Article

Certain Notions of Neutrosophic Topological K-Algebras

Muhammad Akram 1,*, Hina Gulzar 1, Florentin Smarandache 2 and Said Broumi 3

1 Department of Mathematics, University of the Punjab, New Campus, Lahore 54590, Pakistan; hinagulzar5@gmail.com
2 Department 705 Gurley Ave., University of New Mexico Mathematics & Science, Gallup, NM 87301, USA; fsmarandache@gmail.com
3 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi Othman, Casablanca 20000, Morocco; broumisaid78@gmail.com

* Correspondence: m.akram@pucit.edu.pk

Received: 24 September 2018; Accepted: 29 October 2018; Published: 30 October 2018

Abstract: The concept of neutrosophic set from philosophical point of view was first considered by Smarandache. A single-valued neutrosophic set is a subclass of the neutrosophic set from a scientific and engineering point of view and an extension of intuitionistic fuzzy sets. In this research article, we apply the notion of single-valued neutrosophic sets to K-algebras. We introduce the notion of single-valued neutrosophic topological K-algebras and investigate some of their properties. Further, we study certain properties, including C_5-connected, super connected, compact and Hausdorff, of single-valued neutrosophic topological K-algebras. We also investigate the image and pre-image of single-valued neutrosophic topological K-algebras under homomorphism.

Keywords: K-algebras; single-valued neutrosophic sets; homomorphism; compactness; C_5-connectedness

MSC: 06F35; 03G25; 03B52

1. Introduction

A new kind of logical algebra, known as K-algebra, was introduced by Dar and Akram in [1]. A K-algebra is built on a group G by adjoining the induced binary operation on G. The group G is particularly of the type in which each non-identity element is not of order 2. This algebraic structure is, in general, non-commutative and non-associative with right identity element [1–3].

Akram et al. [4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other researchers worldwide. The concepts and results of K-algebras have been broadened to the fuzzy setting frames by applying Zadeh’s fuzzy set theory and its generalizations, namely, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and vague sets [5]. In handling information regarding various aspects of uncertainty, non-classical logic is considered to be a more powerful tool than the classical logic. It has become a strong mathematical tool in computer science, medical, engineering, information technology, etc. In 1998, Smarandache [6] introduced neutrosophic set as a generalization of intuitionistic fuzzy set [7]. A neutrosophic set is identified by three functions called truth-membership (T), indeterminacy-membership (I) and falsity-membership (F) functions. To apply neutrosophic set in real-life problems more conveniently, Smarandache [6] and Wang et al. [8] defined single-valued neutrosophic sets which takes the value from the subset of $[0, 1]$. Thus, a single-valued neutrosophic set is an instance of neutrosophic set.

Algebraic structures have a vital place with vast applications in various areas of life. Algebraic structures provide a mathematical modeling of related study. Neutrosophic set theory has also been
applied to many algebraic structures. Agboola and Davazz introduced the concept of neutrosophic BCI/BCK-algebras and discuss elementary properties in [9]. Jun et al. introduced the notion of \((\phi, \psi)\) neutrosophic subalgebra of a BCK/BCI-algebra [10]. Jun et al. [11] defined interval neutrosophic sets on BCK/BCI-algebra [11]. Jun et al. [12] proposed neutrosophic positive implicative \(N\)-ideals and study their extension property [12] Several set theories and their topological structures have been introduced by many researchers to deal with uncertainties. Chang [13] was the first to introduce the notion of fuzzy topology. Later, Lowen [14], Pu and Liu [15], and Chattopadhyay and Samanta [16] introduced other concepts related to fuzzy topology. Coker [17] introduced the notion of intuitionistic fuzzy topology as a generalization of fuzzy topology. Salama and Alblowi [18] defined the topological structure of neutrosophic set theory. Akram and Dar [19] introduced the concept of fuzzy topological \(K\)-algebras. They extended their work on intuitionistic fuzzy topological \(K\)-algebras [20]. In this paper, we introduce the notion of single-valued neutrosophic topological \(K\)-algebras and investigate some of their properties. Further, we study certain properties, including \(C_5\)-connected, super connected, compact and Hausdorff, of single-valued neutrosophic topological \(K\)-algebras. We also investigate the image and pre-image of single-valued neutrosophic topological \(K\)-algebras under homomorphism.

2. Preliminaries

The notion of \(K\)-algebra was introduced by Dar and Akram in [1].

Definition 1. [1] Let \((G, \cdot, e)\) be a group in which each non-identity element is not of order 2. A \(K\)-algebra is a structure \(K = (G, \cdot, e)\) over a particular group \(G\), where \(\cdot\) is an induced binary operation \(\cdot : G \times G \to G\) is defined by \(\cdot(s, t) = s \cdot t = s.t^{-1}\), and satisfy the following conditions:

(i) \((s \cdot t) \cdot (s \cdot u) = (s \cdot ((e \cdot u) \cdot (e \cdot t))) \cdot s; \)
(ii) \(s \cdot(s \cdot t) = (s \cdot (e \cdot t)) \cdot s; \)
(iii) \(s \cdot e = e; \)
(iv) \(s \cdot e = s; \) and
(v) \(e \cdot s = s^{-1} \)

for all \(s, t, u \in G\). The homomorphism between two \(K\)-algebras \(K_1\) and \(K_2\) is a mapping \(f : K_1 \to K_2\) such that, for all \(u, v \in K_1\), \(f(u \cdot v) = f(u) \cdot f(v)\).

In [6], Smarandache initiated the idea of neutrosophic set theory which is a generalization of intuitionistic fuzzy set theory. Later, Smarandache and Wang et al. introduced a single-valued neutrosophic set (SNS) as an instance of neutrosophic set in [8].

Definition 2. [8] Let \(Z\) be a space of points with a general element \(s \in Z\). A SNS \(A\) in \(Z\) is equipped with three membership functions: truth membership function \((T_A)\), indeterminacy membership function \((I_A)\) and falsity membership function\((F_A)\), where \(\forall s \in Z, T_A(s), I_A(s), F_A(s) \in [0, 1]\). There is no restriction on the sum of these three components. Therefore, \(0 \leq T_A(s) + I_A(s) + F_A(s) \leq 3\).

Definition 3. [8] A single-valued neutrosophic empty set \((\emptyset_{SN})\) and single-valued neutrosophic whole set \((1_{SN})\) on \(Z\) is defined as:

- \(\emptyset_{SN}(u) = \{u \in Z : (u, 0, 0, 1)\}\).
- \(1_{SN}(u) = \{u \in Z : (u, 1, 1, 0)\}\).

