The Extremal Graphs of Some Topological Indices with Given Vertex k-Partiteness

Fang Gao 1, Xiaoxin Li 1, Kai Zhou 1 and Jia-Bao Liu 2•*

1 School of Mathematics and Computer Science, Chizhou University, Chizhou 247000, China; gaofang@czu.edu.cn (F.G.); lxx@czu.edu.cn (X.L.); zk1984@163.com (K.Z.)
2 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
* Correspondence: liujiabaod@163.com

Received: 12 October 2018; Accepted: 16 November 2018; Published: 21 November 2018

Abstract: The vertex k-partiteness of graph G is defined as the fewest number of vertices whose deletion from G yields a k-partite graph. In this paper, we characterize the extremal value of the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general zeroth-order Randić index, and the modified-Wiener index among graphs of order n with vertex k-partiteness not more than m.

Keywords: topological index; vertex k-partiteness; extremal graph

1. Introduction

All graphs considered in this paper are simple, undirected, and connected. Let G be a graph with vertex set \(V(G) = \{v_1, \ldots , v_n\} \) and edge set \(E(G) = \{e_1, \ldots , e_m\} \). The degree of a vertex \(u \in V(G) \) is the number of edges incident to \(u \), denoted by \(d_G(u) \). The distance between two vertices \(u \) and \(v \) is the length of the shortest path connecting \(u \) and \(v \), denoted by \(d_G(u, v) \). The complement of \(G \), denoted by \(\overline{G} \), is the graph with vertex set \(V(\overline{G}) = V(G) \) and edge set \(E(\overline{G}) = \{uv : uv \notin E(G)\} \). A subgraph of \(G \) induced by \(H \), denoted by \((H) \), is the subgraph of \(G \) that has the vertex set \(H \) and for any two vertices \(u, v \in V(H) \), they are adjacent in \(H \) iff they are adjacent in \(G \). The adjacency matrix of \(G \) is a square \(n \times n \) matrix such that its element \(a_{ij} \) is one when there is an edge from vertex \(u_i \) to vertex \(u_j \), and zero when there is no edge, denoted by \(A(G) \). Let \(D(G) = \text{diag}(d_1, d_2, \ldots , d_n) \) be the diagonal matrix of vertex degrees of \(G \). The Laplacian matrix of \(G \) is defined as \(L(G) = D(G) - A(G) \), and the eigenvalues of \(L(G) \) are called Laplacian eigenvalues of \(G \), denoted by \(\mu_1, \ldots , \mu_n \), with \(\mu_1 \geq \cdots \geq \mu_n \). It is well known that \(\mu_n = 0 \), and the multiplicity of zero corresponds to the number of connected components of \(G \).

A bipartite graph is a graph whose vertex set can be partitioned into two disjoint sets \(U_1 \) and \(U_2 \), such that each edge has an end vertex in \(U_1 \) and the other one in \(U_2 \). A complete bipartite graph, denoted by \(K_{s,t} \), is a bipartite graph with \(|U_1| = s \) and \(|U_2| = t \), where any two vertices \(u \in U_1 \) and \(v \in U_2 \) are adjacent. If every pair of distinct vertices in \(G \) is connected by a unique edge, we call \(G \) a complete graph. The complete graph with \(n \) vertices is denoted by \(K_n \). An independent set of \(G \) is a set of vertices, no two of which are adjacent. A graph \(G \) is called \(k \)-partite if its vertex-set can be partitioned into \(k \) different independent sets \(U_1, \ldots , U_k \). When \(k = 2 \), they are the bipartite graphs, and \(k = 3 \) the tripartite graphs. The vertex \(k \)-partiteness of graph \(G \), denoted by \(v_k(G) \), is the fewest number of vertices whose deletion from \(G \) yields a \(k \)-partite graph. A complete \(k \)-partite graph, denoted by \(K_{s_1, \ldots , s_k} \), is a \(k \)-partite graph with \(k \) different independent sets \(|U_1| = s_1, \ldots , |U_k| = s_k \), where there is an edge between every pair of vertices from different independent sets.

A topological index is a numerical value that can be used to characterize some properties of molecule graphs in chemical graph theory. Recently, many researchers have paid much attention to
Then, there exists \(k \) positive integers such that the modified-Wiener index, the signless Laplacian spectral radius, the Kirchhoff index, the spectral radius, the eccentricity-based topological indices of graphs. Let \(G + uv \) be the graph obtained from \(G \) by adding an edge \(uv \in E(G) \). Let \(I(G) \) be a graph invariant, if \(I(G + uv) > I(G) \) (or \(I(G + uv) < I(G) \), respectively) for any edge \(uv \in E(G) \), then we call \(I(G) \) a monotonic increasing (or decreasing, respectively) graph invariant with the addition of edges [5]. Let \(\mathcal{G}_{n,m,k} \) be the set of graphs with order \(n \) and vertex \(k \)-partiteness \(v_k(G) \leq m \), where \(1 \leq m \leq n - k \). In [5–7], the authors have researched several monotonic topological indices in \(\mathcal{G}_{n,m,k} \), such as the Kirchhoff index, the spectral radius, the signless Laplacian spectral radius, the modified-Wiener index, the eccentricity-based topological indices of chemical networks and their applications. Let \(G \) be an arbitrary graph in \(\mathcal{G}_{n,m,k} \), such as the \(k \)-partite graph with \(k \)-partition from two-partiteness to arbitrary \(k \)-partiteness. Moreover, we study some monotonic topological indices and characterize the graphs with extremal monotonic topological indices in \(\mathcal{G}_{n,m,k} \).

