

Article

On Approximation by Linear Combinations of Modified Summation Operators of Integral Type in Orlicz Spaces

Ling-Xiong Han ¹ and Feng Qi ^{2,3,*}

- College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China; hlx2980@163.com
- ² Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China
- ³ School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
- * Correspondence: qifeng618@gmail.com

Received: 11 October 2018; Accepted: 6 December 2018; Published: 21 December 2018

Abstract: In this paper, the authors introduce the Orlicz spaces corresponding to the Young function and, by virtue of the equivalent theorem between the modified *K*-functional and modulus of smoothness, establish the direct, inverse, and equivalent theorems for linear combinations of modified summation operators of integral type in the Orlicz spaces.

Keywords: approximation; linear combination; direct theorem; inverse theorem; equivalent theorem; Orlicz space; modified summation operators of integral type; *K*-functional; modulus

MSC: 41A17; 41A27; 41A35

1. Introduction and Main Results

Throughout this paper, we use *C* to denote an absolute constant independent of anything, which may be not necessarily the same in different cases.

There are many types of integral operators (see, for example, [1–7] and closely related references therein). In the paper [8], Ueki provided a characterization for the boundedness and compactness of the Li-Stević type integral operators

$$T_{\varphi}^{g}f(z) = \int_{0}^{z} f(\varphi(\xi))g(\xi) d\xi$$

from the weighted Bergman space $L_a^p(dA_\alpha)$ to the β -Zygmund space Z_β . Later, Li and Ma [9] investigated the boundedness and compactness of products of composition operators and integral type operators

$$(C_{\varphi}I_{g}f)(z) = \int_{0}^{\varphi(z)} f'(\xi)g(\xi) \,\mathrm{d}\,\xi$$

from Zygmund-type spaces to Q_k spaces. Recently, the equivalent characterizations for the boundedness and compactness of several integral type operators

$$V_{\Phi}^{h}f(z) = \int_{0}^{z} f'(\Phi(t))h'(t) dt$$

Mathematics 2019, 7, 6 2 of 10

from F(p,q,s) space to α-Bloch-Orlicz and β-Zygmund-Orlicz spaces were developed in [10]. Gupta and Yadav [11] estimated the approximation by complex summation integral type operator

$$M_n(f,z) = (n+1) \sum_{k=1}^n p_{n,k}(z) \int_0^1 f(t) p_{n,k-1}(t) dt + f(0) p_{n,0}(z)$$

in compact disks, where $p_{n,k}(z) = \binom{n}{k} z^k (1-z)^{n-k}$. In [8–11], some approximating properties of integral type operators in complex spaces were established. Vural, Altin, and Yüksel [12] provided weighted approximation and obtained a rate of convergence of Schurer's generalization of the q-Hybrid summation operators of integral type

$$M_{n,p,q}^{(\alpha,\beta)}(f,x) = [n+p-1]_q \sum_{k=1}^{\infty} S_{n,p,k}^q(x) \int_0^{\infty} P_{n,p,k-1}^q(t) f\left(\frac{[n+p]_q t + \alpha}{[n+p]_q + \beta}\right) d_q(t) + e^{-[n+p]_q x} f\left(\frac{\alpha}{[n+p]_q + \beta}\right),$$

where

$$S_{n,p,k}^q(x) = ([n+p]_q x)^k \frac{e^{-[n+p]_q x}}{[k]_q!} \quad \text{and} \quad P_{n,p,k}^q = \binom{n+p+k-1}{k}_q q^{k(k+1)} \frac{x^k}{(1+x)_q^{n+p+k}}.$$

In [13], Govil and Gupta considered the simultaneous approximation for the Stancu-type generalization of certain summation operators of integral type

$$G_n^{\alpha,\beta}(f,x) = \sum_{k=1}^{\infty} p_{n,k}(x) \int_0^{\infty} b_{n,k-1}(t) f\left(\frac{nt+\alpha}{n+\beta}\right) dt + (1+x)^{-n} f\left(\frac{\alpha}{n+\beta}\right)$$

by hypergeometric series. Srivastava and Gupta [14] introduced and investigated a new sequence of linear positive operators

$$G_{n,c}(f,x) = n \sum_{k=1}^{\infty} \int_{0}^{\infty} p_{n,k}(x;c) p_{n+c,k-1}(t;c) f(t) dt + \int_{0}^{\infty} p_{n,0}(x;c) p_{n,0}(t;c) \delta(t) f(t) dt,$$

which included some well-known operators as its special cases and obtained an estimate on the rate of convergence by means of the decomposition technique for functions of bounded variation. In [15], Gupta, Mohapatra, and Finta studied the mixed summation operators of integral type

$$S_n(f,x) = \sum_{v=1}^{\infty} s_{n,v}(x) \int_0^{\infty} b_{n,v-1}(t) f(t) dt + e^{-nx} f(0)$$

and obtained the rate of point-wise convergence, where

$$s_{n,v}(x) = e^{-nx} \frac{(nx)^v}{v!}$$
 and $b_{n,v}(t) = \frac{1}{B(n,v+1)} t^v (1+t)^{-n-v-1}$.