Definition 4. [8] If \(f\) is a mapping from a set \(Z_1\) into a set \(Z_2\), then the following statements hold:

(i) Let \(A\) be a SNS in \(Z_1\) and \(B\) be a SNS in \(Z_2\), then the pre-image of \(B\) is a SNS in \(Z_1\), denoted by \(f^{-1}(B)\), defined as:

\[f^{-1}(B) = \{z_1 \in Z_1 : f^{-1}(T_B)(z_1) = T_B(f(z_1)), f^{-1}(I_B)(z_1) = I_B(f(z_1)), f^{-1}(F_B)(z_1) = F_B(f(z_1))\}. \]
(ii) Let $A = \{ z_1 \in Z_1 : \mathcal{T}_A(z_1), \mathcal{I}_A(z_1), \mathcal{F}_A(z_1) \}$ be a SNS in Z_1 and $B = \{ z_2 \in Z_2 : \mathcal{T}_B(z_2), \mathcal{I}_B(z_2), \mathcal{F}_B(z_2) \}$ be a SNS in Z_2. Under the mapping f, the image of A is a SNS in Z_2, denoted by $f(A)$, defined as: $f(A) = \{ z_2 \in Z_2 : f_{\sup}(\mathcal{T}_A)(z_2), f_{\sup}(\mathcal{I}_A)(z_2), f_{\inf}(\mathcal{F}_A)(z_2) \}$, where for all $z_2 \in Z_2$.

\[
\begin{align*}
f_{\sup}(\mathcal{T}_A)(z_2) &= \begin{cases}
\sup_{z_1 \in f^{-1}(z_2)} \mathcal{T}_A(z_1), & \text{if } f^{-1}(z_2) \neq \emptyset, \\
0, & \text{otherwise},
\end{cases} \\
f_{\sup}(\mathcal{I}_A)(z_2) &= \begin{cases}
\sup_{z_1 \in f^{-1}(z_2)} \mathcal{I}_A(z_1), & \text{if } f^{-1}(z_2) \neq \emptyset, \\
0, & \text{otherwise},
\end{cases} \\
f_{\inf}(\mathcal{F}_A)(z_2) &= \begin{cases}
\inf_{z_1 \in f^{-1}(z_2)} \mathcal{F}_A(z_1), & \text{if } f^{-1}(z_2) \neq \emptyset, \\
0, & \text{otherwise}.
\end{cases}
\end{align*}
\]

We formulate the following proposition.

Proposition 1. Let $f : Z_1 \rightarrow Z_2$ and $A_i (A_j, j \in J)$ be a SNS in Z_1 and B be a SNS in Z_2. Then, f possesses the following properties:

(i) If f is onto, then $f(1_{\text{SN}}) = 1_{\text{SN}}$.
(ii) $f(\emptyset_{\text{SN}}) = \emptyset_{\text{SN}}$.
(iii) $f^{-1}(1_{\text{SN}}) = 1_{\text{SN}}$.
(iv) $f^{-1}(\emptyset_{\text{SN}}) = \emptyset_{\text{SN}}$.
(v) If f is onto, then $f(f^{-1}(B)) = B$.
(vi) $f^{-1}(\bigcup_{i=1}^n A_i) = \bigcup_{i=1}^n f^{-1}(A_i)$.

3. Neutrosophic Topological K-algebras

Definition 5. Let Z be a nonempty set. A collection χ of single-valued neutrosophic sets (SNSs) in Z is called a single-valued neutrosophic topology (SNT) on Z if the following conditions hold:

(a) $\emptyset_{\text{SN}}, 1_{\text{SN}} \in \chi$
(b) If $A, B \in \chi$, then $A \cap B \in \chi$
(c) If $A_i \in \chi, \forall i \in I$, then $\bigcup_{i \in I} A_i \in \chi$

The pair (Z, χ) is called a single-valued neutrosophic topological space (SNTS). Each member of χ is said to be χ-open or single-valued neutrosophic open set (SNOS) and compliment of each open single-valued neutrosophic set is a single-valued neutrosophic closed set (SNCS). A discrete topology is a topology which contains all single-valued neutrosophic subsets of Z and indiscrete if its elements are only $\emptyset_{\text{SN}}, 1_{\text{SN}}$.

Definition 6. Let $A = (\mathcal{T}_A, \mathcal{I}_A, \mathcal{F}_A)$ be a single-valued neutrosophic set in K. Then, A is called a single-valued neutrosophic K-subalgebra of K if following conditions hold for A:

(i) $\mathcal{T}_A(e) \supseteq \mathcal{T}_A(s), \mathcal{I}_A(e) \supseteq \mathcal{I}_A(s), \mathcal{F}_A(e) \subseteq \mathcal{F}_A(s)$.
(ii) $\mathcal{T}_A(s \odot t) \geq \min\{\mathcal{T}_A(s), \mathcal{T}_A(t)\}$,
$\mathcal{I}_A(s \odot t) \geq \min\{\mathcal{I}_A(s), \mathcal{I}_A(t)\}$,
$\mathcal{F}_A(s \odot t) \leq \max\{\mathcal{F}_A(s), \mathcal{F}_A(t)\}$ \(\forall s, t \in K\).
Example 1. Consider a K-algebra $K = (G, \cdot, \circ, e)$, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Cayley’s table for \circ is given as:

<table>
<thead>
<tr>
<th>\circ</th>
<th>e</th>
<th>x</th>
<th>x^2</th>
<th>x^3</th>
<th>x^4</th>
<th>x^5</th>
<th>x^6</th>
<th>x^7</th>
<th>x^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>x</td>
<td>x^2</td>
<td>x^3</td>
<td>x^4</td>
<td>x^5</td>
<td>x^6</td>
<td>x^7</td>
<td>x^8</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
</tr>
<tr>
<td>x^2</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
</tr>
<tr>
<td>x^3</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
</tr>
<tr>
<td>x^4</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
</tr>
<tr>
<td>x^5</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
<td>x^7</td>
<td>x^6</td>
</tr>
<tr>
<td>x^6</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
<td>x^7</td>
</tr>
<tr>
<td>x^7</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
<td>x^8</td>
</tr>
<tr>
<td>x^8</td>
<td>x^8</td>
<td>x^7</td>
<td>x^6</td>
<td>x^5</td>
<td>x^4</td>
<td>x^3</td>
<td>x^2</td>
<td>x</td>
<td>e</td>
</tr>
</tbody>
</table>

If we define a single-valued neutrosophic set A, B in K such that:

$A = \{(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.7)\}$,

$B = \{(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)\}$

$\forall s \neq e \in G$.

According to Definition 5, the family $\{\emptyset_{SN}, 1_{SN}, A, B\}$ of SNSs of K-algebra is a SNT on K. We define a SNS $A = \{T_A, I_A, F_A\}$ in K such that $T_A(e) = 0.7, I_A(e) = 0.5, F_A(e) = 0.2, T_A(s) = 0.2, I_A(s) = 0.4, F_A(s) = 0.6$. Clearly, $A = (T_A, I_A, F_A)$ is a SN K-subalgebra of K.

Definition 7. Let $K = (G, \cdot, \circ, e)$ be a K-algebra and let χ_K be a topology on K. Let A be a SNS in K and let χ_A be a topology on K. Then, an induced single-valued neutrosophic topology on A is a collection or family of single-valued neutrosophic subsets of A which are the intersection with A and single-valued neutrosophic open sets in K defined as $\chi_A = \{A \cap F : F \in \chi_K\}$. Then, χ_A is called a single-valued neutrosophic induced topology on A or relative topology and the pair (A, χ_A) is called an induced topological space or single-valued neutrosophic subspace of (K, χ_K).

Definition 8. Let (K_1, χ_1) and (K_2, χ_2) be two SNTSs and let $f : (K_1, \chi_1) \to (K_2, \chi_2)$. Then, f is called single-valued neutrosophic continuous if following conditions hold:

(i) For each SNS $A \in \chi_1$, $f^{-1}(A) \in \chi_1$.

(ii) For each SN K-subalgebra $A \in \chi_1$, $f^{-1}(A)$ is a SN K-subalgebra in χ_1.

Definition 9. Let (K_1, χ_1) and (K_2, χ_2) be two SNTSs and let (A, χ_A) and (B, χ_B) be two single-valued neutrosophic subspaces over (K_1, χ_1) and (K_2, χ_2). Let f be a mapping from (K_1, χ_1) into (K_2, χ_2), then f is a mapping from (A, χ_A) to (B, χ_B) if $f(A) \subset B$.

