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1. Introduction 

A continuous function � = � + �� is a complex-valued harmonic function in a complex domain 

ℂ if both � and � are real harmonic. In any simply connected domain ℬ ⊂ ℂ, we can write � = ℎ +

�, where ℎ and � are analytic in ℬ. We call ℎ and � are analytic part and co-analytic part of � 

respectively. Clunie and Sheil-Small [1] observed that a necessary and sufficient condition for the 

harmonic functions � = ℎ + � to be locally univalent and sense-preserving in ℬ is that |ℎ�(�)| >

|��(�)|, (� ∈ ℬ). 

Denote by ��  the family of harmonic functions � = ℎ + �, which are univalent and sense-

preserving in the open unit disc � = {� ∈ ℂ: |�| < 1} where ℎ and � are analytic in ℬ and � is 

normalized by �(0) = ℎ(0) = ��(0) − 1 = 0. Then for � = ℎ + �  ∈ �� , we may express the analytic 

functions ℎ and � as 

ℎ(�) = � + � ����, �(�)

�

���

= � ����, |��| < 1.

�

���

 (1) 

Note that �� reduces to the class of normalized analytic univalent functions if the co-analytic 

part of its members equals to zero. 

Also, denote by �� the subclass of �� consisting of all functions ��(�) = ℎ(�) + ��(�), where 

ℎ and � are given by  

ℎ(�) = � − �|��|��

�

���

 ��� ��(�) = (−1)� �|��|��

�

���

, |��| < 1. (2) 
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In 1984 Clunie and Sheil-Small [1] investigated the class ��, as well as its geometric subclass and 

obtained some coefficient bounds. Many authors have studied the family of harmonic univalent 

function (see References [2,3–7]). 

In 2016 Makinde [8] introduced the differential operator �� such that  

���(�) = � + � �����

�

���

, (3) 

where 

��� =
�!

|� − �|!
, ���(�) = �� ���(���) + � �����

�

���

� , � ∈ ℕ� = ℕ ∪ {0},  

and 

 ���(�) = �(�), ���(�) = � + � �����.

�

���

  

Thus, it implies that ���(�) is identically the same as �(�) when � = 0. Also, it reduced the 

first differential coefficient of the Salagean differential operator when � = 1. 

For � = ℎ + �  given by Equation (1), Sharma and Ravindar [9] considered the differential 

operator which defined by Equation (3) of � as  

���(�) = ��ℎ(�) + (−1)����(�), � ∈ ℕ� = ℕ ∪ {0}, � ∈ ℂ, (4) 

where  

��ℎ(�) = � + � �������

�

���

, ���(�) = � �������

�

���

 and ��� =
�!

|� − �|!
 .  

In this paper, motivated by study in [9], a new class ��(�, �, �)( � ∈ ℕ� = ℕ ∪ {0}, 0 ≤ � ≤ 1, 0 ≤

� < 1, )  of harmonic univalent functions in � = {� ∈ ℂ: |�| < 1}  is introduced and studied. 

Furthermore, coefficient conditions, distortion bounds, extreme points, convex combination and radii 

of convexity for this class are obtained. 

2. Main Results 

2.1. The Class ��(�, �, �) 

Definition 1. Let �(�) = ℎ(�) + �(�) �� � ℎ������� ��������, where ℎ(�)  and �(�) are given by 

Equation (1). Then �(�) ∈ ��(�, �, �) it satisfies 

�� �
�����(�)

(1 − �)� + ����(�)
� > �, (5) 

for � ∈ ℕ� = ℕ ∪ {0}, 0 ≤ � ≤ 1, 0 ≤ � < 1, � ∈ �, and ���(�)  defined by Equation (4) 

Let ��(�, �, �) be the subclass of ��(�, �, �), where ��(�, �, �) = �� ∩ ��(�, �, �). 

Remark 1. The class ��(�, �, �) reduces to the class ��(�, �) [9], when � = 1. 

Here, we give a sufficient condition for a function � to be in the class ��(�, �, �). 

Theorem 1. ��� �(�) = ℎ(�) + �(�) �ℎ��� ℎ(�) ��� �(�) ���� ����� �� (1.1). If 
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� ∅(�, �, �, �)

�

���

|��| + � ψ(�, �, �, �)

�

���

|��| ≤ 1, (6) 

where 

∅(�, �, �, �) =
(|� − �| − ��)��� 

(1 − �)
  

ψ(�, �, �, �) =
(|� − �| + ��)��� 

(1 − �)
  

( � ∈ ℕ� = ℕ ∪ {0}, 0 ≤ � ≤ 1, 0 ≤ � < 1, � ∈ ℕ),  

then �(�) is harmonic univalent and sense-preserving in  � and �(�) ∈ ��(�, �, �). 