In [12–15], some approximating properties of integral type operators were discussed in $C[0,\infty)$, which is a special case of the Orlicz space. For $f \in L_{\Phi}^*[0,\infty)$, the modified summation operators of integral type $B_n(f,x)$ are defined in [16] as

$$B_n(f,x) = \frac{1}{n+1} \sum_{k=1}^{\infty} b_{n,k}(x) \int_0^{\infty} b_{n,k}(t) f(t) \, \mathrm{d} \, t, \quad x \in [0,\infty), \tag{1}$$

Mathematics 2019, 7, 6 3 of 10

where $b_{n,k}(x) = \frac{(n+k)!}{(k-1)!n!} \frac{x^{k-1}}{(1+x)^{n+k+1}}$ for $k, n \ge 1$. Recently, Han and Wu [16] obtained the following direct, inverse, and equivalent theorems of modified summation operators of integral type in Orlicz spaces.

Theorem 1 (Direct theorem [16]). Let $f \in L_{\Phi}^*[0,\infty)$, $\varphi^2(x) = x(1+x)$, and $\Psi \in \Delta_2$. Then

$$||B_n(f) - f||_{\Phi} \le C \left[\omega_{2,\varphi} \left(f, \frac{1}{\sqrt{n}} \right)_{\Phi} + \omega_1 \left(f, \frac{1}{n} \right)_{\Phi} + \frac{||f||_{\Phi}}{n} \right].$$

Theorem 2 (Inverse theorem [16]). Let $f \in L_{\Phi}^*[0,\infty)$, $0 \le \alpha < 2$, and $||B_n(f) - f||_{\Phi} = O(n^{-\alpha/2})$. Then

$$\omega_{2,\varphi}(f,t)_{\Phi} = O(t^{\alpha})$$
 and $\omega_1(f,t)_{\Phi} = O(t^{\alpha/2})$.

Theorem 3 (Equivalence theorem [16]). *Let* $f \in L_{\Phi}^*[0, \infty)$ *and* $0 \le \alpha < 2$. *Then*

$$||B_n(f) - f||_{\Phi} = O(n^{-\alpha/2})$$
 if and only if $\omega_{2,\varphi}(f,t)_{\Phi} = O(t^{\alpha})$ and $\omega_1(f,t)_{\Phi} = O(t^{\alpha/2})$.

In recent years, since the Orlicz spaces are more general than the classical L_p spaces, which is composed of measurable functions f(x) such that $|f(x)|^p$ are integrable, there is growing interest in problems of approximation in Orlicz spaces.

For smoothly proceeding, we recall from [17] some definitions and related results.

A continuous convex function $\Phi(t)$ on $[0, \infty)$ is called a Young function if it satisfies

$$\lim_{t\to 0^+} \frac{\Phi(t)}{t} = 0 \quad \text{and} \quad \lim_{t\to \infty} \frac{\Phi(t)}{t} = \infty.$$

For a given Young function $\Phi(t)$, its complementary Young function is denoted by $\Psi(t)$.

It is clear that the convexity of $\Phi(t)$ can lead to $\Phi(\alpha t) \leq \alpha \Phi(t)$ for $\alpha \in [0,1]$. In particular, one has $\Phi(\alpha t) < \alpha \Phi(t)$ for $\alpha \in (0,1)$.

A Young function $\Phi(t)$ is said to satisfy the Δ_2 -condition, denoted by $\Phi \in \Delta_2$, if there exist $t_0 > 0$ and $C \ge 1$ such that $\Phi(2t) \le C\Phi(t)$ for $t \ge t_0$.

Let $\Phi(t)$ be a Young function. We define the Orlicz class $L_{\Phi}[0,\infty)$ as the collection of all Lebesgue measurable functions u(x) on $[0,\infty)$. Since the integral

$$\rho(u,\Phi) = \int_0^\infty \Phi(|u(x)|) \, \mathrm{d} x$$

is finite, we define the Orlicz space $L_{\Phi}^*[0,\infty)$ as the linear hull of $L_{\Phi}[0,\infty)$ under the Luxemburg norm

$$||u||_{(\Phi)} = \inf_{\lambda > 0} \left\{ \lambda : \rho\left(\frac{u}{\lambda}, \Phi\right) \le 1 \right\}.$$

The Orlicz norm, which is equivalent to the Luxemburg norm on $L_{\Phi}^*[0,\infty)$, is given by

$$||u||_{\Phi} = \sup_{\rho(v,\Psi) \le 1} \left| \int_0^\infty u(x)v(x) \, \mathrm{d} x \right|$$

and satisfies

$$||u||_{(\Phi)} \le ||u||_{\Phi} \le 2||u||_{(\Phi)}.$$
 (2)

