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1. Introduction

The two variable Fubini polynomials are usually defined by means of the generating function
(see, e.g., [1,2])

ext

1− y(et − 1)
=

∞

∑
n=0

Fn(x, y)
tn

n!
. (1)

In particular, the case x = 0 in (1) gives the Fubini polynomials Fn(y) = Fn(0, y), and the case
x = 0 and y = 1 in (1) is called the ordered Bell numbers. Moreover, the case y = −1/2 in (1) gives the
Euler polynomials En(x) = Fn(x,−1/2).

Recently, some authors have been very interested in arithmetic properties for the Fubini
polynomials. For example, Kim et al. [2] showed that the Fubini polynomials can be expressed by

Fn(y) =
n

∑
k=0

S(n, k)k!yk (n ≥ 0), (2)

where S(n, k) are the Stirling numbers of the second kind. After that, Kim et al. [3] introduced the
ω-torsion Fubini polynomials defined by the generating function

ext

1− yω(et − 1)ω
=

∞

∑
n=0

Fn,ω(x, y)
tn

n!
, (3)

and used the fermionic p-adic integral on Zp described in [4] to give some similar symmetric identities
for the ω-torsion Fubini polynomials to the ones stated in [5–7]. In particular, they showed that for
non-negative integer n and positive integers ω1, ω2 such that ω1 ≡ 1 (mod 2) and ω2 ≡ 1 (mod 2),
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ω1−1

∑
i=0

ω2i

∑
j=0

(
ω2i

j

)
yω2i(−1)jFn,ω1(ω2i− j, y)

=
ω2−1

∑
i=0

ω1i

∑
j=0

(
ω1i

j

)
yω1i(−1)jFn,ω2(ω1i− j, y),

(4)

by virtue of which they obtained another expression of the Fubini polynomials

Fn(y) =
ω−1

∑
k=0

k

∑
i=0

(
k
i

)
(−1)iFn,ω(k− i, y)yk, (5)

where n, ω are non-negative integers with ω ≥ 1. On the other hand, Zhao and Chen [8] explored
the computational problem of the sums of products of the Fubini polynomials, and determined some
explicit formulas involving a sequence of numbers. Zhang and Lin [9] proved Zhao and Chen’s [8]
conjecture on the sequence of numbers, by virtue of which they established some congruences for the
Fubini polynomials. Chen and Chen [10] further studied the computational problem of the sums of
the products of the two variable Fubini polynomials, and discovered some similar formulas involving
a new type second order non-linear recursive polynomials to the ones of Zhao and Chen [8]. For the
latest developments in two variable higher-order Fubini polynomials, we refer the interested reader
to [11–13].

Motivated by the above authors, we perform a further investigation for the Fubini polynomials in
this paper. By making use of the generating function methods and Padé approximation techniques, we
establish some new identities for the two variable Fubini polynomials. Some special cases as well as
immediate consequences of the main results presented here are also considered.

2. Padé Approximants

It is clear that Padé approximants provide rational approximations to functions defined by a
power series expansion, and have played important roles in many fields of mathematics, physics
and engineering. We here recall the definition of Padé approximations to general series and their
expression in the case of the exponential function.

Let m, n be non-negative integers and let Pk be the set of all polynomials of degree ≤ k.
Considering a function f with a Taylor expansion

f (t) =
∞

∑
k=0

cktk (6)

in a neighborhood of the origin, a Padé form of type (m, n) is a pair (P, Q) such that

P =
m

∑
k=0

pktk ∈ Pm, Q =
n

∑
k=0

qktk ∈ Pn (Q 6≡ 0), (7)

and
Q f − P = O(tm+n+1) as t→ 0. (8)

It is well known that every Padé form of type (m, n) for f (t) always exists and satisfies the same
rational function, and the uniquely determined rational function P/Q is called the Padé approximant
of type (m, n) for f (t). For nonnegative integers m, n, the Padé approximant of type (m, n) for the
exponential function et is the unique rational function (see, e.g., [14–16])

Rm,n(t) =
Pm(t)
Qn(t)

(Pm ∈ Pm, Qn ∈ Pn, Qn(0) = 1), (9)



Mathematics 2019, 7, 115 3 of 11

with the property
et − Rm,n(t) = O(tm+n+1) as t→ 0. (10)

In fact, the explicit formulas for Pm and Qn can be expressed as follows (see, e.g., [17,18]):

Pm(t) =
m

∑
k=0

(m + n− k)! ·m!
(m + n)! · (m− k)!

