311.55 5.2000

102 0.105 0.201 0.494 0.200 6.0 11.0 2274.48 5.2239

103 0.105 0.210 0.585 0.100 6.0 8.0 2234.80 6.0990

104 0.105 0.210 0.585 0.100 6.0 8.0 2255.37 6.5206

105 0.105 0.210 0.585 0.100 6.0 8.0 2227.59 6.1659

106 0.105 0.210 0.585 0.100 6.0 8.0 2241.75 6.4026

107 0.105 0.210 0.585 0.100 6.0 8.0 2212.89 5.0814
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

108 0.105 0.210 0.585 0.100 6.0 8.0 2217.82 5.4315

109 0.105 0.210 0.585 0.100 6.0 8.0 2236.03 6.4734

110 0.105 0.210 0.585 0.100 6.0 8.0 2213.09 6.0655

111 0.105 0.210 0.585 0.100 6.0 8.0 2212.95 6.2931

112 0.105 0.210 0.585 0.100 6.0 8.0 2211.13 5.6034

113 0.105 0.210 0.585 0.100 6.0 8.0 2237.12 5.7443

114 0.105 0.210 0.585 0.100 6.0 9.0 2314.00 5.6500

115 0.105 0.210 0.585 0.100 6.0 9.0 2281.95 5.5000

116 0.105 0.210 0.585 0.100 6.0 9.0 2289.00 5.0000

117 0.105 0.210 0.585 0.100 6.0 9.0 2276.42 5.0746

118 0.105 0.210 0.585 0.100 6.0 9.0 2291.71 5.8000

119 0.105 0.210 0.585 0.100 6.0 9.0 2282.00 5.3500

120 0.105 0.210 0.585 0.100 6.0 9.0 2284.26 6.0000

121 0.105 0.210 0.585 0.100 6.0 9.0 2299.25 5.5500

122 0.105 0.210 0.585 0.100 6.0 10.0 2320.00 3.9000

123 0.105 0.210 0.585 0.100 6.0 10.0 2192.00 3.5000

124 0.105 0.219 0.676 0.000 6.0 8.0 2183.92 4.2440

125 0.105 0.219 0.676 0.000 6.0 8.0 2159.98 4.0781

126 0.105 0.219 0.676 0.000 6.0 8.0 2137.15 4.3948

127 0.105 0.219 0.676 0.000 6.0 8.0 2141.43 3.9237

128 0.105 0.219 0.676 0.000 6.0 8.0 2171.97 4.0214

129 0.105 0.219 0.676 0.000 6.0 8.0 2226.39 4.2073

130 0.105 0.219 0.676 0.000 6.0 8.0 2238.21 4.3331

131 0.105 0.219 0.676 0.000 6.0 8.0 2172.37 4.0469

132 0.105 0.219 0.676 0.000 6.0 9.0 2264.70 6.1022

133 0.105 0.219 0.676 0.000 6.0 9.0 2302.16 6.3000

134 0.105 0.219 0.676 0.000 6.0 9.0 2264.61 6.1570

135 0.105 0.219 0.676 0.000 6.0 9.0 2257.52 6.2194

136 0.105 0.219 0.676 0.000 6.0 9.0 2225.89 5.8424

137 0.105 0.219 0.676 0.000 6.0 10.0 2275.03 4.9624

138 0.105 0.219 0.676 0.000 6.0 10.0 2265.66 5.0000

139 0.105 0.219 0.676 0.000 6.0 10.0 2287.00 5.3250

140 0.105 0.219 0.676 0.000 6.0 10.0 2266.01 5.0000

141 0.105 0.219 0.676 0.000 6.0 10.0 2216.50 4.9000

142 0.105 0.219 0.676 0.000 6.0 10.0 2276.69 5.4094

143 0.105 0.219 0.676 0.000 6.0 10.0 2263.68 5.3000

144 0.105 0.219 0.676 0.000 6.0 10.0 2265.47 5.1629

145 0.105 0.219 0.676 0.000 6.0 10.0 2248.71 5.0746

146 0.105 0.219 0.676 0.000 6.0 10.0 2238.36 5.1250

147 0.105 0.219 0.676 0.000 6.0 10.0 2201.00 2.6000

148 0.105 0.219 0.676 0.000 6.0 10.0 2232.00 2.6500

149 0.105 0.219 0.676 0.000 6.0 10.0 2282.00 2.4000

150 0.105 0.219 0.676 0.000 6.0 10.0 2174.00 2.4000

151 0.105 0.219 0.676 0.000 6.0 10.0 2267.00 2.8500

152 0.070 0.149 0.481 0.300 6.0 8.0 2326.73 6.0500

153 0.070 0.149 0.481 0.300 6.0 8.0 2324.51 5.9606

154 0.070 0.149 0.481 0.300 6.0 8.0 2311.44 6.2000

155 0.070 0.149 0.481 0.300 6.0 8.0 2318.00 6.0500

156 0.070 0.149 0.481 0.300 6.0 8.0 2330.35 6.2189
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