For $f \in L_{\Phi}^*[0,\infty)$, the weighted *K*-functional $K_{r,\varphi}(f,t^r)$, the modified weighted *K*-functional $\overline{K}_{r,\varphi}(f,t^r)$, and the weighted modulus of smoothness $\omega_{r,\varphi}(f,t)$ are given, respectively, by

$$K_{r,\varphi}(f,t^r)_{\Phi} = \inf_{g} \{ \|f - g\|_{\Phi} + t^r \|\varphi^r g^{(r)}\|_{\Phi} : g^{(r-1)} \in AC_{loc} \},$$

Mathematics 2019, 7, 6 4 of 10

$$\overline{K}_{r,\varphi}(f,t^r)_{\Phi} = \inf_{g} \{ \|f - g\|_{\Phi} + t^r \|\varphi^r g^{(r)}\|_{\Phi} + t^{2r} \|g^{(r)}\|_{\Phi} : g^{(r-1)} \in AC_{loc} \},$$

and

$$\omega_{r,\varphi}(f,t)_{\Phi} = \sup_{0 < h \le t} \|\Delta_{h\varphi}^r f\|_{\Phi},$$

where $\varphi(x) = \sqrt{x}$, $\varphi(x) = \sqrt{x(1+x)}$, or $\varphi(x) = x$, and $g^{(r-1)} \in AC_{loc}$ means that g is r-1 times differentiable and $g^{(r-1)}$ is absolutely continuous in every closed finite interval $[c,d] \subseteq [0,\infty)$.

Between the weighted modulus of smoothness and the modified weighted *K*-functional, there exists the following equivalent theorem.

Theorem 4 ([16]). Let $f \in L_{\Phi}^*[0, \infty)$. Then there exist some constants C and t_0 such that

$$\frac{\omega_{r,\varphi}(f,t)_{\Phi}}{C} \le \overline{K}_{r,\varphi}(f,t^r)_{\Phi} \le C\omega_{r,\varphi}(f,t)_{\Phi}, \quad 0 < t \le t_0.$$
(3)

Between the weighted modulus of smoothness and the weighted *K*-functional, there exists the following equivalent theorem.

Theorem 5 ([18]). Let $f \in L_{\Phi}^*[0, \infty)$. Then there are some constants C and t_0 such that

$$\frac{\omega_{r,\varphi}(f,t)_{\Phi}}{C} \le K_{r,\varphi}(f,t^r)_{\Phi} \le C\omega_{r,\varphi}(f,t)_{\Phi}, \quad 0 < t \le t_0.$$
(4)

Currently, there are few results about linear combinations of modified summation operators of integral type $B_n(f,x)$. In this article, we investigate the approximation of linear combinations of modified summation operators of integral type $B_n(f,x)$ in Orlicz spaces $L_{\Phi}^*[0,\infty)$. The linear combinations of modified summation operators of integral type $B_n(f,x)$ are defined as

$$L_{n,r}(f,x) = \sum_{i=0}^{2r-1} c_i(n) B_{n_i}(f,x),$$

where

$$n \le n_0 \le n_1 < \dots < n_{2r-1} \le C_n, \quad \sum_{i=0}^{2r-1} c_i(n) = 1, \quad \sum_{i=0}^{2r-1} |c_i(n)| < C,$$

$$\sum_{i=0}^{2r-1} c_i(n) B_{n_i}((t-x)^k, x) = 0, \quad k = 0, 1, 2, \dots, 2r - 1.$$
(5)

Our main results in this paper can be stated as the following three theorems.

Theorem 6 (Direct theorem). Let $f \in L^*_{\Phi}[0,\infty)$, $n \in \mathbb{N}$, $\Psi \in \Delta_2$, and $\varphi(x) = \sqrt{x(1+x)}$. Then

$$||L_{n,r}(f)-f||_{\Phi} \leq C\omega_{2r,\varphi}\left(f,\frac{1}{\sqrt{n}}\right)_{\Phi}$$

Theorem 7 (Inverse theorem). Let $f \in L_{\Phi}^*[0,\infty)$, $n \ge 2r$, and $\varphi^2(x) = x(1+x)$. Then

$$\omega_{2r,\varphi}\left(f,\frac{1}{n^{r/2}}\right)_{\Phi} \leq \frac{C}{n^r} \sum_{k=1}^n k^{r-1} \|L_{n,r}(f) - f\|_{\Phi}.$$

Theorem 8 (Equivalent theorem). Let $f \in L_{\Phi}^*[0,\infty)$, $n \ge 2r$, $\varphi^2(x) = x(1+x)$, and $\Psi \in \Delta_2$. Then

$$\|L_{n,r}(f)-f\|_{\Phi}=O\Big(\psi\Big(rac{1}{n^{1/2}}\Big)\Big),\quad n o\infty\quad \text{if and only if}\quad \omega_{2r,\phi}(f,t)_{\Phi}=O(\psi(t)),\quad t o 0^+.$$

Mathematics 2019, 7, 6 5 of 10

These main results improve some conclusions in [19] and increase the approximating speed of corresponding operators.

2. Proof of the Direct Theorem

In order to prove the direct theorem, we need several lemmas below.