2. Preliminaries

The join of two-vertex-disjoint graphs \(G_1, G_2 \), denoted by \(G = G_1 \cup G_2 \), is the graph obtained from the disjoint union \(G_1 \cup G_2 \) by adding edges between each vertex of \(G_1 \) and each of \(G_2 \). It is to say that \(V(G) = V(G_1) \cup V(G_2) \) and \(E(G) = E(G_1) \cup E(G_2) \cup \{ uv : u \in V(G_1), v \in V(G_2) \} \).

The join operation can be generalized as follows. Let \(F = \{ G_1, \cdots, G_k \} \) be a set of vertex-disjoint graphs and \(H \) be an arbitrary graph with vertex set \(V(H) = \{ 1, \cdots, k \} \). Each vertex \(i \in V(H) \) is assigned to the graph \(G_i \in F \).

The \(H \)-join of the graphs \(G_1, \cdots, G_k \) is the graph \(G = H[G_1, \cdots, G_k] \), such that \(V(G) = \bigcup_{j=1}^{k} V(G_j) \) and:

\[
E(G) = \bigcup_{j=1}^{k} E(G_j) \bigcup \{ uv : u \in V(G_i), v \in V(G_j) \}.
\]

If \(H = K_2 \), the \(H \)-join is the usual join operation of graphs, and the complete \(k \)-partite graph \(K_{s_1, \cdots, s_k} \) can be seen as the \(K_k \)-join graph \(K_k [O_{s_1}, \cdots, O_{s_k}] \), where \(O_{s_i} \) is an empty graph of order \(s_i \), \(1 \leq i \leq k \).

For \(U \subseteq V(G) \), let \(G - U \) be the graph obtained from \(G \) by deleting the vertices in \(U \) and the edges incident with them.

Lemma 1. Let \(G \) be an arbitrary graph in \(\mathcal{G}_{n,m,k} \) and \(I(G) \) be a monotonic increasing graph invariant. Then, there exists \(k \) positive integers \(s_1, \cdots, s_k \) satisfying \(\sum_{i=1}^{k} s_i = n - m \), such that \(I(G) \leq I(\hat{G}) \) holds for all graphs \(G \in \mathcal{G}_{n,m,k} \), where \(\hat{G} = K_m \cup (K_k [O_{s_1}, \cdots, O_{s_k}]) \in \mathcal{G}_{n,m,k} \), with equality holds if and only if \(G \cong \hat{G} \).

Proof. Choose \(\tilde{G} \in \mathcal{G}_{n,m,k} \) with the maximum value of a monotonic increasing graph invariant such that \(I(G) \leq I(\tilde{G}) \) for all \(G \in \mathcal{G}_{n,m,k} \). Assume that the \(k \)-partiteness of graph \(\tilde{G} \) is \(m' \), then there exists a vertex set \(U \) of graph \(\tilde{G} \) with order \(m' \) such that \(\tilde{G} - U \) is a \(k \)-partite graph with \(k \)-partition \(\{ U_1, \cdots, U_k \} \).

For \(1 \leq i \leq k \), let \(s_i \) be the order of \(U_i \); hence, \(n = \sum_{i=1}^{k} s_i + m' \).

Firstly, we claim that \(\tilde{G} - U = K_k [O_{s_1}, \cdots, O_{s_k}] \). Otherwise, there exists at least two vertices \(u \in U_i \) and \(v \in U_j \), for some \(i \neq j \), which are not adjacent in \(\tilde{G} \). By joining the vertices \(u \) and \(v \), we get a new graph \(\tilde{G} + uv \), obviously, \(\tilde{G} + uv \in \mathcal{G}_{n,m,k} \). Then, \(I(\tilde{G}) < I(\tilde{G} + uv) \), which is a contradiction.

Secondly, we claim that \(U \) is the complete graph \(K_{m'} \). Otherwise, there exists at least two vertices \(u, v \in U \), which are not adjacent. By connecting the vertices \(u \) and \(v \), we arrive at a new graph \(\tilde{G} + uv \), obviously, \(\tilde{G} + uv \in \mathcal{G}_{n,m,k} \). Then, we have \(I(\tilde{G}) < I(\tilde{G} + uv) \), a contradiction again.
Using a similar method, we can get $\tilde{G} = K_{m'} \vee (K_k[O_{s_1}, \ldots, O_{s_k}])$.

Finally, we prove that $m' = m$. If $m' \leq m - 1$, then $\sum_{i=1}^{k} s_i = n - m' \geq n - m + 1 > n - m \geq k$; thus, $\sum_{i=1}^{k} s_i > k$. Without loss of generality, we assume that $s_1 \geq 2$. By moving a vertex $u \in O_{s_1}$ to the set of U and adding edges between u and all the other vertices in O_{s_1}, we get a new graph $\tilde{G} = K_{m'+1} \vee (K_k[O_{s_1}, O_{s_2}, \ldots, O_{s_k}])$. It is easy to check that $\tilde{G} \in \mathcal{G}_{n,m,k}$ has $s_1 - 1$ edges more than the graph \hat{G}. By the definition of the monotonic increasing graph invariant, we get $I(\tilde{G}) < I(\hat{G})$, which is obviously another contradiction.