Definition 10. Let f be a mapping from (A, χ_A) to (B, χ_B). Then, f is relatively single-valued neutrosophic continuous if for every SNOS Y_B in χ_B, $f^{-1}(Y_B) \cap A \in \chi_A$.

Definition 11. Let f be a mapping from (A, χ_A) to (B, χ_B). Then, f is relatively single-valued neutrosophic open if for every SNOS X_A in χ_A, the image $f(X_A) \in \chi_B$.

Proposition 2. Let (A, χ_A) and (B, χ_B) be single-valued neutrosophic subspaces of (K_1, χ_1) and (K_2, χ_2), where K_1 and K_2 are K-algebras. If f is a single-valued neutrosophic continuous function from K_1 to K_2 and $f(A) \subset B$. Then, f is relatively single-valued neutrosophic continuous function from A into B.

Definition 12. Let (K_1, χ_1) and (K_2, χ_2) be two SNTSs. A mapping $f : (K_1, \chi_1) \to (K_2, \chi_2)$ is called a single-valued neutrosophic homomorphism if following conditions hold:

Note: The document contains definitions and theorems related to single-valued neutrosophic spaces, and the text above is a excerpt from a mathematical paper.
(i) \(f \) is a one-one and onto function.

(ii) \(f \) is a single-valued neutrosophic continuous function from \(K_1 \) to \(K_2 \).

(iii) \(f^{-1} \) is a single-valued neutrosophic continuous function from \(K_2 \) to \(K_1 \).

Theorem 1. Let \((K_1, \chi_1)\) be a SNTS and \((K_2, \chi_2)\) be an indiscrete SNTS on \(K \)-algebras \(K_1 \) and \(K_2 \), respectively. Then, each function \(f \) defined as \(f: (K_1, \chi_1) \rightarrow (K_2, \chi_2) \) is a single-valued neutrosophic continuous function from \(K_1 \) to \(K_2 \). If \((K_1, \chi_1)\) and \((K_2, \chi_2)\) be two discrete SNTSs \(K_1 \) and \(K_2 \), respectively, then each homomorphism \(f: (K_1, \chi_1) \rightarrow (K_2, \chi_2) \) is a single valued neutrosophic continuous function from \(K_1 \) to \(K_2 \).

Proof. Let \(f \) be a mapping defined as \(f: K_1 \rightarrow K_2 \). Let \(\chi_1 \) be SNT on \(K_1 \) and \(\chi_2 \) be SNT on \(K_2 \), where \(\chi_2 = \{0_{SN}, 1_{SN}\} \). We show that \(f^{-1}(A) \) is a single-valued neutrosophic \(K \)-subalgebra of \(K_1 \), i.e., for each \(A \in \chi_2 \), \(f^{-1}(A) \in \chi_1 \). Since \(\chi_2 = \{0_{SN}, 1_{SN}\} \), then for any \(u \in \chi_1 \), consider \(0_{SN} \in \chi_2 \) such that \(f^{-1}(0_{SN})(u) = 0_{SN} = f(u) = 0_{SN}(u) \).

Hence, \(f^{-1}(0_{SN}) = 0_{SN} \in \chi_1 \). Likewise, \(f^{-1}(1_{SN}) = 1_{SN} \in \chi_1 \). Hence, \(f \) is a SN continuous function from \(K_1 \) to \(K_2 \).

Now, for the second part of the theorem, where both \(\chi_1 \) and \(\chi_2 \) are SNTSs on \(K_1 \) and \(K_2 \), respectively, and \(f: (K_1, \chi_1) \rightarrow (K_2, \chi_2) \) is a homomorphism. Therefore, for all \(A \in \chi_2 \) and \(f^{-1}A \in \chi_1 \), where \(f \) is not a usual inverse homomorphism. To prove that \(f^{-1}(A) \) is a single-valued neutrosophic \(K \)-subalgebra in of \(K_1 \). Let for \(u, v \in K_1 \),

\[
\begin{align*}
f^{-1}(T_A)(u \circ v) &= T_A(f(u \circ v)) \\
&= T_A(f(u) \circ f(v)) \\
&\geq \min\{T_A(f(u)) \circ T(f(v))\} \\
&= \min\{f^{-1}(T_A(u)), f^{-1}(T_A)(v)\},
\end{align*}
\]

\[
\begin{align*}
f^{-1}(I_A)(u \circ v) &= I_A(f(u \circ v)) \\
&= I_A(f(u) \circ f(v)) \\
&\geq \min\{I_A(f(u)) \circ I(f(v))\} \\
&= \min\{f^{-1}(I_A(u)), f^{-1}(I_A)(v)\},
\end{align*}
\]

\[
\begin{align*}
f^{-1}(F_A)(u \circ v) &= F_A(f(u \circ v)) \\
&= F_A(f(u) \circ f(v)) \\
&\leq \max\{F_A(f(u)) \circ F(f(v))\} \\
&= \max\{f^{-1}(F_A(u)), f^{-1}(F_A)(v)\}.
\end{align*}
\]

Hence, \(f \) is a single-valued neutrosophic continuous function from \(K_1 \) to \(K_2 \). \(\square \)

Proposition 3. Let \(\chi_1 \) and \(\chi_2 \) be two SNTSs on \(K \). Then, each homomorphism \(f: (K, \chi_1) \rightarrow (K, \chi_2) \) is a single-valued neutrosophic continuous function.

Proof. Let \((K, \chi_1)\) and \((K, \chi_2)\) be two SNTSs, where \(K \) is a \(K \)-algebra. To prove the above result, it is enough to show that result is false for a particular topology. Let \(A = (T_A, I_A, F_A) \) and \(B = (T_B, I_B, F_B) \) be two SNSs in \(K \). Take \(\chi_1 = \{0_{SN}, 1_{SN}, A\} \) and \(\chi_2 = \{0_{SN}, 1_{SN}, B\} \). If \(f: (K, \chi_1) \rightarrow (K, \chi_2) \), defined by \(f(u) = e \circ u \), for all \(u \in K \), then \(f \) is a homomorphism. Now, for \(u \in A, v \in \chi_2 \), \((f^{-1}(B))(u) = B(f(u)) = B(e \circ u) = B(u), \forall u \in K \), i.e., \(f^{-1}(B) = B \). Therefore, \((f^{-1}(B)) \notin \chi_1 \). Hence, \(f \) is not a single-valued neutrosophic continuous mapping. \(\square \)

Definition 13. Let \(K = (G, \cdot, \circ, e) \) be a \(K \)-algebra and \(\chi \) be a SNT on \(K \). Let \(A \) be a single-valued neutrosophic \(K \)-algebra (\(K \)-subalgebra) of \(K \) and \(\chi_A \) be a SNT on \(A \). Then, \(A \) is said to be a single-valued neutrosophic topological \(K \)-algebra (\(K \)-subalgebra) on \(K \) if the self mapping \(\rho_a: (A, \chi_A) \rightarrow (A, \chi_A) \) defined as \(\rho_a(u) = u \circ a, \forall a \in K \), is a relatively single-valued neutrosophic continuous mapping.
Theorem 2. Let χ_1 and χ_2 be two SNTSs on K_1 and K_2, respectively, and $f : K_1 \to K_2$ be a homomorphism such that $f^{-1}(\chi_2) = \chi_1$. If $A = \{T_A, I_A, F_A\}$ is a single-valued neutrosophic topological K-algebra of K_2, then $f^{-1}(A)$ is a single-valued neutrosophic topological K-algebra of K_1.