Lemma 1. The modified summation operator of integral type $B_n(f,x)$ defined in Equation (1) satisfies

$$B_n(1,x) = 1$$
 and $B_n((t-x)^{2r},x) \le C \left\lceil \frac{\delta_n^2(x)}{n} \right\rceil^r$,

where $\delta_n^2(x) = \max\{\varphi^2(x), \frac{1}{n}\}, \varphi(x) = \sqrt{x(1+x)}$, $r \in \mathbb{N}$, and C is a positive constant.

Proof. This follows from simple calculation. \Box

Lemma 2 ([19]). If u locates between x and t, then

$$\frac{(t-u)^{2r-1}}{\varphi^{2r}(u)} \le \frac{|t-x|^{2r-1}}{\varphi^{2(r-1)}(x)} \frac{1}{x} \left(\frac{1}{1+x} + \frac{1}{1+t} \right).$$

Lemma 3. Let $f \in L_{\Phi}^*[0, \infty)$. Then

$$||L_{n,r}(f)||_{\Phi} \leq C||f||_{\Phi}.$$

Proof. By Lemma 3.2 in [16], we have

$$||B_n(f)||_{\Phi} \leq 2||f||_{\Phi}.$$

Using Equation (5), we obtain

$$||L_{n,r}(f)||_{\Phi} = \left|\left|\sum_{i=0}^{2r-1} c_i(n)B_{n_i}(f)\right|\right|_{\Phi} \leq \sum_{i=0}^{2r-1} |c_i(n)|||B_{n_i}(f)||_{\Phi} \leq C||f||_{\Phi}.$$

The proof of Lemma 3 is complete. \Box

Lemma 4 ([18]). For $f \in L_{\Phi}^*[0, \infty)$ and $\Psi \in \Delta_2$, we have

$$\|\theta(f)\|_{\Phi} \leq C\|f\|_{\Phi}$$

where

$$\theta(f, x) = \sup_{\substack{0 \le t < \infty \\ t \ne x}} \frac{1}{t - x} \int_{x}^{t} f(u) \, \mathrm{d} u$$

is the Hardy-Littlewood function of f(x), and C is a positive constant.

We are now in a position to prove Theorem 6.

Proof of Theorem 6. Let

$$U = W_{\Phi}^{2r} \{ g : g^{(2r-1)} \in AC_{loc}, \varphi^{2r} g^{(2r)} \in L_{\Phi}^*[0, \infty) \}.$$

Mathematics 2019, 7, 6 6 of 10

Taylor's formula with integral remainder of $g \in U$ reads

$$g(t) = \sum_{i=0}^{2r-1} \frac{g^{(i)}(x)}{i!} (t-x)^i + R_{2r}(g,t,x),$$

where

$$R_{2r}(g,t,x) = \frac{1}{(2r-1)!} \int_x^t (t-u)^{2r-1} g^{(2r)}(u) \, \mathrm{d} u, \quad x \in [0,\infty).$$

From Equation (5), it follows that $L_{n,r}(g,x) - g(x) = L_{n,r}(R_{2r}(g,t,x),x)$ and

$$||L_{n,r}(g) - g||_{\Phi} = ||L_{n,r}(R_{2r}(g,\cdot,x),x)||_{\Phi}.$$
(6)

Now we estimate $|R_{2r}(g,t,x)|$. As $x \in [\frac{1}{n},\infty)$, we have $\delta_n^2(x) = \varphi^2(x)$. Applying Lemma 2 leads to

$$|R_{2r}(g,t,x)| \leq \frac{1}{(2r-1)!} \left| \int_{x}^{t} \frac{(t-u)^{2r-1}}{\varphi^{2r}(u)} \delta_{n}^{2r}(u) g^{(2r)}(u) du \right|$$

$$\leq \frac{1}{(2r-1)!} \frac{|t-x|^{2r-1}}{\varphi^{2r-2}(x)} \frac{1}{x} \left(\frac{1}{1+x} + \frac{1}{1+t} \right) \left| \int_{x}^{t} \delta_{n}^{2r}(u) g^{(2r)}(u) du \right|$$

$$\leq \frac{1}{(2r-1)!} \frac{(t-x)^{2r}}{\varphi^{2r-2}(x)} \left[\frac{1}{x(1+x)} + \frac{1}{x(1+t)} \right] \left| \theta(\delta_{n}^{2r} g^{(2r)}, x) \right|$$

$$\triangleq I_{1} + I_{2}.$$

From Lemma 1, we conclude that

$$B_{n}(I_{1},x) = \frac{1}{n+1} \sum_{k=1}^{\infty} b_{n,k}(x) \int_{0}^{\infty} b_{n,k}(t) \frac{1}{(2r-1)!} \frac{(t-x)^{2r}}{\varphi^{2r}(x)} \left| \theta(\delta_{n}^{2r} g^{(2r)}, x) \right| dt$$

$$= \frac{\left| \theta(\delta_{n}^{2r} g^{(2r)}, x) \middle| \varphi^{-2r}(x)}{(2r-1)!} B_{n}((t-x)^{2r}, x) \le \frac{C}{n^{r}} \left| \theta(\delta_{n}^{2r} g^{(2r)}, x) \middle| \right|$$
(7)