Therefore, \tilde{G} is the join of a complete graph with order m and a complete k-partite graph with order $n - m$. That is to say $\tilde{G} = K_m \vee (K_k[O_{s_1}, \ldots, O_{s_k}])$.

The proof of the lemma is completed. \(\square\)

Lemma 2. Let G be an arbitrary graph in $\mathcal{G}_{n,m,k}$ and $I(G)$ be a monotonic decreasing graph invariant. Then, there exists k positive integers s_1, \ldots, s_k satisfying $\sum_{i=1}^{k} s_i = n - m$, such that $I(G) \geq I(\hat{G})$ holds for all graphs $G \in \mathcal{G}_{n,m,k}$, where $\hat{G} = K_m \vee (K_k[O_{s_1}, \ldots, O_{s_k}]) \in \mathcal{G}_{n,m,k}$, with equality holds if and only if $G \cong \hat{G}$.

3. Main Results

In this section, we will characterize the graphs with an extremal monotonic increasing (or decreasing, respectively) graph invariant in $\mathcal{G}_{n,m,k}$. Assume that $n - m = sk + t$, where s is a positive integer and t is a non-negative integer with $0 \leq t < k$.

3.1. The Reformulated First Zagreb Index, Multiplicative-Sum Zagreb Index, and k-Partiteness

The first Zagreb index is used to analyze the structure-dependency of total π-electron energy on the molecular orbitals, introduced by Gutman and Trinajstić [8]. It is denoted by:

$$M_1(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v)),$$

which can be also calculated as:

$$M_1(G) = \sum_{u \in V(G)} d_G(u)^2.$$

Todeschini and Consonni [9] considered the multiplicative version of the first Zagreb index in 2010, defined as:

$$\Pi_1(G) = \prod_{u \in V(G)} d_G(u)^2.$$

For an edge $e = uv \in E(G)$, we define the degree of e as $d_G(e) = d_G(u) + d_G(v) - 2$. Milčević et al. [10] introduced the reformulated first Zagreb index, defined as:

$$\tilde{M}_1(G) = \sum_{e \in E(G)} d_G(e)^2 = \sum_{uv \in E(G)} (d_G(u) + d_G(v) - 2)^2.$$

Eliasi et al. [11] introduced another multiplicative version of the first Zagreb index, which is called the multiplicative-sum Zagreb index and defined as:

$$\Pi_1^*(G) = \prod_{uv \in E(G)} (d_G(u) + d_G(v)).$$

They are widely used in chemistry to study the heat information of heptanes and octanes. For some recent results on the fourth Zagreb indices, one can see [12–17].
Lemma 3. Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then $\mathcal{M}_1(G) < \mathcal{M}_1(G + uv)$.

Lemma 4. Let G be a graph with $u, v \in V(G)$. If $uv \in E(\overline{G})$, then $\Pi_1^r(G) < \Pi_1^r(G + uv)$.

Note that s_1, \cdots, s_k are k positive integers with $\sum_{i=1}^k s_i = n - m$.

Theorem 1. Let \hat{G} be a graph of order $n > 2$, and the join of a complete graph with order m and a complete k-partite graph with order $n - m$ in $\mathcal{G}_{n,m,k}$, i.e., $\hat{G} = K_m \vee (K_k | O_{s_1}, \cdots, O_{s_k})$. By moving one vertex from the part of O_{s_1} to the part of O_{s_2}, we get a new graph $\tilde{G} = K_m \vee (K_k | O_{s_1-1}, O_{s_2+1}, \cdots, O_{s_k})$. If $s_1 - 1 \geq s_2 + 1$, then $\mathcal{M}_1(\tilde{G}) > \mathcal{M}_1(\hat{G})$.

Proof. By the definition of the reformulated first Zagreb index $\mathcal{M}_1(G)$, we can calculate as follows:

$$\mathcal{M}_1(\hat{G}) = \frac{m(m-1)}{2} (2n - 4)^2 + \sum_{i=1}^k ms_i (2n - s_i - 3)^2 + \sum_{1 \leq i < j \leq k} s_is_j (2n - s_i - s_j - 2)^2.$$

Therefore,

$$\mathcal{M}_1(\tilde{G}) - \mathcal{M}_1(\hat{G}) = m(s_1 - 1)(2n - s_1 - 2)^2 + m(s_2 + 1)(2n - s_2 - 4)^2$$

$$+(s_1 - 1)(s_2 + 1)(2n - s_1 - s_2 - 2)^2 - ms_1(2n - s_1 - 3)^2$$

$$+ ms_2(2n - s_2 - 3)^2 - s_1s_2(2n - s_1 - s_2 - 2)^2$$

$$+ \sum_{i=3}^k (s_1 - 1)s_i(2n - s_1 - s_i - 1)^2 + \sum_{i=5}^k (s_2 + 1)s_i(2n - s_2 - s_i - 3)^2$$

$$- \sum_{i=3}^k s_1s_i(2n - s_1 - s_i - 2)^2 - \sum_{i=3}^k s_2s_i(2n - s_2 - s_i - 2)^2$$