· tk

k!
, (11)

Qn(t) =
n

∑
k=0

(m + n− k)! · n!
(m + n)! · (n− k)!

· (−t)k

k!
, (12)

and

Qn(t)et − Pm(t) = (−1)n tm+n+1

(m + n)!

∫ 1

0
xn(1− x)mextdx, (13)

where Pm(t) and Qn(t) is called the Padé numerator and denominator of type (m, n) for et, respectively.
We shall make use of the above properties of Padé approximants to establish some new identities

for the two variable Fubini polynomials in next section.

3. The Statement of Results

It is easily seen from (1) that

− yet
∞

∑
j=0

Fj(x, y)
tj

j!
+ (y + 1)

∞

∑
j=0

Fj(x, y)
tj

j!
= ext. (14)

If we denote the right hand side of (13) by Sm,n(t) then we have

et =
Pm(t) + Sm,n(t)

Qn(t)
. (15)

By applying (15) to the left hand side of (14), we discover

− yPm(t)
∞

∑
j=0

Fj(x, y)
tj

j!
− ySm,n(t)

∞

∑
j=0

Fj(x, y)
tj

j!

+ (y + 1)Qn(t)
∞

∑
j=0

Fj(x, y)
tj

j!
= Qn(t)ext.

(16)

We now apply the exponential series ext = ∑∞
k=0 xktk/k! to the right hand side of (16). With the

help of the Beta function, we get

Sm,n(t) = (−1)n tm+n+1

(m + n)!

∞

∑
k=0

tk

k!

∫ 1

0
xn+k(1− x)mdx

=
∞

∑
k=0

(−1)nm! · (n + k)!
(m + n)! · (m + n + k + 1)!

· tm+n+k+1

k!
. (17)

Let pm,n;k, qm,n;k, sm,n;k be the coefficients of the polynomials Pm(t), Qn(t), Sm,n(t) given by

Pm(t) =
m

∑
k=0

pm,n;ktk, Qn(t) =
n

∑
k=0

qm,n;ktk, Sm,n(t) =
∞

∑
k=0

sm,n;ktm+n+k+1. (18)
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Obviously, we know from (11), (12) and (17) that

pm,n;k =
m! · (m + n− k)!

k! · (m + n)! · (m− k)!
, qm,n;k =

(−1)kn! · (m + n− k)!
k! · (m + n)! · (n− k)!

, (19)

and

sm,n;k =
(−1)nm! · (n + k)!

k! · (m + n)! · (m + n + k + 1)!
. (20)

It follows from (16) and (18) that

− y
m

∑
k=0

pm,n;ktk
∞

∑
j=0

Fj(x, y)
tj

j!
− y

∞

∑
k=0

sm,n;ktm+n+k+1
∞

∑
j=0

Fj(x, y)
tj

j!

+ (y + 1)
n

∑
k=0

qm,n;ktk
∞

∑
j=0

Fj(x, y)
tj

j!
=

n

∑
k=0

qm,n;ktk
∞

∑
j=0

xj tj

j!
,

which together with the Cauchy product yields

− y
∞

∑
l=0

(
∑

k+j=l
k,j≥0

pm,n;k
Fj(x, y)

j!

)
tl − y

∞

∑
l=0

(
∑

k+j=l−m−n−1
k,j≥0

sm,n;k
Fj(x, y)

j!

)
tl

+ (y + 1)
∞

∑
l=0

(
∑

k+j=l
k,j≥0

qm,n;k
Fj(x, y)

j!

)
tl =

∞

∑
l=0

(
∑

k+j=l
k,j≥0

qm,n;k
xj

j!

)
tl .

(21)

If we compare the coefficients of tl in (21), we get that for non-negative integer l with
0 ≤ l ≤ m + n,

− y ∑
k+j=l
k,j≥0

pm,n;k
Fj(x, y)

j!
+ (y + 1) ∑

k+j=l
k,j≥0

qm,n;k
Fj(x, y)

j!
= ∑

k+j=l
k,j≥0

qm,n;k
xj

j!
. (22)

Thus, by applying (19) to (22), we have

− y ∑
k+j=l
k,j≥0

(
m
k

)
(m + n− k)!

Fj(x, y)
j!

+ (y + 1) ∑
k+j=l
k,j≥0

(
n
k

)
(m + n− k)!(−1)k Fj(x, y)

j!

= ∑
k+j=l
k,j≥0

(
n
k

)
(m + n− k)!(−1)k xj

j!
.

(23)

It follows from (23) that we state the following result.