and

$$B_{n}(I_{2},x) = \frac{\left|\theta(\delta_{n}^{2r}g^{(2r)},x)\right|}{n+1} \sum_{k=1}^{\infty} b_{n,k}(x) \int_{0}^{\infty} b_{n,k}(t) \frac{1}{(2r-1)!} \frac{(t-x)^{2r}}{\varphi^{2r-2}(x)} \frac{1}{x(1+t)} dt$$

$$= \frac{\left|\theta(\delta_{n}^{2r}g^{(2r)},x)\right| \varphi^{-2r}(x)}{(2r-1)!(n+1)} \sum_{k=1}^{\infty} \left(\frac{n+1}{n+k+1}\right)^{2} b_{n+1,k}(x) \int_{0}^{\infty} b_{n+1,k}(t) (t-x)^{2r} dt \qquad (8)$$

$$\leq \frac{C}{n^{r}} \left|\theta(\delta_{n}^{2r}g^{(2r)},x)\right|.$$

Hence, by Inequalities (7) and (8) and Lemma 4, it follows that

$$\|B_n(R_{2r}(g,\cdot,x),x)\|_{\Phi[\frac{1}{n},\infty)} \le \frac{C}{n^r} \|\theta(\delta_n^{2r}g^{(2r)},x)\|_{\Phi[\frac{1}{n},\infty)} \le \frac{C}{n^r} \|\delta_n^{2r}g^{(2r)}\|_{\Phi[\frac{1}{n},\infty)}. \tag{9}$$

For $x \in [0, \frac{1}{n})$ and $\delta_n^2(x) = \frac{1}{n}$, we have

$$|R_{2r}(g,t,x)| = \frac{1}{(2r-1)!} \left| \int_{x}^{t} (t-u)^{2r-1} g^{(2r)}(u) \, \mathrm{d} u \right|$$

$$= \frac{1}{(2r-1)!} \left| \int_{x}^{t} \frac{(t-u)^{2r-1}}{1/n^{r}} \delta_{n}^{2r}(u) g^{(2r)}(u) \, \mathrm{d} u \right| \leq \frac{1}{(2r-1)!} (x-t)^{2r} n^{r} \left| \theta(\delta_{n}^{2r} g^{(2r)}, x) \right|.$$

Mathematics 2019, 7, 6 7 of 10

Using Lemmas 1 and 4 arrives at

$$B_n(|R_{2r}(g,t,x)|,x) \leq \frac{n^r}{(2r-1)!} \frac{C}{n^r} \delta_n^{2r}(x) |\theta(\delta_n^{2r} g^{(2r)},x)| \leq \frac{C}{n^r} |\theta(\delta_n^{2r} g^{(2r)},x)|$$

and

$$\|B_n(R_{2r}(g,\cdot,x),x)\|_{\Phi[0,\frac{1}{n})} \leq \frac{C}{n^r} \|\theta(\delta_n^{2r}g^{(2r)})\|_{\Phi[0,\frac{1}{n})} \leq \frac{C}{n^r} \|\delta_n^{2r}g^{(2r)}\|_{\Phi[0,\frac{1}{n})}.$$

Combining this with Equation (9) leads to

$$\|B_n(R_{2r}(g,\cdot,x),x)\|_{\Phi[0,\infty)} \le \frac{C}{n^r} \|\delta_n^{2r} g^{(2r)}\|_{\Phi[0,\infty)}$$

and, consequently,

$$\begin{aligned} \|L_{n,r}(R_{2r}(g,\cdot,x),x)\|_{\Phi} &\leq \sum_{i=0}^{2r-1} |c_{i}| \|B_{n_{i}}(R_{2r}(g,\cdot,x),x)\|_{\Phi} \\ &\leq \sum_{i=0}^{2r-1} |c_{i}| \frac{C}{n_{i}^{r}} \|\delta_{n_{i}}^{2r}g^{(2r)}\|_{\Phi} \leq \sum_{i=0}^{2r-1} |c_{i}| \frac{C}{n^{r}} \|\delta_{n}^{2r}g^{(2r)}\|_{\Phi} \leq \frac{C}{n^{r}} \|\delta_{n}^{2r}g^{(2r)}\|_{\Phi}. \end{aligned}$$

Then, applying the above inequality, Inequalities (3) and (6), and Lemma 3, we obtain

$$||L_{n,r}(f) - f||_{\Phi} \le ||L_{n,r}(f - g) - (f - g)||_{\Phi} + ||L_{n,r}(g) - g||_{\Phi}$$

$$\le C||f - g||_{\Phi} + \frac{C}{n^r} ||\delta_n^{2r} g^{(2r)}||_{\Phi} \le C\omega_{2r,\varphi} \left(f, \frac{1}{\sqrt{n}}\right)_{\Phi}.$$

The proof of the direct theorem is complete. \Box

3. Proofs of the Inverse and Equivalent Theorems

For proving Theorems 7 and 8, we need the following lemmas.