$$= (s_1 - s_2 - 1)(5n + 3p - 12)p + (n + p - 2)^2$$

$$+(7n + 8m - 12) \sum_{i=3}^k s_i + \sum_{i=3}^k s_i^2 + \sum_{i=3}^k s_i(3 \sum_{i=3}^k s_i - 4s_i)$$

$$= (s_1 - s_2 - 1)(n - 2)^2 + (7n - 16)m + 4m^2$$

$$+(7n + 8m - 12) \sum_{i=3}^k s_i + 4(\sum_{i=3}^k s_i^2 - \sum_{i=3}^k s_i^3)$$

$$> (s_1 - s_2 - 1)(n - 2)^2 + (4n - 8)m + 4m^2$$

$$= (s_1 - s_2 - 1)(n - 2 + 2m)^2 > 0. \quad \Box$$

Note that we have $n - m = sk + t = (k - t)s + t(s + 1)$, where s is a positive integer and t is a non-negative integer with $0 \leq t < k$. For simplicity, we write $K_m \vee (K_k | (k - t)O_{s} \{s\}O_{s+1}) = K_m \vee (K_k | O_{s}, \cdots, O_{s}, O_{s+1}, \cdots, O_{s+1})$. Then, the extremal value and the corresponding graph of the reformulated first Zagreb index $\mathcal{M}_1(G)$ can be shown as follows.

Theorem 2. Let G be an arbitrary graph in $\mathcal{G}_{n,m,k}$. Then:

$$\mathcal{M}_1(G) \leq \frac{m(m-1)}{2}(2n-4)^2 + m(n-m)(6n-3s-11)$$

$$+ 2(n-m)(n-m-s)(n-s-1)^2$$

$$+ t(s+1)(-6(n-s-1)^2 + n + 2m(5 - 2n + s) + (t-2)(s+1),$$

$$where$$

$$s_1, \cdots, s_k$$

are positive integers with $\sum_{i=1}^k s_i = n - m$.
Then, \[\Pi_{G} = \text{max} \] with the equality holding if and only if \(G \cong K_{m} \vee (K_{k}\{k-t\}O_{s}, \{s\}O_{s+1}) \).

Proof. By Lemmas 1, 3, and Theorem 1, the extremal graph having the maximum reformulated first Zagreb index in \(\mathcal{G}_{n,m,k} \) is the graph \(K_{m} \vee (K_{k}\{k-t\}O_{s}, \{s\}O_{s+1}) \).

Let \(\tilde{G} = K_{m} \vee (K_{k}\{k-t\}O_{s}, \{s\}O_{s+1}) \).

Then, we obtain that:

\[
\tilde{M}_{1}(\tilde{G}) = \frac{m(m-1)}{2} (2n-2)^{2} + (k-t)ms(2n-s-3)^{2}
+ tm(s+1)(2n-s-4)^{2} + \frac{t(t-1)}{2} (s+1)^{2}(2n-2s-4)^{2}
+ \frac{(k-t)(k-t-1)}{2} s^{2}(2n-2s-2)^{2} + t(k-t)s(s+1)(2n-2s-3)^{2}
= \frac{m(m-1)}{2} (2n-2)^{2} + m(n-m)(6n-3s-11)
+ 2(n-m)(n-m-s)(n-s-1)^{2}
+ t(s+1)[-6(n-s-1)^{2} + n + 2m(5-2n+s) + (t-2)(s+1)]. \]

Theorem 3. Let \(\tilde{G} \) be a graph of order \(n > 2 \), and the join of a complete graph with order \(m \) and a complete \(k \)-partite graph with order \(n - m \) in \(\mathcal{G}_{n,m,k} \), i.e., \(\tilde{G} = K_{m} \vee (K_{k}\{O_{s_{1}}, \ldots, O_{s_{k}}\}) \). If \(s_{1} - 1 \geq s_{2} + 1 \), by moving one vertex from the part of \(O_{s_{1}} \) to the part of \(O_{s_{2}} \), we get a new graph \(\tilde{G} = K_{m} \vee (K_{k}\{O_{s_{1}-1}, O_{s_{2}+1}, \ldots, O_{s_{k}}\}) \).

Then, \(\Pi_{1}(\tilde{G}) > \Pi_{1}(\tilde{G}) \).

Proof. By the definition of the multiplicative-sum Zagreb index \(\Pi_{1}(G) \), it is easy to see that:

\[
\Pi_{1}(\tilde{G}) = (2n-2)^{\frac{m(m-1)}{2}} \Pi_{i=1}^{k}(2n-s_{i} - 1)^{m_{i}} \Pi_{1<i<j<k}(2n-s_{i} - s_{j})^{s_{i}s_{j}}.
\]

Hence,

\[
\frac{\Pi_{1}(\tilde{G})}{\Pi_{1}(\tilde{G})} = (2n-s_{1} - s_{2})^{(s_{1}-s_{2} - 1)} \frac{2n-s_{2} - 2}{2n-s_{1} - 1} a^{m(s_{1}-1)} b^{m_{2}}
\Pi_{i=3}^{k}(s_{i} - s_{1})^{s_{i}} \Pi_{i=3}^{k}(s_{i} - s_{2})^{s_{i}}
\Pi_{i=3}^{k}(s_{i} - s_{1})^{s_{i}} \Pi_{i=3}^{k}(s_{i} - s_{2})^{s_{i}}
\geq (ab)^{m_{2}} \Pi_{i=3}^{k}(cd)^{s_{i}}.
\]

where \(a = \frac{2n-s_{1} - 1}{2n-s_{2} - 1}, b = \frac{2n-s_{2} - 2}{2n-s_{2} - 1}, c = \frac{2n-s_{1} - s_{2} + 1}{2n-s_{1} - 1}, d = \frac{2n-s_{2} - s_{1} - 1}{2n-s_{2} - 1} \).