Proof. Let $A = \{T_A, I_A, F_A\}$ be a single-valued neutrosophic topological K-algebra of K_2. To prove that $f^{-1}(A)$ is a single-valued neutrosophic topological K-algebra of K_1. Let for any $u, v \in K_1$,

$$T_{f^{-1}(A)}(u \circ v) = T_A(f(u \circ v)) \geq \min\{T_A(f(u)), T_A(f(v))\} = \min\{T_{f^{-1}(A)}(u), T_{f^{-1}(A)}(v)\},$$

$$I_{f^{-1}(A)}(u \circ v) = I_A(f(u \circ v)) \geq \min\{I_A(f(u)), I_A(f(v))\} = \min\{I_{f^{-1}(A)}(u), I_{f^{-1}(A)}(v)\},$$

$$F_{f^{-1}(A)}(u \circ v) = F_A(f(u \circ v)) \geq \max\{F_A(f(u)), F_A(f(v))\} = \max\{F_{f^{-1}(A)}(u), F_{f^{-1}(A)}(v)\}.$$

Hence, $f^{-1}(A)$ is a single-valued neutrosophic K-algebra of K_1.

Now, we prove that $f^{-1}(A)$ is single-valued neutrosophic topological K-algebra of K_1. Since f is a single-valued neutrosophic continuous function, then by proposition 3.1, f is also a relatively single-valued neutrosophic continuous function which maps $(f^{-1}(A), \chi_{f^{-1}(A)})$ to (A, χ_A).

Let $a \in K_1$ and Y be a SNS in χ_A, and let X be a SNS in $\chi_{f^{-1}(A)}$ such that

$$f^{-1}(Y) = X. \quad (1)$$

We are to prove that $\rho_a : (f^{-1}(A), \chi_{f^{-1}(A)}) \to (f^{-1}(A), \chi_{f^{-1}(A)})$ is relatively single-valued neutrosophic continuous mapping, then for any $a \in K_1$, we have

$$T_{\rho_a^{-1}(X)}(u) = T_X(\rho_a(u)) = T_X(u \circ a) = T_{f^{-1}(Y)}(u \circ a) = T_{\chi}(f(u \circ a)) = T_{\chi}(f(u)) \circ f(a) = T_{\rho_f(a)}(f(a)) = T_{\chi}(\rho_f(a)) = T_{\rho_a^{-1}(Y)}(u).$$

$$I_{\rho_a^{-1}(X)}(u) = I_X(\rho_a(u)) = I_X(u \circ a) = I_{f^{-1}(Y)}(u \circ a) = I_{\chi}(f(u \circ a)) = I_{\chi}(f(u)) \circ f(a) = I_{\rho_f(a)}(f(a)) = I_{\chi}(\rho_f(a)) = I_{\rho_a^{-1}(Y)}(u),$$

$$F_{\rho_a^{-1}(X)}(u) = F_X(\rho_a(u)) = F_X(u \circ a) = F_{f^{-1}(Y)}(u \circ a) = F_{\chi}(f(u \circ a)) = F_{\chi}(f(u)) \circ f(a) = F_{\rho_f(a)}(f(a)) = F_{\chi}(\rho_f(a)) = F_{\rho_a^{-1}(Y)}(u).$$

It concludes that $\rho_a^{-1}(X) = f^{-1}(\rho_{f(a)}^{-1}(Y))$. Thus, $\rho_a^{-1}(X) \cap f^{-1}(A) = f^{-1}(\rho_{f(a)}^{-1}(Y)) \cap f^{-1}(A)$ is a SNS in $f^{-1}(A)$ and a SNS in $\chi_{f^{-1}(A)}$. Hence, $f^{-1}(A)$ and a single-valued neutrosophic topological K-algebra of K. Hence, the proof.

Theorem 3. Let (K_1, χ_1) and (K_2, χ_2) be two SNTSs on K_1 and K_2, respectively, and let f be a bijective homomorphism of K_1 into K_2 such that $f^{-1}(\chi_2) = \chi_1$. If A is a single-valued neutrosophic topological K-algebra of K_1, then $f(A)$ is a single-valued neutrosophic topological K-algebra of K_2.

Proof. Suppose that $A = \{T_A, I_A, F_A\}$ is a SN topological K-algebra of K_1. To prove that $f(A)$ is a single-valued neutrosophic topological K-algebra of K_2, let, for $u, v \in K_2,$
\[f(A) = (f_{\sup}(T_A)(v), f_{\sup}(I_A)(v), f_{\inf}(F_A)(v)). \]

Let \(a_0 \in f^{-1}(u), b_0 \in f^{-1}(v) \) such that
\[
\begin{align*}
\sup_{x \in f^{-1}(u)} T_A(x) &= T_A(a_0), \quad \sup_{x \in f^{-1}(v)} T_A(x) = T_A(b_0), \\
\sup_{x \in f^{-1}(u)} I_A(x) &= I_A(a_0), \quad \sup_{x \in f^{-1}(v)} I_A(x) = I_A(b_0), \\
\inf_{x \in f^{-1}(u)} F_A(x) &= F_A(a_0), \quad \inf_{x \in f^{-1}(v)} F_A(x) = F_A(b_0).
\end{align*}
\]

Now,
\[
\begin{align*}
T_{f(A)}(u \odot v) &= \sup_{x \in f^{-1}(u \odot v)} T_A(x) \\
&\geq T_A(a_0, b_0) \\
&\geq \min\{T_A(a_0), T_A(b_0)\} \\
&= \min\{\sup_{x \in f^{-1}(u)} T_A(x), \sup_{x \in f^{-1}(v)} T_A(x)\} \\
&= \min\{T_{f(A)}(u), T_{f(A)}(v)\},
\end{align*}
\]
\[
\begin{align*}
I_{f(A)}(u \odot v) &= \sup_{x \in f^{-1}(u \odot v)} I_A(x) \\
&\geq I_A(a_0, b_0) \\
&\geq \min\{I_A(a_0), I_A(b_0)\} \\
&= \min\{\sup_{x \in f^{-1}(u)} I_A(x), \sup_{x \in f^{-1}(v)} I_A(x)\} \\
&= \min\{I_{f(A)}(u), I_{f(A)}(v)\},
\end{align*}
\]
\[
\begin{align*}
F_{f(A)}(u \odot v) &= \inf_{x \in f^{-1}(u \odot v)} F_A(x) \\
&\leq F_A(a_0, b_0) \\
&\leq \max\{F_A(a_0), F_A(b_0)\} \\
&= \max\{\inf_{x \in f^{-1}(u)} F_A(x), \inf_{x \in f^{-1}(v)} F_A(x)\} \\
&= \max\{F_{f(A)}(u), F_{f(A)}(v)\}.
\end{align*}
\]

Hence, \(f(A) \) is a single-valued neutrosophic K-subalgebra of \(K_2 \). Now, we prove that the self mapping \(\rho_b : (f(A), \chi_{f(A)}) \to (f(A), \chi_{f(A)}) \), defined by \(\rho_b(v) = v \odot b \), for all \(b \in K_2 \), is a relatively single-valued neutrosophic continuous mapping. Let \(Y_A \) be a SNS in \(\chi_A \), there exists a SNS “\(Y \)” in \(\chi_1 \) such that \(Y_A = Y \cap A \). We show that for a SNS in \(\chi_{f(A)} \),
\[
\rho^{-1}_b(Y_{f(A)}) \cap f(A) \in \chi_{f(A)}
\]