Lemma 5. *If* $f \in L_{\Phi}^*[0,\infty)$ *and* $n \geq 2r$, then

$$\|\varphi^{2r}L_{n,r}^{(2r)}(f)\|_{\Phi} \leq Cn^r\|f\|_{\Phi}.$$

Proof. Since

$$B_{n}^{(2r)}(f,x) = \frac{1}{n+1} \sum_{k=1}^{\infty} b_{n,k}^{(2r)}(x) \int_{0}^{\infty} b_{n,k}(t) f(t) dt$$

$$= \frac{1}{n+1} \sum_{k=1}^{\infty} \frac{(n+k)!}{(k-1)! n!} \sum_{i=0}^{2r} {2r \choose i} (-1)^{i} D^{2r-i} (x^{k-1}) D^{i} \left(\frac{1}{(1+x)^{n+k}}\right) \int_{0}^{\infty} b_{n,k}(t) f(t) dt$$

$$= \prod_{j=2}^{2r} (n+j) \sum_{k=1}^{\infty} b_{n+2r,k}(x) \int_{0}^{\infty} \sum_{i=0}^{2r} {2r \choose i} (-1)^{i} b_{n,k+2r-i}(t) f(t) dt$$

$$\leq \prod_{i=2}^{2r} (n+j) \sum_{k=1}^{\infty} b_{n+2r,k}(x) \int_{0}^{\infty} \sum_{i=0}^{2r} {2r \choose i} b_{n,k+2r-i}(t) f(t) dt,$$

$$(10)$$

we have

$$\varphi^{2r}(x)B_n^{(2r)}(f,x) \leq \prod_{j=2}^{2r}(n+j)\sum_{k=1}^{\infty}b_{n+2r,k}\varphi^{2r}(x)\int_0^{\infty}\sum_{i=0}^{2r}\binom{2r}{i}b_{n,k+2r-i}(t)f(t)\,\mathrm{d}\,t$$

Mathematics 2019, 7, 6 8 of 10

$$\leq \prod_{j=2}^{2r} (n+j) \sum_{k=1}^{\infty} b_{n,k+r}(x) \frac{(k+r-1)!n!}{(n+r+k)!} \frac{(n+2r+k)!}{(k-1)!(n+2r)!} \int_{0}^{\infty} \sum_{i=0}^{2r} {2r \choose i} b_{n,k+2r-i}(t) f(t) dt
\leq \frac{Cn^{r}}{n+1} \sum_{i=0}^{2r} {2r \choose i} \sum_{k=1}^{\infty} b_{n,k+r}(x) \int_{0}^{\infty} b_{n,k+2r-i}(t) f(t) dt.$$

Therefore, by Jensen's inequality [20] and the inequality (2), we obtain

$$\begin{split} &\|\varphi^{2r}(x)B_{n}^{(2r)}(f)\|_{\Phi} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty} \Phi\left(\frac{1}{n+1}\sum_{i=0}^{2r}\binom{2r}{i}\sum_{k=1}^{\infty}b_{n,k+r}(x)\int_{0}^{\infty}b_{n,k+2r-i}(t)\frac{Cn^{r}|f(t)|}{\lambda}\,\mathrm{d}\,t\right)\,\mathrm{d}\,x \leq 1\right\} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty}\frac{1}{2^{2r}}\sum_{i=0}^{2r}\binom{2r}{i}\Phi\left(\frac{1}{n+1}\sum_{k=1}^{\infty}b_{n,k+r}(x)\int_{0}^{\infty}b_{n,k+2r-i}(t)\frac{Cn^{r}|f(t)|}{\lambda}\,\mathrm{d}\,t\right)\,\mathrm{d}\,x \leq 1\right\} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty}\frac{1}{2^{2r}}\sum_{i=0}^{2r}\binom{2r}{i}\Phi\left(\frac{1}{n+1}\sum_{k=1}^{\infty}b_{n,k}(x)\int_{0}^{\infty}b_{n,k+r-i}(t)\frac{Cn^{r}|f(t)|}{\lambda}\,\mathrm{d}\,t\right)\,\mathrm{d}\,x \leq 1\right\} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty}\frac{1}{2^{2r}}\sum_{i=0}^{2r}\binom{2r}{i}\frac{1}{n+1}\sum_{k=1}^{\infty}b_{n,k}(x)\int_{0}^{\infty}b_{n,k+r-i}(t)\Phi\left(\frac{Cn^{r}|f(t)|}{\lambda}\,\mathrm{d}\,t\right)\,\mathrm{d}\,t\,\mathrm{d}\,x \leq 1\right\} \\ &\leq Cn^{r}\|f\|_{\Phi_{r}} \end{split}$$

where $b_{n,k+r-i}(t)=0$ for $n+r-i\leq 0$. Combining this with Equation (5) leads to

$$\|\varphi^{2r}(x)L_{n,r}^{(2r)}(f)\|_{\Phi} \leq \sum_{i=0}^{2r-1}|c_i(n)|\|\varphi^{2r}(x)B_{n_i}^{(2r)}(f)\|_{\Phi} \leq \sum_{i=0}^{2r-1}|c_i(n)|Cn_i^r\|f\|_{\Phi} \leq Cn^r\|f\|_{\Phi}.$$