157 0.105 0.219 0.676 0.000 9.0 8.0 2164.57 5.2740

158 0.105 0.219 0.676 0.000 9.0 8.0 2155.70 5.3449

159 0.105 0.219 0.676 0.000 9.0 8.0 2184.06 5.4242

160 0.105 0.219 0.676 0.000 9.0 8.0 2166.34 5.1267

161 0.105 0.219 0.676 0.000 9.0 8.0 2202.03 5.9707

162 0.105 0.219 0.676 0.000 9.0 8.0 2178.25 6.2912

163 0.105 0.219 0.676 0.000 9.0 8.0 2186.32 6.3192

164 0.105 0.219 0.676 0.000 9.0 8.0 2205.57 6.2857

165 0.105 0.219 0.676 0.000 9.0 8.0 2189.38 5.7382

166 0.105 0.219 0.676 0.000 9.0 8.0 2197.35 6.2262

167 0.140 0.253 0.507 0.100 9.0 10.0 2256.54 7.0000

168 0.140 0.253 0.507 0.100 9.0 10.0 2258.60 6.1307

169 0.140 0.253 0.507 0.100 9.0 11.0 2295.83 8.8000

170 0.140 0.253 0.507 0.100 9.0 11.0 2283.84 8.2500

171 0.140 0.253 0.507 0.100 9.0 11.0 2276.24 6.5000

172 0.140 0.253 0.507 0.100 9.0 11.0 2239.78 6.5000

173 0.140 0.253 0.507 0.100 9.0 11.0 2274.49 8.2000

174 0.140 0.253 0.507 0.100 9.0 11.0 2269.79 8.3000

175 0.140 0.253 0.507 0.100 9.0 12.0 2211.05 5.9901

176 0.140 0.253 0.507 0.100 9.0 12.0 2236.10 5.9406

177 0.140 0.253 0.507 0.100 9.0 14.0 2128.00 4.0000

178 0.140 0.253 0.507 0.100 9.0 14.0 2054.00 3.8500

179 0.140 0.244 0.416 0.200 9.0 10.0 2301.31 5.9701

180 0.140 0.244 0.416 0.200 9.0 10.0 2310.38 7.7000

181 0.140 0.244 0.416 0.200 9.0 11.0 2239.18 5.9500

182 0.140 0.244 0.416 0.200 9.0 11.0 2323.08 5.7000

183 0.140 0.244 0.416 0.200 9.0 11.0 2324.49 4.5000

184 0.140 0.244 0.416 0.200 9.0 11.0 2270.83 4.5500

185 0.140 0.244 0.416 0.200 9.0 11.0 2280.41 5.1000

186 0.140 0.244 0.416 0.200 9.0 11.0 2251.49 5.0500

187 0.140 0.244 0.416 0.200 9.0 12.0 2260.91 6.3000

188 0.140 0.244 0.416 0.200 9.0 12.0 2251.46 6.3500

189 0.140 0.244 0.416 0.200 9.0 14.0 2206.25 5.1000

190 0.140 0.244 0.416 0.200 9.0 14.0 2191.88 5.2500

191 0.140 0.244 0.416 0.200 9.0 11.0 2116.13 7.0549

192 0.140 0.244 0.416 0.200 9.0 11.0 2310.11 6.7098

193 0.140 0.244 0.416 0.200 9.0 11.0 2237.36 7.6312

194 0.140 0.244 0.416 0.200 9.0 11.0 2192.97 7.3668

195 0.140 0.244 0.416 0.200 9.0 11.0 2345.26 6.3662

196 0.140 0.244 0.416 0.200 9.0 11.0 2233.40 7.1221

197 0.105 0.192 0.403 0.300 9.0 6.0 2104.86 2.8655

198 0.105 0.192 0.403 0.300 9.0 6.0 2089.06 2.6487

199 0.105 0.192 0.403 0.300 9.0 8.0 2227.17 8.7604

200 0.105 0.192 0.403 0.300 9.0 8.0 2259.54 9.4042

201 0.105 0.192 0.403 0.300 9.0 8.0 2294.41 7.3597

202 0.105 0.192 0.403 0.300 9.0 8.0 2322.93 11.6269

203 0.105 0.192 0.403 0.300 9.0 8.0 2271.88 8.6678

204 0.105 0.192 0.403 0.300 9.0 8.0 2285.45 11.9300

205 0.105 0.192 0.403 0.300 9.0 8.0 2245.57 9.5605

206 0.105 0.192 0.403 0.300 9.0 8.0 2290.12 10.8647
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