By a simple calculation, we have:

\[
(2n-s_{1})(2n-s_{2} - 2) - (2n-s_{1} - 1)(2n-s_{2} - 1) = s_{1} - s_{2} - 1 > 0,
(2n-s_{1} - s_{2} + 1)(2n-s_{2} - s_{1} - 1) - (2n-s_{1} - s_{2})(2n-s_{2} - s_{1}) = s_{1} - s_{2} - 1 > 0.
\]

Therefore, \(\frac{\Pi_{1}(\tilde{G})}{\Pi_{1}(\tilde{G})} > 1 \).

Theorem 4. Let \(G \) be an arbitrary graph in \(\mathcal{G}_{n,m,k} \). Then:

\[
\Pi_{1}(G) \leq (2n-2)^{\frac{m(m-1)}{2}} (2n-s-1)^{m(s-k)} (2n-s-2)^{m(s+1)}
(2n-2)^{\frac{2(k-t)(k-t-1)}{2}} (2n-2)^{\frac{(s_{1}-1)^{2}(t-1)}{2}} (2n-2)^{\frac{(s_{2}+1)^{2}(t-1)}{2}} (2n-2)^{\frac{(s_{3}+1)^{2}(t-1)}{2}} (2n-2)^{\frac{(s_{k}+1)^{2}(t-1)}{2}}
\]

with the equality holding if and only if \(G \cong K_{m} \vee (K_{k}\{k-t\}O_{s}, \{s\}O_{s+1}) \).
Proof. By Lemmas 1, 4, and Theorem 3, the extremal graph having the maximum multiplicative-sum Zagreb index in \(\mathfrak{G}_{n,m,k} \) should be the graph \(K_m \cup (K_k \cup \{k-1\}O_s, \{s\}O_{s+1}) \).

Let \(\hat{G} = K_m \cup (K_k \cup \{k-1\}O_s, \{s\}O_{s+1}) \). We get that,

\[
\Pi^*_k(\hat{G}) = (2n-2)\frac{n(n-1)}{2} (2n-s-1)^{ms(k-1)} (2n-s-2)^{m(s+1)t} \\
(2n-2s)^{\frac{(k-1)(s-1)}{2} - 1} (2n-2s-2)^{s(s+1)t(k-1)}.
\]

\(\square \)

3.2. The General Laplacian-Energy-Like Invariant and \(k \)-Partiteness

The general Laplacian-energy-like invariant (also called the sum of powers of the Laplacian eigenvalues) of a graph \(G \) is defined by Zhou [18] as:

\[
S_n(G) = \sum_{\lambda \geq 0} \lambda^n,
\]

where \(\lambda \) is an arbitrary real number.

\(S_n(G) \) is the Laplacian-energy-like invariant [19], and the Laplacian energy [20] when \(\alpha = \frac{1}{2} \) and \(\alpha = 2 \), respectively. For \(\alpha = -1 \), \(nS_{-1}(G) \) is equal to the Kirchhoff index [21], and \(\alpha = 1 \), \(\frac{1}{2}S_1(G) \) is equal to the number of edges in \(G \). For some recent results on the general Laplacian-energy-like invariant, one can see [22–25].

Lemma 5. [18] Let \(G \) be a graph with \(u, v \in V(G) \). If \(uv \in E(\overline{G}) \), then \(S_{\alpha}(G) > S_{\alpha}(G + vu) \) for \(\alpha < 0 \), and \(S_{\alpha}(G) < S_{\alpha}(G + u\overline{G}) \) for \(\alpha > 0 \).

Lemma 6. [26] If \(\mu_1 \geq \cdots \geq \mu_{i-1} \geq \mu_i = 0 \) are the Laplacian eigenvalues of graph \(G \) and \(\mu'_1 \geq \cdots \geq \mu'_{j-1} \geq \mu'_j = 0 \) are the Laplacian eigenvalues of graph \(G' \), then the Laplacian eigenvalues of \(G \cup G' \) are:

\[
i + j, \mu_1 + j, \mu_2 + j, \cdots, \mu_{i-1} + j, \mu'_1 + i, \mu'_2 + i, \cdots, \mu'_{j-1} + i, 0.
\]

It is well known that Laplacian eigenvalues of the complete graph \(K_p \) are \(0, p, \cdots, p \), and Laplacian eigenvalues of \(O_p \) are \(0, 0, \cdots, 0 \). Then, the Laplacian eigenvalues of \(K_{s_1, s_2} = O_{s_1} \cup O_{s_2} \) are \(s_1 + s_2, s_2, \cdots, s_2, s_1, 1 \), where the multiplicity of \(s_2 \) is \(s_1 - 1 \) and the multiplicity of \(s_1 \) is \(s_2 - 1 \). The Laplacian eigenvalues of \(K_{s_1, s_2, s_3} = K_{s_1, s_2} \cup O_{s_3} \) are \(s_1 + s_2 + s_3, s_1 + s_2 + s_3, s_2 + s_3, \cdots, s_2 + s_3, s_1 + s_3, \cdots, s_1 + s_3, 0 \), where the multiplicity of \(s_2 + s_3 \) is \(s_1 - 1 \) and the multiplicity of \(s_1 + s_3 \) is \(s_2 - 1 \).