Lemma 5 is thus proved. \Box

Lemma 6. Let $f \in L_{\Phi}^*[0,\infty)$ and $n \geq 2r$. Then

$$\|\varphi^{2r}L_{n,r}^{(2r)}(f)\|_{\Phi} \le C\|\varphi^{2r}f^{(2r)}\|_{\Phi}.$$

Proof. Integrating by parts 2r times in Equation (10) gives

$$\begin{split} B_n^{(2r)}(f,x) &= \frac{1}{n+1} \prod_{j=1}^{2r} (n+j) \sum_{k=1}^\infty b_{n+2r,k}(x) \int_0^\infty \sum_{i=0}^{2r} \binom{2r}{i} (-1)^i b_{n,k+2r-i}(t) f(t) \, \mathrm{d} \, t \\ &= \frac{(n+1)(n+2) \cdots (n+2r)}{n(n-1) \cdots (n-2r+1)} \frac{1}{n+1} \sum_{k=1}^\infty b_{n+2r,k}(x) \int_0^\infty b_{n-2r,k+2r}^{(2r)}(t) f(t) \, \mathrm{d} \, t \\ &= \frac{(n+2r)!(n-2r)!}{(n!)^2} \frac{1}{n+1} \sum_{k=1}^\infty b_{n+2r,k}(x) \int_0^\infty b_{n-2r,k+2r}(t) f^{(2r)}(t) \, \mathrm{d} \, t. \end{split}$$

Accordingly,

$$\begin{split} \varphi^{2r}(x)B_{n}^{(2r)}(f,x) &= \frac{(n+2r)!(n-2r)!}{(n!)^{2}} \frac{1}{n+1} \sum_{k=1}^{\infty} b_{n+2r,k}(x) \varphi^{2r}(x) \int_{0}^{\infty} b_{n-2r,k+2r}(t) \varphi^{-2r}(t) \varphi^{2r}(t) f^{(2r)}(t) dt \\ &\leq \frac{C}{n+1} \sum_{k=1}^{\infty} b_{n-2r+2,k+r}(x) \int_{0}^{\infty} b_{n,k+r}(t) \varphi^{2r}(t) f^{(2r)}(t) dt. \end{split}$$

Mathematics 2019, 7, 6 9 of 10

Employing Inequality (2) and Jensen's inequality [20] reveals

$$\begin{split} &\|\varphi^{2r}(x)B_{n}^{(2r)}(f)\|_{\Phi} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty} \Phi\left(\frac{C}{n+1} \sum_{k=1}^{\infty} b_{n-2r+2,k+r}(x) \int_{0}^{\infty} b_{n,k+r}(t) \frac{\varphi^{2r}(t)|f^{(2r)}(t)|}{\lambda} \, \mathrm{d}\,t\right) \, \mathrm{d}\,x \leq 1\right\} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty} \Phi\left(\frac{C}{n+1} \sum_{k=1}^{\infty} b_{n-2r+2,k}(x) \int_{0}^{\infty} b_{n,k}(t) \frac{\varphi^{2r}(t)|f^{(2r)}(t)|}{\lambda} \, \mathrm{d}\,t\right) \, \mathrm{d}\,x \leq 1\right\} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \int_{0}^{\infty} \frac{\sum_{k=1}^{\infty} b_{n-2r+2,k}(x)}{n-2r+3} \int_{0}^{\infty} b_{n,k}(t) \Phi\left(\frac{\frac{C(n-2r+3)}{n+1} \varphi^{2r}(t)|f^{(2r)}(t)|}{\lambda}\right) \, \mathrm{d}\,t \, \mathrm{d}\,x \leq 1\right\} \\ &\leq 2\inf_{\lambda>0} \left\{\lambda: \frac{n+1}{n-2r+3} \int_{0}^{\infty} \Phi\left(\frac{\frac{C(n-2r+3)}{n+1} \varphi^{2r}(t)|f^{(2r)}(t)|}{\lambda}\right) \, \mathrm{d}\,t \leq 1\right\} \\ &\leq C\|\varphi^{2r}f^{(2r)}\|_{\Phi}. \end{split}$$

Applying the above inequality and Inequality (5) results in

$$\begin{aligned} \|\varphi^{2r}L_{n,r}^{(2r)}(f)\|_{\Phi} &= \left\|\sum_{i=0}^{2r-1} c_{i}(n)\varphi^{2r}B_{n_{i}}^{(2r)}(f)\right\|_{\Phi} \leq \sum_{i=0}^{2r-1} |c_{i}(n)| \|\varphi^{2r}B_{n_{i}}^{(2r)}(f)\|_{\Phi} \\ &\leq C \sum_{i=0}^{2r-1} |c_{i}(n)| \|\varphi^{2r}f^{(2r)}\|_{\Phi} \leq C \|\varphi^{2r}f^{(2r)}\|_{\Phi}. \end{aligned}$$