207 0.105 0.192 0.403 0.300 9.0 8.0 2292.26 10.9991

208 0.105 0.192 0.403 0.300 9.0 8.0 2279.62 10.0958

209 0.105 0.192 0.403 0.300 9.0 8.0 2173.60 6.9767

210 0.105 0.192 0.403 0.300 9.0 8.0 2183.14 6.9950

211 0.105 0.192 0.403 0.300 9.0 8.0 2207.37 8.3494

212 0.105 0.192 0.403 0.300 9.0 8.0 2154.72 5.8439

213 0.105 0.192 0.403 0.300 9.0 8.0 2252.86 7.8765

214 0.105 0.192 0.403 0.300 9.0 8.0 2240.60 6.7946

215 0.105 0.192 0.403 0.300 9.0 9.0 2254.31 6.2593

216 0.105 0.192 0.403 0.300 9.0 9.0 2269.21 6.5378

217 0.105 0.192 0.403 0.300 9.0 9.0 2280.57 6.3936

218 0.105 0.192 0.403 0.300 9.0 9.0 2239.86 5.6135

219 0.105 0.192 0.403 0.300 9.0 9.0 2273.75 5.9059

220 0.105 0.192 0.403 0.300 9.0 9.0 2295.12 9.4057

221 0.105 0.192 0.403 0.300 9.0 9.0 2238.06 9.3703

222 0.105 0.192 0.403 0.300 9.0 9.0 2281.41 9.6845

223 0.105 0.192 0.403 0.300 9.0 9.0 2343.87 10.0381

224 0.105 0.192 0.403 0.300 9.0 9.0 2240.28 9.2285

225 0.105 0.192 0.403 0.300 9.0 9.0 2255.73 9.8156

226 0.105 0.192 0.403 0.300 9.0 10.0 2265.42 6.3434

227 0.105 0.192 0.403 0.300 9.0 10.0 2291.14 7.5399

228 0.105 0.192 0.403 0.300 9.0 10.0 2284.32 7.4425

229 0.105 0.192 0.403 0.300 9.0 10.0 2265.53 7.3845

230 0.105 0.192 0.403 0.300 9.0 10.0 2319.46 6.5072

231 0.105 0.192 0.403 0.300 9.0 10.0 2267.64 7.1293

232 0.105 0.192 0.403 0.300 9.0 10.0 2310.57 6.5271

233 0.105 0.192 0.403 0.300 9.0 10.0 2303.91 5.9115

234 0.105 0.192 0.403 0.300 9.0 10.0 2295.61 6.4227

235 0.105 0.192 0.403 0.300 9.0 10.0 2318.05 6.1133

236 0.105 0.192 0.403 0.300 9.0 10.0 2311.83 6.7966

237 0.105 0.192 0.403 0.300 9.0 10.0 2321.37 6.8397

238 0.105 0.192 0.403 0.300 9.0 10.0 2313.68 6.0139

239 0.105 0.192 0.403 0.300 9.0 11.0 2268.00 4.9500

240 0.105 0.192 0.403 0.300 9.0 11.0 2256.00 5.3000

241 0.105 0.192 0.403 0.300 9.0 11.0 2299.00 4.6500

242 0.105 0.192 0.403 0.300 9.0 11.0 2328.00 4.6000

243 0.105 0.192 0.403 0.300 9.0 12.0 2219.74 6.3408

244 0.105 0.192 0.403 0.300 9.0 12.0 2238.88 5.6287

245 0.105 0.192 0.403 0.300 9.0 12.0 2240.00 5.5554

246 0.105 0.192 0.403 0.300 9.0 12.0 2224.64 6.3189

247 0.105 0.192 0.403 0.300 9.0 12.0 2240.67 5.9166

248 0.105 0.192 0.403 0.300 9.0 12.0 2216.41 5.5229

249 0.105 0.192 0.403 0.300 9.0 14.0 2084.11 3.5100

250 0.105 0.192 0.403 0.300 9.0 14.0 2122.17 3.5559

251 0.105 0.201 0.494 0.200 9.0 8.0 2240.71 8.3359

252 0.105 0.201 0.494 0.200 9.0 8.0 2151.64 7.8853

253 0.105 0.201 0.494 0.200 9.0 8.0 2218.89 9.2350

254 0.105 0.201 0.494 0.200 9.0 8.0 2153.38 7.6816

255 0.105 0.201 0.494 0.200 9.0 8.0 2206.07 8.1360

256 0.105 0.201 0.494 0.200 9.0 8.0 2234.69 8.8511
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