Theorem 1. Let m, n, l be non-negative integers with 0 ≤ l ≤ m + n. Then

− y
l

∑
k=0

(
m
k

)
(m + n− k)!

Fl−k(x, y)
(l − k)!

+ (y + 1)
l

∑
k=0

(
n
k

)
(m + n− k)!(−1)k Fl−k(x, y)

(l − k)!

=
l

∑
k=0

(
n
k

)
(m + n− k)!(−1)k xl−k

(l − k)!
.

(24)
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We now discuss some special cases of Theorem 1. By taking l = m + n in (24), we get that for
non-negative integers m, n,

− y
m

∑
k=0

(
m
k

)
Fm+n−k(x, y) + (y + 1)

n

∑
k=0

(
n
k

)
(−1)kFm+n−k(x, y)

=
n

∑
k=0

(
n
k

)
(−1)kxm+n−k.

(25)

In particular, if we take n = 0 in (25) then

− y
m

∑
k=0

(
m
k

)
Fm−k(x, y) + (y + 1)Fm(x, y) = xm (m ≥ 0), (26)

and if we take m = 0 in (25), in light of the binomial theorem, we have

− yFn(x, y) + (y + 1)
n

∑
k=0

(
n
k

)
(−1)kFn−k(x, y) = (x− 1)n (n ≥ 0). (27)

We next consider the case l ≥ m + n + 1 in (21). It is easily seen from (21) that for non-negative
integers m, n and positive integer l with l ≥ m + n + 1,

− y ∑
k+j=l
k,j≥0

pm,n;k
Fj(x, y)

j!
− y ∑

k+j=l−m−n−1
k,j≥0

sm,n;k
Fj(x, y)

j!

+ (y + 1) ∑
k+j=l
k,j≥0

qm,n;k
Fj(x, y)

j!
= ∑

k+j=l
k,j≥0

qm,n;k
xj

j!
.

(28)

By applying (19) and (20) to (28), we get

− y ∑
k+j=l
k,j≥0

(
m
k

)
(m + n− k)!

Fj(x, y)
j!

− (−1)ny ∑
k+j=l−m−n−1

k,j≥0

m! · (n + k)!
k! · (m + n + k + 1)!

·
Fj(x, y)

j!

+ (y + 1) ∑
k+j=l
k,j≥0

(
n
k

)
(m + n− k)!(−1)k Fj(x, y)

j!

= ∑
k+j=l
k,j≥0

(
n
k

)
(m + n− k)!(−1)k xj

j!
.

(29)

Thus, by taking l = m + n + r in (29), we discover the following result.
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Theorem 2. Let m, n be non-negative integers. Then, for positive integer r,

− y
m

∑
k=0

(
m
k

)
(m + n− k)!

Fm+n+r−k(x, y)
(m + n + r− k)!

+ (y + 1)
n

∑
k=0

(
n
k

)
(m + n− k)!(−1)k Fm+n+r−k(x, y)

(m + n + r− k)!

=
(−1)n

(r− 1)!
y

r−1

∑
k=0

(r−1
k )

(m+n+k
m )

· Fr−1−k(x, y)
m + n + k + 1

+
n

∑
k=0

(
n
k

)
(m + n− k)!(−1)k xm+n+r−k

(m + n + r− k)!
.

(30)

It becomes obvious that the case r = 1 in Theorem 2 gives that for non-negative integers m, n,

− y
m

∑
k=0

(
m
k

)
Fm+n+1−k(x, y)
m + n + 1− k

+ (y + 1)
n

∑
k=0

(
n
k

)
(−1)k Fm+n+1−k(x, y)

m + n + 1− k

= (−1)ny
m! · n!

(m + n + 1)!
+

n

∑
k=0

(
n
k

)
(−1)k xm+n+1−k

m + n + 1− k
,

(31)

where we have used F0(x, y) = 1. It is worthy noticing that if we make the operation ∂/∂x on the both
sides of (1) then we have

∂

∂x
Fn+1(x, y) = (n + 1)Fn(x, y) (n ≥ 0), (32)

which implies that for non-negative integers n, k,

∂k

∂xk Fn+k(x, y) = (n + k)(n + k− 1) · · · (n + 1)Fn(x, y)

= k! ·
(

n + k
k

)
Fn(x, y). (33)

By making the operation ∂/∂x on the both sides of (31), in light of (32), one can obtain
(25) immediately.