The lemma is proved. \Box

Proof of Theorem 7. From Lemmas 5 and 6 and [21] (Theorem 2.2), we obtain

$$K_{2r,\varphi}\left(f,\frac{1}{n^{r/2}}\right)_{\Phi} \leq \frac{C}{n^r} \sum_{k=1}^n k^{r-1} \|L_{n,r}(f) - f\|_{\Phi}.$$

Utilizing Inequality (4) concludes the inverse theorem. \Box

Proof of Theorem 8. Using the so-called order function $\psi(t) = t^{\alpha} |\ln t|^{\beta} e^{|\ln t|^{\gamma}}$ for $0 < \alpha < 1$, $\beta \in \mathbb{R}$, and $\gamma < 1$ and combining Theorems 7 and 8 conclude the equivalent theorem. \square

Author Contributions: The authors contributed equally to this work. All authors read and approved the final manuscript.

Funding: This work was partially supported by NSFC (Grant No. 11461052) and IMNSFC (Grant No. 2016MS0118).

Acknowledgments: The authors are thankful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Bardaro, C.; Mantellini, I. On convergence properties for a class of Kantorovich discrete operators. Numer. Funct. Anal. Optim. 2012, 33, 374–396. [CrossRef]
- 2. Costarelli, D.; Vinti, G. Convergence for a family of neural network operators in Orlicz spaces. *Math. Nachr.* **2017**, 290, 226–235. [CrossRef]
- 3. Costarelli, D.; Vinti, G. Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting. *Math. Slovaca* **2017**, *67*, 1469–1480. [CrossRef]

Mathematics 2019, 7, 6

4. Qi, F.; Lim, D.; Guo, B.-N. Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM* **2018**. [CrossRef]

- 5. Qi, F.; Niu, D.-W.; Guo, B.-N. Some identities for a sequence of unnamed polynomials connected with the Bell polynomials. *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM* **2018**, 112. [CrossRef]
- 6. Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. *J. Nonlinear Convex Anal.* **2018**, *19*, 407–415.
- 7. Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. *Carpathian J. Math.* **2018**, *34*, 459–466.
- 8. Ueki, S.-I. On the Li-Stević integral type operators from weighted Bergman spaces into *β*-Zygmund spaces. *Integral Equ. Oper. Theory* **2012**, *74*, 137–150. [CrossRef]
- 9. Li, H.; Ma, T. Products of composition operators and integral-type operators from Zygmund-type spaces to Q_K spaces. *Math. Notes* **2016**, *99*, 261–271. [CrossRef]
- 10. Liang, Y.-X. Integral-type operators from F(p,q,s) space to α -Bloch-Orlicz and β -Zygmund-Orlicz spaces. *Complex Anal. Oper. Theory* **2018**, *12*, 169–194. [CrossRef]
- 11. Gupta, V.; Yadav, R. Approximation by complex summation-integral type operator in compact disks. *Math. Slovaca* **2013**, *63*, 1025–1036. [CrossRef]
- 12. Vural, İ.; Altın, B.; Yüksel, İ. Schurer generalization of *q*-hybrid summation integral type operators. In *Computational Analysis*; Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2016; pp. 179–194. [CrossRef]
- 13. Govil, N.K.; Gupta, V. Simultaneous Approximation for Stancu-Type Generalization of Certain Summation-Integral-Type Operators. In *Analytic Number Theory, Approximation Theory, and Special Functions*; Springer: New York, NY, USA, 2014; pp. 531–548.
- 14. Srivastava, H.M.; Gupta, V. A certain family of summation-integral type operators. *Math. Comput. Model.* **2003**, *37*, 1307–1315. [CrossRef]
- 15. Gupta, V.; Mohapatra, R.N.; Finta, Z. A certain family of mixed summation-integral type operators. *Math. Comput. Model.* **2005**, 42, 181–191. [CrossRef]
- 16. Han, L.X.; Wu, G. Approximation by modified summation integral type operators in Orlicz spaces. *Math. Appl.* **2017**, *30*, 613–622.
- 17. Rao, M.M.; Ren, Z.D. *Theory of Orlicz Space*; Monographs and Textbooks in Pure and Applied Mathematics, 146; Marcel Dekker, Inc.: New York, NY, USA, 1991.
- 18. Han, L.X.; Wu, G. Strong converse inequality of Jacobi weighted simultaneous approximation for gamma operators in Orlicz spaces $L_{\Phi}^*(0,\infty)$. *Appl. Math. J. Chin. Univ. Ser. A* **2016**, *31*, 366–378. (In Chinese)
- 19. Ditzian, Z.; Totik, V. *Moduli of Smoothness*; Springer Series in Computational Mathematics, 9; Springer: New York, NY, USA, 1987, doi:10.1007/978-1-4612-4778-4.
- 20. Costarelli, D.; Spigler, R. How sharp is the Jensen inequality? J. Inequal. Appl. 2015, 2015, 69. [CrossRef]
- 21. van Wickeren, E. Weak-type inequalities for Kantorovitch polynomials and related operators. *Nederl. Akad. Wetensch. Indag. Math.* **1987**, *90*, 111–120. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).