Proof. Firstly, to show that �(�) is harmonic univalent in �, suppose that ��, �� ∈ � for ⌊��⌋ ≤ ⌊��⌋ <

1, we have by inequality so that �� ≠ ��, then 

�
�(��) − �(��)

ℎ(��) − ℎ(��)
� 

≥ 1 − �
�(��) − �(��)

ℎ(��) − ℎ(��)
�  = 1 − �

∑ ��(��
� − ��

�)�
���

(�� − ��) − ∑ ��(��
� − ��

�)�
���

�  

≥ 1 −
∑ �|��|�

���

1 − ∑ �|��|�
���

≥ 1 −
∑

(|� − �| + ��)��� 
(1 − �)

|��|�
���

1 − ∑
(|� − �| − ��)��� 

(1 − �)
|��|�

���

≥ 0. 

 

Thus �  is a univalent function in �. 

Note that �  is sense-preserving in �. This is because  

|ℎ�(�)| ≥ 1 − � �|��||�|���

�

���

 > 1 − � �|��|

�

���

≥ 1 − �
(|� − �| − ��)��� 

(1 − �)
|��|

�

���

 

≥ �
(|� − �| + ��)��� 

(1 − �)
|��|

�

���

≥ � �|��| ≥ � �|��||�|���

�

���

≥ |��(�)|.

�

���

 

 

According to the condition of Equation (5), we only need to show that if Equation (6) holds, then 

�� �
�����(�)

(1 − �)� + ����(�)
� = �� �� =

�(�)

�(�)
� > �  

where � = ����, 0 ≤ � ≤ 2�, 0 ≤ � < 1 and 0 ≤ � < 1. 

Note that �(�) = �����(�) and �(�) = (1 − �)� + ����(�). 

Using the fact that ��(�) > � if and only if |� − (1 + �)| ≤ |� + (1 − �)|, it suffices to show 

that 

|�(�) − (1 + �)�(�)| − |�(�) + (1 − �)�(�)| ≤ 0 (7) 

Substituting for  �(�) and �(�) in |�(�) − (1 + �)�(�)|, we obtain 
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|�(�) − (1 + �)�(�)| = |�����(�) − (1 + �)[(1 − �)� + ����(�)]|

= ��� + � ��(�+1)����

∞

�=2

+ (−1)(�+1) � ��(�+1)����

∞

�=1

�

− (1 + �) �(1 − �)� + �� + � � �������

∞

�=2

+ �(−1)� � �������

∞

�=1

�� 

≤ �|�| + � ���(1 + �)� − |� − �|� ���|��||�|�

�

���

  

+ � ���(1 + �)� + |� − �|� ���|��||�|�.

�

���

 

(8) 

Now, substituting for �(�) and �(�) in |�(�) + (1 − �)�(�)|, we obtain 

|�(�) + (1 − �)�(�)| = |�����(�) + (1 − �)[(1 − �)� + ����(�)]| 

= ��� + � ��(���)����

�

���

+ (−1)(���) � ��(���)����

�

���

�

+ (1 − �) �(1 − �)� + �� + � � �������

�

���

+ �(−1)� � �������

�

���

��  

≥ (2 − �)|�| − � ���(� − 1 )� − |� − �|� ���|��||�|�

�

���

 

− � �|� − �| − ��(1 − �)�� ���|��||�|�.

�

���

 

(9) 

Substituting for Equation (8) and Equation (9) in the inequality we obtain 

|�(�) − (1 + �)�(�)| − |�(�) + (1 − �)�(�)| 

≤ �|�| + � ���(1 + �)� − |� − �|� ���|��||�|�

�

���

 

+ � ���(1 + �)� + |� − �|� ���|��||�|�

�

���

 

+(� − 2)|�| + � ���(� − 1 )� − |� − �|� ���|��||�|�

�

���

 

+ � �|� − �| − ��(1 − �)�� ���|��||�|�.

�

���

 

= 2 �(|� − �| − ��)���|��|

�

���

+ 2 �(|� − �| + ��)���|��|

�

���

− 2(1 − �) 

≤ 0. (by hypothesis). 

 

Therefore, we have 

�(|� − �| − ��)���|��|

�

���

+ �(|� − �| + ��)���|��| ≤

�

���

(1 − �).  

 

The harmonic univalent function 
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�(�) = � + �
1

∅(�, �, �, �)

�

���

���� + �
1

ψ(�, �, �, �)

�

���

����, (10) 

where � ∈ ℕ�  and ∑ |��|�
��� + ∑ |��| = 1�

��� , shows that the coefficient bound given by Equation (6) 

is sharp. Since 

� ∅(�, �, �, �)

�

���

|��| + � ψ(�, �, �, �)

�

���

|��| 

= � ∅(�, �, �, �)
1

∅(�, �, �, �)

�

���

|��|  + � ψ(�, �, �, �)
1

ψ(�, �, �, �)

�

���

|��| 

= �|��|

�

���

+ �|��| = 1.