257 0.105 0.201 0.494 0.200 9.0 8.0 2234.58 6.4882

258 0.105 0.201 0.494 0.200 9.0 8.0 2195.76 10.0693

259 0.105 0.201 0.494 0.200 9.0 8.0 2233.43 9.8294

260 0.105 0.201 0.494 0.200 9.0 11.0 2328.00 4.9000

261 0.105 0.201 0.494 0.200 9.0 11.0 2229.00 5.2000

262 0.105 0.210 0.585 0.100 9.0 8.0 2188.22 8.5159

263 0.105 0.210 0.585 0.100 9.0 8.0 2287.56 8.2171

264 0.105 0.210 0.585 0.100 9.0 8.0 2257.54 9.6211

265 0.105 0.210 0.585 0.100 9.0 8.0 2233.23 8.8703

266 0.105 0.210 0.585 0.100 9.0 8.0 2239.28 7.1642

267 0.105 0.210 0.585 0.100 9.0 8.0 2321.50 8.6692

268 0.105 0.210 0.585 0.100 9.0 8.0 2238.30 9.9005

269 0.105 0.210 0.585 0.100 9.0 8.0 2277.11 9.6347

270 0.105 0.210 0.585 0.100 9.0 10.0 2144.38 5.2550

271 0.105 0.210 0.585 0.100 9.0 10.0 2111.71 4.6074

272 0.105 0.210 0.585 0.100 9.0 10.0 2100.10 5.0540

273 0.105 0.210 0.585 0.100 9.0 10.0 2171.44 5.5863

274 0.105 0.210 0.585 0.100 9.0 11.0 2223.00 4.2000

275 0.105 0.210 0.585 0.100 9.0 11.0 2291.00 4.2000

276 0.105 0.210 0.585 0.100 9.0 11.0 2329.00 3.4000

277 0.105 0.210 0.585 0.100 9.0 11.0 2319.00 5.5000

278 0.105 0.210 0.585 0.100 9.0 11.0 2206.00 4.2000

279 0.105 0.210 0.585 0.100 9.0 11.0 2211.00 3.3000

280 0.105 0.219 0.676 0.000 9.0 8.0 2140.42 4.9362

281 0.105 0.219 0.676 0.000 9.0 8.0 2129.01 5.8578

282 0.105 0.219 0.676 0.000 9.0 8.0 2131.59 5.7112

283 0.105 0.219 0.676 0.000 9.0 8.0 2105.61 4.9440

284 0.105 0.219 0.676 0.000 9.0 8.0 2147.53 5.4470

285 0.105 0.219 0.676 0.000 9.0 10.0 2215.52 6.2493

286 0.105 0.219 0.676 0.000 9.0 10.0 2221.03 6.5280

287 0.105 0.219 0.676 0.000 9.0 10.0 2239.91 6.4400

288 0.105 0.219 0.676 0.000 9.0 10.0 2215.53 6.4599

289 0.105 0.219 0.676 0.000 9.0 10.0 2197.26 6.5711

290 0.105 0.219 0.676 0.000 9.0 11.0 2173.00 3.9000

291 0.105 0.219 0.676 0.000 9.0 11.0 2188.00 5.3000

292 0.105 0.219 0.676 0.000 9.0 11.0 2248.00 4.8400

293 0.105 0.219 0.676 0.000 9.0 11.0 2234.00 3.6000

294 0.105 0.219 0.676 0.000 9.0 11.0 2298.00 3.2500

295 0.105 0.219 0.676 0.000 9.0 11.0 2192.76 6.3770

296 0.105 0.219 0.676 0.000 9.0 11.0 2252.53 6.9888

297 0.105 0.219 0.676 0.000 9.0 11.0 2251.15 6.4942

298 0.105 0.219 0.676 0.000 9.0 11.0 2213.52 7.3178

299 0.105 0.219 0.676 0.000 9.0 11.0 2256.29 7.4530

300 0.105 0.219 0.676 0.000 9.0 11.0 2235.50 6.7844

301 0.105 0.219 0.676 0.000 9.0 12.0 2207.69 5.0076

302 0.105 0.219 0.676 0.000 9.0 12.0 2185.16 5.2227

303 0.105 0.219 0.676 0.000 9.0 12.0 2205.32 4.8635

304 0.105 0.219 0.676 0.000 9.0 12.0 2151.99 5.0661

305 0.105 0.219 0.676 0.000 9.0 12.0 2195.58 5.1813

306 0.105 0.219 0.676 0.000 9.0 14.0 2108.36 3.4827
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