Since \(f \) is an injective mapping, then \(f(Y_A) = f(Y \cap A) = f(Y) \cap f(A) \) is a SNS in \(\chi_{f(A)} \) which shows that \(f \) is relatively single-valued neutrosophic open. In addition, \(f \) is surjective, then for all \(b \in K_2, a = f(b) \), where \(a \in K_1 \).
Now,

\[T_{f^{-1}(\rho^{-1}_b(Y_{f(A)}))}(u) = T_{f^{-1}(\rho^{-1}_a(Y_{f(A)}))}(u)
= T_{\rho^{-1}_a(Y_{f(A)})}(f(u))
= T_{\rho^{-1}_a(Y_{f(A)})}(f(u))
= T_{\rho^{-1}_a(Y_{f(A)})}(f(u) \circ f(a))
= T_{f^{-1}(Y_{f(A)})}(u \circ a)
= T_{f^{-1}(Y_{f(A)})}(\rho_a(u))
= T_{f^{-1}(Y_{f(A)})}(f^{-1}(Y_{f(A)}))(u), \]

\[I_{f^{-1}(\rho^{-1}_b(Y_{f(A)}))}(u) = I_{f^{-1}(\rho^{-1}_a(Y_{f(A)}))}(u)
= I_{\rho^{-1}_a(Y_{f(A)})}(f(u))
= I_{\rho^{-1}_a(Y_{f(A)})}(f(u))
= I_{\rho^{-1}_a(Y_{f(A)})}(f(u) \circ f(a))
= I_{f^{-1}(Y_{f(A)})}(u \circ a)
= I_{f^{-1}(Y_{f(A)})}(\rho_a(u))
= I_{f^{-1}(Y_{f(A)})}(f^{-1}(Y_{f(A)}))(u), \]

\[F_{f^{-1}(\rho^{-1}_b(Y_{f(A)}))}(u) = F_{f^{-1}(\rho^{-1}_a(Y_{f(A)}))}(u)
= F_{\rho^{-1}_a(Y_{f(A)})}(f(u))
= F_{\rho^{-1}_a(Y_{f(A)})}(f(u))
= F_{\rho^{-1}_a(Y_{f(A)})}(f(u) \circ f(a))
= F_{f^{-1}(Y_{f(A)})}(u \circ a)
= F_{f^{-1}(Y_{f(A)})}(\rho_a(u))
= F_{f^{-1}(Y_{f(A)})}(f^{-1}(Y_{f(A)}))(u). \]

This implies that \(f^{-1}(\rho^{-1}_b((Y_{f(A)}))) = \rho^{-1}_a(f^{-1}(Y_{f(A)})) \). Since \(\rho_a : (\mathcal{A}, \chi_{\mathcal{A}}) \to (\mathcal{A}, \chi_{\mathcal{A}}) \) is relatively single-valued neutrosophic continuous mapping and \(f \) is relatively single-valued neutrosophic continues mapping from \((\mathcal{A}, \chi_{\mathcal{A}}) \) into \((f(\mathcal{A}), \chi_{f(\mathcal{A})}) \), \(f^{-1}(\rho^{-1}_b((Y_{f(A)}))) \cap \mathcal{A} = \rho^{-1}_a(f^{-1}(Y_{f(A)})) \cap \mathcal{A} \) is a SNS in \(\chi_{\mathcal{A}} \). Hence, \(f(f^{-1}(\rho^{-1}_b((Y_{f(A)}))) \cap \mathcal{A}) = \rho^{-1}_a((Y_{f(A)})) \cap f(\mathcal{A}) \) is a SNS in \(\chi_{\mathcal{A}} \), which completes the proof. \(\square \)

Example 2. Let \(K = (G, \cdot, \ominus, e) \) be a K-algebra, where \(G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\} \) is the cyclic group of order 9 and Caley’s table for \(\circ \) is given in Example 1. We define a SNS as:

\[\mathcal{A} = \{(e, 0.4, 0.5, 0.8), (s, 0.3, 0.4, 0.6)\}, \]

\[\mathcal{B} = \{(e, 0.3, 0.4, 0.8), (s, 0.2, 0.3, 0.6)\}, \]

for all \(s \neq e \in G \), where \(\mathcal{A}, \mathcal{B} \in [0, 1] \). The collection \(\chi_K = \{\ominus_{SN}, 1_{SN}, \mathcal{A}, \mathcal{B}\} \) of SNSs of \(K \) is a SNT on \(K \) and \((K, \chi_K)\) is a SNTS. Let \(\mathcal{C} \) be a SNS in \(K \), defined as:

\[\mathcal{C} = \{(e, 0.7, 0.5, 0.2), (s, 0.5, 0.4, 0.6)\}, \forall s \neq e \in G. \]
Clearly, C is a single-valued neutrosophic K-subalgebra of C. By direct calculations relative topology χ_C is obtained as $\chi_C = \{(O_A, 1_A, A)\}$. Then, the pair (C, χ_C) is a single-valued neutrosophic subspace of (K, χ_K). We show that C is a single-valued neutrosophic topological K-subalgebra of K, i.e., the self mapping $\rho_a : (C, \chi_C) \rightarrow (C, \chi_C)$ defined by $\rho_a(u) = u \cup a, \forall a \in K$ is relatively single-valued neutrosophic continuous mapping, i.e., for a SNOS A in (C, χ_C), $\rho_a^{-1}(A) \cap C \in \chi_C$. Since ρ_a is homomorphism, then $\rho_a^{-1}(A) \cap C = A \in \chi_C$. Therefore, $\rho_a : (C, \chi_C) \rightarrow (C, \chi_C)$ is relatively single-valued neutrosophic continuous mapping. Hence, C is a single-valued neutrosophic topological K-algebra of K.

Example 3. Let $K = (G, \cdot, \circ, e)$ be a K-algebra, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Cayley’s table for \circ is given in Example 3.1. We define a SNS as:

$$A = \{(e, 0, 4, 0, 5, 0, 8), (s, 0, 3, 0, 4, 0, 6)\},$$

$$B = \{(e, 0, 3, 0, 4, 0, 8), (s, 0, 2, 0, 3, 0, 6)\},$$

$$D = \{(e, 0, 2, 0, 1, 0, 3), (s, 0, 1, 0, 1, 0, 5)\},$$

for all $s \neq e \in G$, where $A, B \in [0, 1]$. The collection $\chi_1 = \{O_{SN}, 1_{SN}, D\}$ and $\chi_2 = \{O_{SN}, 1_{SN}, A, B\}$ of SNSs of K are SNTSs on K and $(K, \chi_1), (K, \chi_2)$ be two SNTSs. Let C be a SNS in (K, χ_2), defined as:

$$\mathcal{C} = \{(e, 0, 7, 0, 5, 0, 2), (s, 0, 5, 0, 4, 0, 6)\}, \forall s \neq e \in G.$$

Now, Let $f : (K, \chi_1) \rightarrow (K, \chi_2)$ be a homomorphism such that $f^{-1}(\chi_2) = \chi_1$ (we have not consider K to be distinct), then, by Proposition 3, f is a single-valued neutrosophic continuous function and f is also relatively single-valued neutrosophic continues mapping from (K, χ_1) into (K, χ_2). Since C is a SNS in (K, χ_2) and with relative topology $\chi_C = \{O_A, 1_A, A\}$ is also a single-valued neutrosophic topological K-algebra of (K, χ_2). We prove that $f^{-1}(\mathcal{C})$ is a single-valued neutrosophic topological K-algebra in (K, χ_1). Since f is a continuous function, then, by Definition 3, $f^{-1}(\mathcal{C})$ is a single-valued neutrosophic K-subalgebra in (K, χ_1). To prove that $f^{-1}(\mathcal{C})$ is a single-valued neutrosophic topological K-algebra, then for $b \in K_1$ take

$$\rho_b : (f^{-1}(\mathcal{C}), \chi_{f^{-1}(\mathcal{C})}) \rightarrow (f^{-1}(\mathcal{C}), \chi_{f^{-1}(\mathcal{C})}),$$

for $A \in \chi_{f^{-1}(\mathcal{C})}, \rho_b^{-1}(A) \cap f^{-1}(\mathcal{C}) \in \chi_{f^{-1}(\mathcal{C})}$ which shows that $f^{-1}(\mathcal{C})$ is a single-valued neutrosophic topological K-algebra in (K, χ_1). Similarly, we can show that $f(\mathcal{C})$ is a a single-valued neutrosophic topological K-algebra in (K, χ_2) by considering a bijective homomorphism.