�

���

 

 

Now, we show that the condition of Equation (6) is also necessary for functions �� = ℎ +

��, where ℎ and �� are given by Equation (6). 

Theorem 2. Let �� = ℎ + �� ��  given by Equation (6). Then ��(�) ∈ ��(�, �, �)  if and only if the 

coefficient in condition of Equation (6) holds. 

Proof. We only need to prove the “only if” part of the theorem because of ��(�, �, �) ⊂ ��(�, �, �). 

Then by Equation (5), we have  

�� �
�����(�)

(1 − �)� + ����(�)
� > �  

or, equivalently 

��

⎣
⎢
⎢
⎢
⎡

� − ∑ ��(���)|��|���
��� + (−1)���� ∑ ��(���)|��|�

��
���

−��(1 − �)� + �� + � ∑ ���|��|���
��� + �(−1)�� ∑ ���|��|�

��
��� �

(1 − �)� + �� − � ∑ ���|��|���
��� + �(−1)�� ∑ ���|��|�

��
���

⎦
⎥
⎥
⎥
⎤

≥ 0 (11) 

We observe that the above-required condition of Equation (11) must behold for all values of 

� �� �. If we choose � to be real and � ⇢ 1�, we get 

(1 − �) − ∑ (|� − �| − ��)���|��|�
���

+ ∑ (|� − �| + ��)���|��|�
���

1 − � ∑ ���|��|�����
��� + � ∑ ���|��|�

����
���

≥ 0  (12) 

If the condition (6) does not hold, then the numerator in Equation (12) is negative for � 

sufficiently closed to 1. Hence there exist �� = �� in (0,1) for which the quotient in Equation (12) is 

negative, therefore there is a contradicts the required condition for �� ∈ ��(�, �, �).  □ 

2.2. Extreme Points 

Here, we determine the extreme points of the closed convex hull of ��(�, �, �), denoted by 

������(�, �, �). 

Theorem 3. ��� �� ����� �� (1.2). �ℎ�� �� ∈ ��(�, �, �) �� ��� ���� �� 

��(�) = �(��ℎ� + �����)

�

���

  

where 
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ℎ�(�) = �,  ℎ�(�) =  � −
1

∅(�, �, �, �)
��, � = 2,3, …  ,  

        ���(�) = � + (−1)�  
1

ψ(�, �, �, �)
�

�
, � = 1,2, …  

and 

�� ≥ 0, �� ≥ 0, �� = 1 − �(�� + ��) ≥ 0

�

���

  

In particular the extreme points of ��(�, �, �) are {ℎ�} ��� {���}. 

Proof. Suppose  

��(�) = �(��ℎ� + �����)

�

���

 

= �(��ℎ� + �����)

�

���

� − �
1

∅(�, �, �, �)
����

�

���

+ (−1)� �
1

ψ(�, �, �, �)
���

�

�

���

 

= � − �
1

∅(�, �, �, �)
����

�

���

+ (−1)��� �
1

ψ(�, �, �, �)
���

�

�

���

 

 

Then 

� ∅(�, �, �, �)|��|

�

���

+ � ψ(�, �, �, �)|��|

�

���

 

= � ∅(�, �, �, �) �
1

∅(�, �, �, �)
���

�

���

+ � ψ(�, �, �, �) �
1

ψ(�, �, �, �)
���

�

���

 

= � ��

�

���

+ � �� = 1 − �� ≤ 1 .

�

���

 

 

Therefore ��(�) ∈  ������(�, �, �). 

Conversely, if  ��(�) ∈  ������(�, �, �). Then 

Set �� =  ∅(�, �, �, �)|��| , (� = 2,3, … ) and �� = ψ(�, �, �, �)|��|,

(� = 1,2, … ) and �� = 1 − � ��

�

���

+ � ��

�

���

 
 

The required representation is obtained as 

 ��(�) = � − �|��|��

�

���

+ (−1)� �  |��|�
�

 

�

���

 

= � − �
1

∅(�, �, �, �)
����

�

���

+ (−1)� �  
1

ψ(�, �, �, �)
���

�
 

�

���

 

= � − �[� − ℎ�(�)]��

�

���

+ �  [� − ���(�)]�� 

�

���

 

= �1 − � ��

�

���

− � ��

�

���

� � + � ℎ�(�)

�

���

�� + � ���(�) �� 

�

���

= �(��ℎ� + �����)

�

���

 

 

□ 

2.3. Convex Combination 
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Here, we show that the class ��(�, �, �) is closed under convex combination of its members. 