307 0.105 0.219 0.676 0.000 9.0 14.0 2119.63 3.0895

308 0.105 0.219 0.676 0.000 9.0 14.0 2161.18 3.0960

309 0.105 0.219 0.676 0.000 9.0 14.0 2125.80 3.3113

310 0.105 0.219 0.676 0.000 9.0 14.0 2121.11 2.9600

311 0.105 0.219 0.676 0.000 9.0 14.0 2114.94 3.3066

312 0.070 0.149 0.481 0.300 9.0 8.0 2221.06 12.3858

313 0.070 0.149 0.481 0.300 9.0 8.0 2189.12 13.0106

314 0.070 0.149 0.481 0.300 9.0 8.0 2216.13 12.6901

315 0.070 0.149 0.481 0.300 9.0 8.0 2226.02 11.6468

316 0.070 0.158 0.572 0.200 9.0 8.0 2334.33 9.3000

317 0.070 0.158 0.572 0.200 9.0 8.0 2329.23 9.2574

318 0.070 0.158 0.572 0.200 9.0 8.0 2335.71 9.2000

319 0.070 0.158 0.572 0.200 9.0 8.0 2362.97 9.0099

320 0.070 0.158 0.572 0.200 9.0 8.0 2343.21 9.5002

321 0.070 0.158 0.572 0.200 9.0 8.0 2263.74 10.8609

322 0.070 0.158 0.572 0.200 9.0 8.0 2281.87 8.9811

323 0.070 0.158 0.572 0.200 9.0 8.0 2251.75 10.5418

324 0.070 0.158 0.572 0.200 9.0 8.0 2229.05 10.4647

325 0.070 0.158 0.572 0.200 9.0 8.0 2166.09 10.3287

326 0.070 0.158 0.572 0.200 9.0 8.0 2209.40 11.0470

327 0.070 0.176 0.754 0.000 9.0 8.0 2256.72 9.7500

328 0.070 0.176 0.754 0.000 9.0 8.0 2241.27 9.6535

329 0.070 0.176 0.754 0.000 9.0 8.0 2221.24 9.5613

330 0.070 0.176 0.754 0.000 9.0 8.0 2242.52 8.4158

331 0.105 0.192 0.403 0.300 10.0 11.0 2262.19 8.2176

332 0.105 0.192 0.403 0.300 10.0 11.0 2325.17 8.8117

333 0.105 0.192 0.403 0.300 10.0 11.0 2363.25 9.0547

334 0.105 0.192 0.403 0.300 10.0 11.0 2334.84 7.6500

335 0.105 0.192 0.403 0.300 10.0 11.0 2240.20 8.0000

336 0.105 0.192 0.403 0.300 10.0 11.0 2373.00 7.2500

337 0.105 0.192 0.403 0.300 10.0 11.0 2256.31 8.7500

338 0.105 0.192 0.403 0.300 10.0 11.0 2386.90 8.0000

339 0.105 0.192 0.403 0.300 10.0 11.0 2306.12 9.4500

340 0.105 0.201 0.494 0.200 10.0 12.0 2271.92 4.8989

341 0.105 0.201 0.494 0.200 10.0 12.0 2256.51 5.1000

342 0.105 0.201 0.494 0.200 10.0 12.0 2241.56 5.1000

343 0.105 0.201 0.494 0.200 10.0 12.0 2246.85 5.3000

344 0.105 0.201 0.494 0.200 10.0 12.0 2241.99 5.3234

345 0.105 0.201 0.494 0.200 10.0 12.0 2266.67 5.3250