By induction, we have that the Laplacian eigenvalues of \(K_{s_1, \cdots, s_k} \) are \(\sum_{i=1}^{k} s_i \), \(\cdots \), \(\sum_{i=1}^{k} s_i \), \(\cdots \), \(\sum_{i=1}^{k} s_i - s_1, \cdots, \sum_{i=1}^{k} s_i - s_{k-1}, \cdots, \sum_{i=1}^{k} s_i - s_k, 0 \), where the multiplicity of \(\sum_{i=1}^{k} s_i \) is \(k-1 \) and the multiplicity of \(\sum_{i=1}^{k} s_i - s_j \) is \(s_j - 1 \), for \(1 \leq j \leq k \).

From Lemma 6 and the above analysis, we obtain the following lemma.

Lemma 7. Let \(\hat{G} \) be a graph of order \(n \), and the join of a complete graph with order \(m \) and a complete \(k \)-partite graph with order \(n - m \) i.e., \(\hat{G} = K_m \cup (K_k \cup \{k-1\}O_s, \{s\}O_{s+1}) \). Then, the Laplacian eigenvalues of \(\hat{G} \) are \(n, \cdots, n, n - s_1, \cdots, n - s_1, \cdots, n - s_k, \cdots, n - s_k, 0 \), where the multiplicity of \(n \) is \(m + k - 1 \) and the multiplicity of \(n - s_j \) is \(s_j - 1 \), for \(1 \leq j \leq k \).

Theorem 5. Let \(\hat{G} \) be a graph of order \(n > 2 \), and the join of a complete graph with order \(m \) and a complete \(k \)-partite graph with order \(n - m \) in \(\mathfrak{G}_{n,m,k} \) i.e., \(\hat{G} = K_m \cup (K_k \cup \{k-1\}O_s, \{s\}O_{s+1}) \). If \(s_1 - 1 \geq s_2 + 1 \), by moving
one vertex from the part of O_{s_1} to the part of O_{s_2}, we get a new graph $\tilde{G} = K_m \lor (K_k[O_{s_1-1}, O_{s_2+1}, \ldots, O_{s_1}])$. Then, $S_\alpha(\tilde{G}) < S_\alpha(\tilde{G})$ for $\alpha < 0$, and $S_\alpha(\tilde{G}) > S_\alpha(\tilde{G})$ for $0 < \alpha < 1$.

Proof. By the definition of the general Laplacian-energy-like invariant $S_\alpha(G)$ and Lemma 7, we conclude that:

$$S_\alpha(\tilde{G}) = (m + k - 1)n^a + \sum_{i=1}^{k}(s_i - 1)(n - s_i)^a.$$

Therefore:

$$S_\alpha(\tilde{G}) - S_\alpha(\tilde{G}) = (s_1 - 2)(n - s_1 + 1)^a + s_2(n - s_2 - 1)^a$$

$$- (s_1 - 1)(n - s_1)^a - (s_2 - 1)(n - s_2)^a$$

$$= (s_1 - 2)(n - s_1)^a - (n - s_1)^a$$

$$+ (s_2 - 1)(n - s_2 - 1)^a - (n - s_2 - 1)^a + (n - s_2 - 1)^a - (n - s_1)^a.$$

For $\alpha < 0$, we have:

$$S_\alpha(\tilde{G}) - S_\alpha(\tilde{G}) < (s_1 - 2)[(n - s_1 + 1)^a - (n - s_1)^a] + (s_2 - 1)[(n - s_2 - 1)^a - (n - s_2)^a]$$

$$= (s_1 - 2)[f(n - s_1) - f(n - s_2 - 1)],$$

where $f(x) = (x + 1)^a - x^a$, $f'(x) = a(x + 1)^{a-1} - ax^{a-1} > 0$.

Then, $f(n - s_1) < f(n - s_2 - 1)$, and $S_\alpha(\tilde{G}) < S_\alpha(\tilde{G})$.

For $0 < \alpha < 1$, we have:

$$S_\alpha(\tilde{G}) - S_\alpha(\tilde{G}) > (s_1 - 2)[(n - s_1 + 1)^a - (n - s_1)^a] + (s_2 - 1)[(n - s_2 - 1)^a - (n - s_2)^a]$$

$$> (s_2 - 1)[(n - s_2 - 1)^a - (n - s_2 - 1)^a + (n - s_2 - 1)^a - (n - s_2)^a]$$

$$= (s_2 - 1)[f(n - s_1) - f(n - s_2 - 1)],$$

where $f(x) = (x + 1)^a - x^a$, $f'(x) = a(x + 1)^{a-1} - ax^{a-1} < 0$.

Then, $f(n - s_1) > f(n - s_2 - 1)$, and $S_\alpha(\tilde{G}) > S_\alpha(\tilde{G})$.