Definition 14. Let χ be a SNT on K and (K, χ) be a SNTS. Then, (K, χ) is called single-valued neutrosophic C_5-disconnected topological space if there exist a SNOS and SNCS \mathcal{H} such that $\mathcal{H} = (\mathcal{T}_H, I_H, F_H) \neq 1_{SN}$ and $\mathcal{H} = (\mathcal{T}_H, I_H, F_H) \neq O_{SN}$, otherwise (K, χ) is called single-valued neutrosophic C_5-connected.

Example 4. Every indiscrete SNT space on K is C_5-connected.

Proposition 4. Let (K_1, χ_1) and (K_2, χ_2) be two SNTSs and $f : (K_1, \chi_1) \rightarrow (K_2, \chi_2)$ be a surjective single-valued neutrosophic continuous mapping. If (K_1, χ_1) is a single-valued neutrosophic C_5-connected space, then (K_2, χ_2) is also a single-valued neutrosophic C_5-connected space.

Proof. Suppose on contrary that (K_2, χ_2) is a single-valued neutrosophic C_5-disconnected space. Then, by Definition 14, there exist both SNOS and SNCS \mathcal{H} be such that $\mathcal{H} \neq 1_{SN}$ and $\mathcal{H} \neq O_{SN}$. Since f is a single-valued neutrosophic continuous and onto function, so $f^{-1}(\mathcal{H}) = 1_{SN}$ or $f^{-1}(\mathcal{H}) = O_{SN}$, where $f^{-1}(\mathcal{H})$ is both SNOS and SNCS. Therefore,

$$\mathcal{H} = f(f^{-1}(\mathcal{H})) = f(1_{SN}) = 1_{SN} \tag{2}$$

and

$$\mathcal{H} = f(f^{-1}(\mathcal{H})) = f(\mathcal{O}_{SN}) = \mathcal{O}_{SN}, \tag{3}$$
a contradiction. Hence, \((K_2, \chi_2)\) is a single-valued neutrosophic \(C_3\)-connected space. \(\square\)

Corollary 1. Let \(\chi\) be a SNT on \(K\). Then, \((K, \chi)\) is called a single-valued neutrosophic \(C_3\)-connected space if and only if there does not exist a single-valued neutrosophic continuous map \(f : (K, \chi) \rightarrow (\mathcal{F}_T, \chi_T)\) such that \(f \neq 1_{SN}\) and \(f \neq \emptyset_{SN}\).

Definition 15. Let \(A = \{T_A, I_A, F_A\}\) be a SNS in \(K\). Let \(\chi\) be a SNT on \(K\). The interior and closure of \(A\) in \(K\) is defined as:

\[A^{Int}: \text{The union of SNOSs which contained in } A. \]

\[A^{Clo}: \text{The intersection of SNCSs for which } A \text{ is a subset of these SNCSs.} \]

Remark 1. Being union of SNOS \(A^{Int}\) is a SNO and \(A^{Clo}\) being intersection of SNCS is SNC.

Theorem 4. Let \(A\) be a SNS in a SNTS \((K, \chi)\). Then, \(A^{Int}\) is such an open set which is the largest open set of \(K\) contained in \(A\).

Corollary 2. \(A = \{T_A, I_A, F_A\}\) is a SNS in \(K\) if and only if \(A^{Int} = A\) and \(A = (T_A, I_A, F_A)\) is a SNCS in \(K\) if and only if \(A^{Clo} = A\).

Proposition 5. Let \(A\) be a SNS in \(K\). Then, following results hold for \(A\):

(i) \((1_{SN})^{Int} = 1_{SN}\).

(ii) \((1_{SN})^{Clo} = \emptyset_{SN}\).

(iii) \((\emptyset_{SN})^{Int} = (\emptyset_{SN})^{Clo}\).

(iv) \((\emptyset_{SN})^{Int} = (\emptyset_{SN})^{Clo}\).

Definition 16. Let \(K\) be a \(K\)-algebra and \(\chi\) be a SNT on \(K\). A SNOS \(A\) in \(K\) is said to be single-valued neutrosophic regular open if

\[A = (A^{Clo})^{Int}. \] (4)

Remark 2. Every SNOS which is regular is single-valued neutrosophic open and every single-valued neutrosophic closed and open set is a single-valued neutrosophic regular open.

Definition 17. A single-valued neutrosophic super connected \(K\)-algebra is such a \(K\)-algebra in which there does not exist a single-valued neutrosophic regular open set \(A = \{T_A, I_A, F_A\}\) such that \(A \neq \emptyset_{SN}\) and \(A \neq 1_{SN}\). If there exists such a single-valued neutrosophic regular open set \(A = \{T_A, I_A, F_A\}\) such that \(A \neq \emptyset_{SN}\) and \(A \neq 1_{SN}\), then \(K\)-algebra is said to be a single-valued neutrosophic super disconnected.

Example 5. Let \(K = (G, \cdot, \circ, e)\) be a \(K\)-algebra, where \(G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}\) is the cyclic group of order 9 and Caley’s table for \(\circ\) is given in Example 1. We define a SNS as:

\[A = \{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\}. \]

Let \(\chi_K = \{0_{SN}, 1_{SN}, A\}\) be a SNT on \(K\) and let \(B = \{(e, 0.3, 0.3, 0.8), (s, 0.2, 0.2, 0.6)\}\) be a SNS in \(K\). Here

\begin{align*}
\text{SNOSs: } & 0_{SN} = \{0, 0, 1\}, 1_{SN} = \{1, 1, 0\}, A = \{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\}. \\
\text{SNCSs: } & (0_{SN})^c = \{(0, 0, 1)\}^c = \{1, 1, 0\}, (1_{SN})^c = \{(1, 1, 0)\}^c = \{(0, 0, 1)\} = 0_{SN}, \\
\text{A}^c = \{(e, 0.2, 0.3, 0.8), (s, 0.1, 0.2, 0.6)\}^c = \{(e, 0.8, 0.3, 0.2), (s, 0.6, 0.2, 0.1)\} = A\end{align*}

(say).
Then, closure of \mathcal{B} is the intersection of closed sets which contain \mathcal{B}. Therefore,

$$A' = \mathcal{B}^{\text{Clo}}.$$ \hspace{1cm} (5)

Now, interior of \mathcal{B} is the union of open sets which contain in \mathcal{B}. Therefore,

$$\emptyset_{SN} \bigcup \mathcal{A} = \mathcal{A}$$

$$\mathcal{A} = \mathcal{B}^{\text{Int}}.$$ \hspace{1cm} (6)