Let the function ��,�(�)  be defined, for � = 1,2, … , �  by 

 ��,�(�) = � − ����,���
�

�

���

+ (−1)� �  ���,���
�

  

�

���

 (13) 

Theorem 4. Let the functions ��,�(�), defined by Equation (13) be in the class ��(�, �, �), for every � =

1,2, … , �. Then the functions ��(�) defined by 

��(�) = � ��

�

���

 ��,�(�), 0 ≤ �� ≤ 1  

are also in the class ��(�, �, �), �ℎ��� ∑ �� = 1.�
���  

Proof. According to the definition of ��(�), we can write 

��(�) = � − � �� ��

�

���

���,��� ��

�

���

+ (−1)� � �� ��

�

���

 ���,��� �
�

  

�

���

  

Further, since ��,�(�)  are in ��(�, �, �)  for every  � = 1,2, … , � , then by Theorem (2.1.2), we 

obtain 

� ∅(�, �, �, �) �� ��

�

���

���,���

�

���

+ � ψ(�, �, �, �) �� ��

�

���

 ���,���

�

���

 

= � ��

�

���

�� ∅(�, �, �, �)���,��

�

���

+ � ψ(�, �, �, �)���,��

�

���

�  ≤ � ��

�

���

= 1, 

 

which is required coefficient condition.  

2.4. Convolution (Hadamard Product) Property 

Here, we show that the class ��(�, �, �) is closed under convolution. 

The convolution of two harmonic functions 

��(�) = � − �|��|��

�

���

+ (−1)� �  |��|�
�

,

�

���

 (14) 

and 

��(�) = � − �|��|��

�

���

+ (−1)� �  |��|�
�

  

�

���

 (15) 

is defined as 

(�� ∗ ��)(�) = ��(�) ∗ ��(�)  

= � − �|����|��

�

���

+ (−1)� �  |����|�
�

  

�

���

 
(16) 

Using Equations (12)–(14), we prove the following theorem. 

Theorem 5. For 0 ≤ � ≤ � < 1, � ∈ ℕ�, let �� ∈ ��(�, �, �) and �� ∈ ��(�, �, �). Then 

�� ∗ �� ∈ ��(�, �, �) ⊂ ��(�, �, �).  

Proof. Let 
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��(�) = � − �|��|��

�

���

+ (−1)� �  |��|�
�

�

���

  

be in the class ��(�, �, �) and 

��(�) = � − �|��|��

�

���

+ (−1)� �  |��|�
�

,

�

���

  

be in ��(�, �, �). 

Then the convolution �� ∗ �� is given by Equation (16), we want to show that the coefficients of 

�� ∗ �� satisfy the required condition given in Theorem 1. 

For �� ∈ ��(�, �, �), we note that |��| < 1 and |��| < 1. Now consider convolution functions 

�� ∗ �� as follows: 

� ∅(�, �, �, �)|��||��|

�

���

+ � ψ(�, �, �, �)|��||��|

�

���

 

≤ � ∅(�, �, �, �)|��|

�

���

+ � ψ(�, �, �, �)|��|

�

���

≤ 1. 

 

Since 0 ≤ � ≤ � < 1 and �� ∈  ��(�, �, �). Therefore �� ∗ �� ∈ ��(�, �, �) ⊂ ��(�, �, �). □ 

2.5. Integral Operator 

Here, we examine the closure property of the class ��(�, �, �) under the generalized Bernardi-

Libera-Livingston integral operator (see References [10,11]) ℒ�(�) which is defined by, 

ℒ�(�) =
� + 1

��
� �����(�)��, � > −1.

�

�

 (17) 

Theorem 6. Let ��(�) ∈ ��(�, �, �). Then 

ℒ�(��(�)) ∈ ��(�, �, �)  

Proof. From definition of ℒ�(��(�)) given by Equation (17), it follows that 

ℒ�(��(�)) =
� + 1

��
� ���� �� − �|��|��

�

���

+ (−1)� �  |��|�
�

�

���

� ��
�

�

 

= � − �
� + 1

� + �
|��|��

�

���

+ (−1)� �
� + 1

� + �
|��|��

�

���

 

= � − � ����

�

���

+ (−1)��� � ����

�

���

 

 

where 

�� =
� + 1

� + �
|��|, and 

�� =
� + 1

� + �
|��| 

 

Hence 

� ∅(�, �, �, �)
� + 1

� + �
|��|

�

���

+ � ψ(�, �, �, �)

�

���

� + 1

� + �
|��|  



Mathematics 2018, 6, 312 9 of 9 

 

≤ � ∅(�, �, �, �)|��|

�

���

+ � ψ(�, �, �, �)

�

���

|��| ≤ 1. 

by Theorem 2. 

Therefore, we have ℒ�(��(�)) ∈ ��(�, �, �).   
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