Theorem 6. Let G be an arbitrary graph in $\mathcal{G}_{n,m,k}$. Then, for $\alpha < 0$, $S_\alpha(G) \geq (m + k - 1)n^a + (k - t)(s - 1)(n - s)^a + ts(n - s - 1)^a$, for $0 < \alpha < 1$, $S_\alpha(G) \leq (m + k - 1)n^a + (k - t)(s - 1)(n - s)^a + ts(n - s - 1)^a$, with the equality holding if and only if $G \cong K_m \lor (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$.

Proof. By Lemmas 1, 2, and Theorem 5, the extremal graph having the extremal value of the general Laplacian-energy-like invariant in $\mathcal{G}_{n,m,k}$ should be the graph $K_m \lor (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$.

Let $\tilde{G} = K_m \lor (K_k[\{k - t\}O_s, \{s\}O_{s+1}])$, then we can verify that $S_\alpha(\tilde{G}) = (m + k - 1)n^a + (k - t)(s - 1)(n - s)^a + ts(n - s - 1)^a$.

3.3. The General Zeroth-Order Randić Index and k-Partiteness

The general zeroth-order Randić index is introduced by Li [27] as:

$$0^{R_\alpha}(G) = \sum_{u \in V(G)} (d_G(u))^a,$$

where a is a non-zero real number.
0Rα(G) is the inverse degree [28], the zeroth-Randić index [29], the first Zagreb index [30], and the forgotten index [31] when α = −1, α = −1/2, α = 2, and α = 3, respectively. For some recent results on the general zeroth-order Randić index, one can see [32–34].

Lemma 8. Let G be a graph with u, v ∈ V(G). If uv ∈ E(Ḡ), then 0Rα(G) > 0Rα(G + uv) for α < 0, and 0Rα(G) < 0Rα(G + uv) for α > 0.

Theorem 7. Let Ġ be a graph of order n > 2, and the join of a complete graph with order m and a complete k-partite graph with order n − m in G κ,m,k, i.e., Ġ = K m ∨ (K k[O s1, . . . , O s k]). If s1 − 1 ≥ s2 + 1, by moving one vertex from the part of O s k to the part of O s1, we get a new graph Ġ = K m ∨ (K k[O s1−1, O s2+1, . . . , O s k]). Then, 0Rα(Ḡ) < 0Rα(Ḡ) for α < 0, and 0Rα(Ḡ) > 0Rα(Ḡ) for 0 < α < 1.

Proof. By the definition of the general zeroth-order Randić index 0Rα(G), we have:

\[0Rα(Ḡ) = m(n - 1)^α + \sum_{i=1}^{k} s_i(n - s_i)^α \]

Then,

\[0Rα(Ḡ) - 0Rα(Ḡ) = (s1 - 1)(n - s1 + 1)^α - s1(n - s1)^α + (s2 + 1)(n - s2 - 1)^α - s2(n - s2)^α = (n - s2 - 1)^α - (n - s1)^α + (s1 - 1)(n - s1 + 1)^α - (n - s1 - 1)^α + s2[(n - s2 - 1)^α - (n - s2)^α]. \]

For α < 0, we have:

\[0Rα(Ḡ) - 0Rα(Ḡ) < (s1 - 1)[(n - s1 + 1)^α - (n - s1)^α + (n - s2 - 1)^α - (n - s2)^α] = (s1 - 1)[f(n - s1) - f(n - s2 - 1)], \]

where \(f(x) = (x + 1)^α - x^α \), \(f'(x) = α(x + 1)^{α-1} - αx^{α-1} > 0 \). Then, \(f(n - s1) < f(n - s2 - 1) \), \(0Rα(Ḡ) < 0Rα(Ḡ). \)

For 0 < α < 1, we have:

\[0Rα(Ḡ) - 0Rα(Ḡ) > s2[(n - s1 + 1)^α - (n - s1)^α + (n - s2 - 1)^α - (n - s2)^α] = s2[f(n - s1) - f(n - s2 - 1)], \]

where \(f(x) = (x + 1)^α - x^α \), \(f'(x) = α(x + 1)^{α-1} - αx^{α-1} < 0 \). Then, \(f(n - s1) > f(n - s2 - 1) \), \(Rα(Ḡ) > Rα(Ḡ). \)

Theorem 8. Let G be an arbitrary graph in G κ,m,k. Then,

for α < 0, \(0Rα(G) ≥ m(n - 1)^α + (k - t)s(n - s)^α + t(s + 1)(n - s - 1)^α \),

for 0 < α < 1, \(0Rα(G) ≤ m(n - 1)^α + (k - t)s(n - s)^α + t(s + 1)(n - s - 1)^α \),

with the equality holding if and only if G ≌ Kn ∨ (K t[O s1, {s}O s1+1]).

Proof. By Lemma 8 and Theorem 7, in view of Lemmas 1 and 2, the extremal graph having the extremal value of the general zeroth-order Randić index in G κ,m,k should be the graph Kn ∨ (K t[O s1, {s}O s1+1]).

Let Ġ = Km ∨ (K t[O s1, {s}O s1+1]). By a simple calculation, we have

\[0Rα(Ḡ) = m(n - 1)^α + (k - t)s(n - s)^α + t(s + 1)(n - s - 1)^α. \]
3.4. The Modified-Wiener Index and k-Partiteness

The modified-Wiener index is defined by Gutman [35] as:

\[W_\lambda(G) = \sum_{u,v \in V(G)} d^\lambda_G(u,v), \]

where \(\lambda \) is a non-zero real number.