Note that $(B^{\text{Clo}})^{\text{Clo}} = B^{\text{Clo}}$. Now, if we consider a SNS $\mathcal{A} = \{(e,0.2,0.3,0.8), (s,0.1,0.2,0.6)\}$ in a K-algebra \mathcal{K} and if $\chi_{\mathcal{K}} = \{\emptyset_{SN}, 1_{SN}, \mathcal{A} \}$ is a SNT on \mathcal{K}. Then, $(\mathcal{A})^{\text{Clo}} = \mathcal{A}$ and $(\mathcal{A})^{\text{Int}} = \mathcal{A}$. Consequently,

$$\mathcal{A} = (\mathcal{A}^{\text{Clo}})^{\text{Int}},$$ \hspace{1cm} (7)

which shows that \mathcal{A} is a SN regular open set in K-algebra \mathcal{K}. Since \mathcal{A} is a SN regular open set in \mathcal{K} and $\mathcal{A} \neq \emptyset_{SN}, \mathcal{A} \neq 1_{SN}$, then, by Definition 17, K-algebra \mathcal{K} is a single-valued neutrosophic supper disconnected K-algebra.

Proposition 6. Let \mathcal{K} be a K-algebra and let \mathcal{A} be a SNOS. Then, the following statements are equivalent:

(i) A K-algebra is single-valued neutrosophic super connected.

(ii) $(\mathcal{A})^{\text{Clo}} = 1_{SN}$, for each SNOS $\mathcal{A} \neq \emptyset_{SN}$.

(iii) $(\mathcal{A})^{\text{Int}} = \emptyset_{SN}$, for each SNCS $\mathcal{A} \neq 1_{SN}$.

(iv) There do not exist SNOSs \mathcal{A}, \mathcal{F} such that $\mathcal{A} \subseteq \mathcal{F}$ and $\mathcal{A} \neq \emptyset_{SN} \neq \mathcal{F}$ in K-algebra \mathcal{K}.

Definition 18. Let (\mathcal{K}, χ) be a SNTS, where \mathcal{K} is a K-algebra. Let S be a collection of SNOSs in \mathcal{K} denoted by $S = \{(T_{\mathcal{A}}, I_{\mathcal{A}}, F_{\mathcal{A}}) : j \in I\}$. Let \mathcal{A} be a SNOS in \mathcal{K}. Then, S is called a single-valued neutrosophic open covering of \mathcal{A} if $\mathcal{A} \subseteq \bigcup S$.

Definition 19. Let \mathcal{K} be a K-algebra and (\mathcal{K}, χ) be a SNTS. Let L be a finite sub-collection of S. If L is also a single-valued neutrosophic open covering of \mathcal{A}, then it is called a finite sub-covering of S and \mathcal{A} is called single-valued neutrosophic compact if each single-valued neutrosophic open covering S of \mathcal{A} has a finite sub-cover. Then, (\mathcal{K}, χ) is called compact K-algebra.

Remark 3. If either \mathcal{K} is a finite K-algebra or χ is a finite topology on \mathcal{K}, i.e., consists of finite number of single-valued neutrosophic subsets of \mathcal{K}, then the SNT (\mathcal{K}, χ) is a single-valued neutrosophic compact topological space.

Proposition 7. Let $(\mathcal{K}_{1}, \chi_{1})$ and $(\mathcal{K}_{2}, \chi_{2})$ be two SNTSs and f be a single-valued neutrosophic continuous mapping from \mathcal{K}_{1} into \mathcal{K}_{2}. Let \mathcal{A} be a SNOS in $(\mathcal{K}_{1}, \chi_{1})$. If \mathcal{A} is single-valued neutrosophic compact in $(\mathcal{K}_{1}, \chi_{1})$, then $f(\mathcal{A})$ is single-valued neutrosophic compact in $(\mathcal{K}_{2}, \chi_{2})$.

Proof. Let $f : (\mathcal{K}_{1}, \chi_{1}) \rightarrow (\mathcal{K}_{2}, \chi_{2})$ be a single-valued neutrosophic continuous function. Let $S = \{f^{-1}(A_{j}) : j \in I\}$ be a single-valued neutrosophic open covering of \mathcal{A} since \mathcal{A} is a SNOS in $(\mathcal{K}_{1}, \chi_{1})$. Let $\mathcal{L} = (A_{j} : j \in I)$ be a single-valued neutrosophic open covering of $f(\mathcal{A})$. Since \mathcal{A} is compact, there exists a single-valued neutrosophic finite sub-cover $\bigcup_{j=1}^{n} f^{-1}(A_{j})$ such that

$$\mathcal{A} \subseteq \bigcup_{j=1}^{n} f^{-1}(A_{j})$$

We have to prove that there also exists a finite sub-cover of \mathcal{L} for $f(\mathcal{A})$ such that
\begin{equation*}
f(A) \subseteq \bigcup_{j=1}^{n} (A_j)
\end{equation*}

Now,
\begin{equation*}
A \subseteq \bigcup_{j=1}^{n} f^{-1}(A_j)
\end{equation*}
\begin{equation*}
f(A) \subseteq f(\bigcup_{j=1}^{n} f^{-1}(A_j))
\end{equation*}
\begin{equation*}
f(A) \subseteq \bigcup_{j=1}^{n} (f(f^{-1}(A_j)))
\end{equation*}
\begin{equation*}
f(A) \subseteq \bigcup_{j=1}^{n} (A_j).
\end{equation*}

Hence, \(f(A)\) is single-valued neutrosophic compact in \((\mathcal{K}_2, \chi_2)\). \(\square\)

Definition 20. A single-valued neutrosophic set \(A\) in a \(K\)-algebra \(K\) is called a single-valued neutrosophic point if
\[
\mathcal{T}_A(v) = \begin{cases}
\alpha \in [0, 1], & \text{if } v = u \\
0, & \text{otherwise,}
\end{cases}
\]
\[
\mathcal{I}_A(v) = \begin{cases}
\beta \in [0, 1], & \text{if } v = u \\
0, & \text{otherwise,}
\end{cases}
\]
\[
\mathcal{F}_A(v) = \begin{cases}
\gamma \in [0, 1], & \text{if } v = u \\
0, & \text{otherwise,}
\end{cases}
\]
with support \(u\) and value \((\alpha, \beta, \gamma)\), denoted by \(u(\alpha, \beta, \gamma)\). This single-valued neutrosophic point is said to “belong to” a SNS \(A\), written as \(u(\alpha, \beta, \gamma) \in A\) if \(\mathcal{T}_A(u) \geq \alpha, \mathcal{I}_A(u) \geq \beta, \mathcal{F}_A(u) \leq \gamma\) and said to be “quasi-coincident with” a SNS \(A\), written as \(u(\alpha, \beta, \gamma) \in A\) if \(\mathcal{T}_A(u) + \alpha > 1, \mathcal{I}_A(u) + \beta > 1, \mathcal{F}_A(u) + \gamma < 1\).