346 0.105 0.201 0.494 0.200 10.0 13.0 2215.79 4.3564

347 0.105 0.201 0.494 0.200 10.0 13.0 2231.62 4.3438

348 0.105 0.201 0.494 0.200 10.0 13.0 2210.20 4.1500

349 0.105 0.201 0.494 0.200 10.0 13.0 2191.35 4.1089

350 0.105 0.201 0.494 0.200 10.0 13.0 2208.96 4.0299

351 0.105 0.210 0.585 0.100 10.0 13.0 2248.50 4.9749

352 0.105 0.210 0.585 0.100 10.0 13.0 2238.78 4.9000

353 0.105 0.210 0.585 0.100 10.0 13.0 2203.57 4.6303

354 0.105 0.210 0.585 0.100 10.0 13.0 2200.76 4.8776

355 0.105 0.210 0.585 0.100 10.0 13.0 2253.92 5.7000

356 0.105 0.210 0.585 0.100 10.0 13.0 2251.28 5.4455
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Table A1. Cont.

No.
Particle size Distribution [%] Cement

Addition [%]
Moisture

Content [%]
Density
[kg/m3]

Compressive
Strength [MPa]Clay Silt Sand Gravel

357 0.105 0.210 0.585 0.100 10.0 13.0 2236.76 4.5048

358 0.105 0.210 0.585 0.100 10.0 13.0 2259.00 5.3234

359 0.105 0.210 0.585 0.100 10.0 13.0 2253.56 5.5000

360 0.105 0.210 0.585 0.100 10.0 13.0 2230.58 6.1000

361 0.105 0.210 0.585 0.100 10.0 13.0 2234.69 5.6500

362 0.105 0.192 0.403 0.300 10.0 13.0 2278.43 7.1500

363 0.105 0.192 0.403 0.300 10.0 13.0 2273.10 7.1500

364 0.105 0.192 0.403 0.300 10.0 13.0 2281.52 7.0647

365 0.105 0.192 0.403 0.300 10.0 13.0 2264.89 7.0440

366 0.105 0.192 0.403 0.300 10.0 13.0 2285.71 7.6000

367 0.105 0.192 0.403 0.300 10.0 13.0 2296.08 7.1500

368 0.105 0.192 0.403 0.300 10.0 13.0 2302.24 7.7000

369 0.105 0.192 0.403 0.300 10.0 13.0 2298.51 7.0647

370 0.105 0.192 0.403 0.300 10.0 13.0 2264.17 7.5622

371 0.105 0.192 0.403 0.300 10.0 13.0 2252.07 7.7000

372 0.105 0.192 0.403 0.300 10.0 13.0 2295.41 7.9703

373 0.105 0.192 0.403 0.300 10.0 13.0 2273.94 7.3888
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Realizacji Kontraktów Budowlanych. Ph.D. Thesis, Warsaw University of Technology, Warsaw, Poland, 2017.

29. Anysz, H.; Ibadov, N. Neuro-fuzzy predictions of construction site completion dates. Tech. Trans. Civil Eng.
2017, 6, 51–58. [CrossRef]
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