Lemma 9. Let \(G \) be a graph with \(u, v \in V(G) \). If \(uv \in E(\overline{G}) \), then \(W_\lambda(G) < W_\lambda(G + uv) \) for \(\lambda < 0 \), and \(W_\lambda(G) > W_\lambda(G + uv) \) for \(\lambda > 0 \).

Theorem 9. Let \(\overline{G} \) be a graph of order \(n > 2 \), and the join of a complete graph with order \(m \) and a complete \(k \)-partite graph with order \(n - m \) in \(\mathcal{G}_{n,m,k} \), i.e., \(\overline{G} = K_m \vee (K_k[O_{s_1}, \cdots, O_{s_k}]) \). If \(s_1 - 1 \geq s_2 + 1 \), by moving one vertex from the part of \(O_{s_1} \) to the part of \(O_{s_2} \), we get a new graph \(\overline{G}' = K_m \vee (K_k[O_{s_1 - 1}, O_{s_2 + 1}, \cdots, O_{s_k}]) \). Then, \(W_\lambda(\overline{G}) > W_\lambda(\overline{G}') \) for \(\lambda < 0 \), and \(W_\lambda(\overline{G}) < W_\lambda(\overline{G}') \) for \(\lambda > 0 \).

Proof. By the definition of the modified-Wiener index \(W_\lambda(G) \), we have the following result.

\[W_\lambda(\overline{G}) = \frac{m(m - 1)}{2} + \sum_{i=1}^{k} s_i(s_i - 1)2^\lambda + \sum_{i=1}^{k} ms_i + \sum_{1 \leq i < j \leq k} s_is_j. \]

Then,

\[W_\lambda(\overline{G}) - W_\lambda(\overline{G}') = \frac{(s_1 - 1)(s_1 - 2)2^\lambda}{2} + \frac{(s_2 + 1)s_22^\lambda}{2} + m(s_1 - 1) \]
\[+ m(s_2 + 1) + (s_1 - 1)(s_2 + 1) + \sum_{i=1}^{k} (s_i - 1)s_i + \sum_{i=3}^{k} (s_i + 1)s_i \]
\[- \frac{s_1(s_1 - 1)2^\lambda}{2} - \frac{s_2(s_2 - 1)2^\lambda}{2} - ms_1 - ms_2 - s_1s_2 - \sum_{i=3}^{k} s_is_i \]
\[= (s_1 - s_2 - 1)(1 - 2^\lambda). \]

For \(\lambda > 0 \), we have \(W_\lambda(\overline{G}) < W_\lambda(\overline{G}') \). For \(\lambda < 0 \), we have \(W_\lambda(\overline{G}) > W_\lambda(\overline{G}') \). \(\square \)

Theorem 10. Let \(G \) be an arbitrary graph in \(\mathcal{G}_{n,m,k} \). Then,
for \(\lambda < 0 \), \(W_\lambda(G) \leq \frac{1}{2}[m(m - 1) + (n - m)(n + m - s) - (s + 1)t + s(n - m + t - k)2^\lambda] \),
for \(\lambda > 0 \), \(W_\lambda(G) \geq \frac{1}{2}[m(m - 1) + (n - m)(n + m - s) - (s + 1)t + s(n - m + t - k)2^\lambda] \),
with the equality holding if and only if \(G \cong K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}]) \).

Proof. By Lemma 9 and Theorem 9, in view of Lemmas 1 and 2, the extremal graph having the extremal value of the modified-Wiener index in \(\mathcal{G}_{n,m,k} \) should be the graph \(K_m \vee (K_k[\{k - t\}O_s, \{s\}O_{s+1}]) \). Consequently, we have that:

\[W_\lambda(\overline{G}) = \frac{m(m - 1)}{2} + (k - t)\frac{s(s - 1)2^\lambda}{2} + \frac{s(s + 1)2^\lambda}{2} + tm(s + 1) + (k - t)ms \]
\[= \frac{1}{2}[m(m - 1) + (n - m)(n + m - s) - (s + 1)t + s(n - m + t - k)2^\lambda]. \] \(\square \)

4. Conclusions

In this paper, we consider connected graphs of order \(n \) with vertex \(k \)-partiteness not more than \(m \) and characterize some extremal monotonic graph invariants such as the reformulated first Zagreb index, the multiplicative-sum Zagreb index, the general Laplacian-energy-like invariant, the general
zeroth-order Randić index, and the modified-Wiener index among these graphs, and we investigate the corresponding extremal graphs of these invariants.

Author Contributions: The authors made equal contributions in the article. All authors read and approved the final manuscript.

Funding: This research was funded by the National Science Foundation of China under Grant 11601006; the China Postdoctoral Science Foundation under Grant 2017M621579; the Postdoctoral Science Foundation of Jiangsu Province under Grant 1701081B; Anhui Provincial Natural Science Foundation under Grant 1708085QA13; the Natural Science Foundation of the Anhui Provincial Education Department under Grant KJ2016A517; and the Project of Chizhou University under Grants 2017ZRZ009, 2016XJTD02.

Acknowledgments: The authors are grateful to the anonymous reviewers and the editor for the valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).