Definition 21. Let \(K\) be a \(K\)-algebra and let \((\mathcal{K}, \chi)\) be a SNTS. Then, \((\mathcal{K}, \chi)\) is called a single-valued neutrosophic Hausdorff space if and only if, for any two distinct single-valued neutrosophic points \(u_1, u_2 \in \mathcal{K}\), there exist SNOSs \(B_1 = (T_{B_1}, I_{B_1}, F_{B_1}), B_2 = (T_{B_2}, I_{B_2}, F_{B_2})\) such that \(u_1 \in B_1, u_2 \in B_2\), i.e.,
\[
T_{B_1}(u_1) = 1, I_{B_1}(u_1) = 1, F_{B_1}(u_1) = 0,
\]
\[
T_{B_2}(u_2) = 1, I_{B_2}(u_2) = 1, F_{B_2}(u_2) = 0
\]
and satisfy the condition that \(B_1 \cap B_2 = \emptyset_{SN}\). Then, \((\mathcal{K}, \chi)\) is called single-valued neutrosophic Hausdorff space and \(K\)-algebra is said to be a Hausdorff \(K\)-algebra. In fact, \((\mathcal{K}, \chi)\) is a Hausdorff \(K\)-algebra.

Example 6. Let \(K = (G, \cdot, \circ, e)\) be a \(K\)-algebra and let \((\mathcal{K}, \chi_K)\) be a SNTS on \(K\), where
\[G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}\] is the cyclic group of order 9 and Cayley’s table for \(\circ\) is given in Example 1. We define two SNSs as \(A = \{(e, 1, 1, 0), (s, 0, 0, 1)\}\), \(B = \{(e, 0, 0, 1), (s, 1, 1, 0)\}\). Consider a single-valued neutrosophic point for \(e \in K\) such that
\[
T_A(e) = \begin{cases}
0.3, & \text{if } e = u \\
0, & \text{otherwise,}
\end{cases}
\]
\[
I_A(e) = \begin{cases}
0.2, & \text{if } e = u \\
0, & \text{otherwise,}
\end{cases}
\]
This single-valued neutrosophic point belongs to SNS “A” but not SNS “B”.

Now, for all \(s \neq e \in K \):

\[
\mathcal{F}_A(e) = \begin{cases}
0.4, & \text{if } e = u \\
0, & \text{otherwise}
\end{cases}
\]

Then, \(e(0.3, 0.2, 0.4) \) is a single-valued neutrosophic point with support \(e \) and value \((0.3, 0.2, 0.4) \). This single-valued neutrosophic point belongs to SNS “A” but not SNS “B”. Thus, \(e(0.3, 0.2, 0.4) \in A \) and \(e(0.3, 0.2, 0.4) \notin B \).

Theorem 5. Let \((K_1, \chi_1)\), \((K_2, \chi_2)\) be two SNTSs. Let \(f \) be a single-valued neutrosophic homomorphism from \((K_1, \chi_1)\) into \((K_2, \chi_2)\). Then, \((K_1, \chi_1)\) is a single-valued neutrosophic Hausdorff space if and only if \((K_2, \chi_2)\) is a single-valued neutrosophic Hausdorff K-algebra.

Proof. Let \((K_1, \chi_1)\), \((K_2, \chi_2)\) be two SNTSs. Let \(K_1 \) be a single-valued neutrosophic Hausdorff space, then, according to the Definition 21, there exist two SNOSs \(X \) and \(Y \) for two distinct single-valued neutrosophic points \(u_1, u_2 \in \chi_2 \) also \(a, b \in K_1 (a \neq b) \) such that \(X \cap Y = \emptyset_{SN} \).

Now, for \(w \in K_1 \), consider \((f^{-1}(u_1))(w) = u_1(f^{-1}(w))\), where \(u_1(f^{-1}(w)) = s \in (0, 1) \) if \(w = f^{-1}(a) \), otherwise 0. That is, \((f^{-1}(u_1))(w) = ((f^{-1}(u))(w))_1\). Therefore, we have \(f^{-1}(u_1) = (f^{-1}(u))(1) \).

Similarly, \(f^{-1}(u_2) = (f^{-1}(u))(2) \). Now, since \(f^{-1} \) is a single-valued neutrosophic continuous mapping from \(K_2 \) into \(K_1 \), there exist two SNOSs \(f(X) \) and \(f(Y) \) of \(u_1 \) and \(u_2 \), respectively, such that \(f(X) \cap f(Y) = f(\emptyset_{SN}) = \emptyset_{SN} \). This implies that \(K_2 \) is a single-valued neutrosophic Hausdorff K-algebra. The converse part can be proved similarly. \(\square \)

Theorem 6. Let \(f \) be a single-valued neutrosophic continuous function which is both one-one and onto, where \(f \) is a mapping from a single-valued neutrosophic compact K-algebra \(K_1 \) into a single-valued neutrosophic Hausdorff K-algebra \(K_2 \). Then, \(f \) is a homomorphism.

Proof. Let \(f : K_1 \rightarrow K_2 \) be a single-valued neutrosophic continuous bijective function from single-valued neutrosophic compact K-algebra \(K_1 \) into a single-valued neutrosophic Hausdorff K-algebra \(K_2 \). Since \(f \) is a single-valued neutrosophic continuous mapping from \(K_1 \) into \(K_2 \), \(f \) is a homomorphism. Since \(f \) is bijective, we only prove that \(f \) is single-valued neutrosophic closed. Let \(D = (T_D, I_D, F_D) \) be a single-valued neutrosophic closed in \(K_1 \). If \(D = \emptyset_{SN} \) is single-valued neutrosophic closed in \(K_1 \), then \(f(D) = \emptyset_{SN} \) is single-valued neutrosophic closed in \(K_2 \). However, if \(D \neq \emptyset_{SN} \), then \(D \) will be a single-valued neutrosophic compact, being subset of a single-valued neutrosophic compact K-algebra. Then, \(f(D) \), being single-valued neutrosophic continuous image of a single-valued neutrosophic compact K-algebra, is also single-valued neutrosophic compact. Therefore, \(K_2 \) is closed, which implies that mapping \(f \) is closed. Thus, \(f \) is a homomorphism. \(\square \)
4. Conclusions

Non-classical logic is considered as a powerful tool for inspecting uncertainty and indeterminacy found in real world problems. Being a great extension of classical logic, neutrosophic set theory is considered as a useful mathematical tool to cope up with uncertainties in science, technology, and computer science. We have used this mathematical model with a topological structure to investigate the uncertainty in \(K \)-algebras. We have introduced the notion of single-valued neutrosophic topological \(K \)-algebras and presented certain concepts, including continuous function between two topological on \(K \)-algebras, relatively continuous function and homomorphism. We have investigated the image and pre-image of single-valued neutrosophic topological \(K \)-algebras under this homomorphism. We have proposed some conclusive concepts, including single-valued neutrosophic compact \(K \)-algebras and single-valued neutrosophic Hausdorff \(K \)-algebras. We plan to extend our study to: (i) single-valued neutrosophic soft topological \(K \)-algebras; and (ii) bipolar neutrosophic soft topological \(K \)-algebras.

For other notations and terminologies, readers are referred to [21–26].

Author Contributions: M.A., H.G., F.S. and S.B. conceived of and designed the experiments. M.A. and H.G. wrote the paper

Acknowledgments: The author is highly thankful to anonymous referees for their valuable comments and suggestions for improving the paper.

Conflicts of Interest: The authors declare that they have no competing interests.

References
11. June, Y.B.; Kim, S.J.; Smarandache, F. Interval neutrosophic sets with applications in \(BCK/BCI \)-algebra. Axioms 2018, 7, 23. [CrossRef]
12. Jun, Y.B.; Smarandache, F.; Song, S.Z.; Khan, M. Neutrosophic positive implicative \(N \)-ideals in \(BCK \)-algebras. Axioms 2018, 7, 3. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).