We next present some analogous results to Theorems 1 and 2. Obviously, from (1) we have

e−zt
∞

∑
j=0

Fj(x + z, y)
tj

j!
=

ext

1− y(et − 1)
=

∞

∑
j=0

Fj(x, y)
tj

j!
. (34)

If we apply (15) to the left hand side of (34) then we have

Pm(−zt)
∞

∑
j=0

Fj(x + z, y)
tj

j!
+ Sm,n(−zt)

∞

∑
j=0

Fj(x + z, y)
tj

j!

= Qn(−zt)
∞

∑
j=0

Fj(x, y)
tj

j!
.

(35)

It follows from (18) and (35) that

m

∑
k=0

pm,n;k(−zt)k
∞

∑
j=0

Fj(x + z, y)
tj

j!
+

∞

∑
k=0

sm,n;k(−zt)m+n+k+1
∞

∑
j=0

Fj(x + z, y)
tj

j!

=
n

∑
k=0

qm,n;k(−zt)k
∞

∑
j=0

Fj(x, y)
tj

j!
,
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which together with the Cauchy product yields

∞

∑
l=0

(
∑

k+j=l
k,j≥0

pm,n;k(−z)k Fj(x + z, y)
j!

)
tl

+
∞

∑
l=0

(
∑

k+j=l−m−n−1
k,j≥0

sm,n;k(−z)m+n+k+1 Fj(x + z, y)
j!

)
tl

=
∞

∑
l=0

(
∑

k+j=l
k,j≥0

qm,n;k(−z)k Fj(x, y)
j!

)
tl .

(36)

By comparing the coefficients of tl in (36), in view of (19), we get that for non-negative integers
m, n, l with 0 ≤ l ≤ m + n,

∑
k+j=l
k,j≥0

(
m
k

)
(m + n− k)!(−z)k Fj(x + z, y)

j!
= ∑

k+j=l
k,j≥0

(
n
k

)
(m + n− k)!zk Fj(x, y)

j!
. (37)

So from (37), we state the following result.

Theorem 3. Let m, n, l be non-negative integers with 0 ≤ l ≤ m + n. Then

l

∑
k=0

(
m
k

)
(m + n− k)!(−z)k Fl−k(x + z, y)

(l − k)!
=

l

∑
k=0

(
n
k

)
(m + n− k)!zk Fl−k(x, y)

(l − k)!
. (38)

It follows that we show some special cases of Theorem 3. By taking l = m + n in (38), we get that
for non-negative integers m, n,

m

∑
k=0

(
m
k

)
(−z)kFm+n−k(x + z, y) =

n

∑
k=0

(
n
k

)
zkFm+n−k(x, y),

which can be rewritten as

m

∑
k=0

(
m
k

)
(−z)m−kFn+k(x + z, y) =

n

∑
k=0

(
n
k

)
zn−kFm+k(x, y). (39)

If we replace m by m + r and n by n + r in (39) and make the operation ∂r/∂xr, in view of (33),
we obtain that for non-negative integers m, n, r,

m+r

∑
k=0

(
m + r

k

)(
n + r + k

r

)
(−z)m+r−kFn+k(x + z, y)

=
n+r

∑
k=0

(
n + r

k

)(
m + r + k

r

)
zn+r−kFm+k(x, y).

(40)

Taking y = −1/2 in (40) gives that for non-negative integers m, n, r,

m+r

∑
k=0

(
m + r

k

)(
n + r + k

r

)
(−z)m+r−kEn+k(x + z)

=
n+r

∑
k=0

(
n + r

k

)(
m + r + k

r

)
zn+r−kEm+k(x).

(41)
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Since the Euler polynomials satisfy the symmetric relation En(1 − x) = (−1)nEn(x) for
non-negative integer n, so by taking x + y + z = 1 in (41), we discover that for non-negative integers
m, n, r,

(−1)m
m+r

∑
k=0

(
m + r

k

)(
n + r + k

r

)
zm+r−kEn+k(y)

= (−1)n+r
n+r

∑
k=0

(
n + r

k

)(
m + r + k

r

)
zn+r−kEm+k(x),

(42)

which appeared in ([19], Corollary 1.2). In particular, the case r = 0 in (42) was first discovered by
Sun [20].

We next consider the case l ≥ m + n + 1 in (36). It is easily seen from (36) that for non-negative
integers m, n and positive integer l with l ≥ m + n + 1,

∑
k+j=l
k,j≥0

pm,n;k(−z)k Fj(x + z, y)
j!

+ ∑
k+j=l−m−n−1

k,j≥0

sm,n;k(−z)m+n+k+1 Fj(x + z, y)
j!

= ∑
k+j=l
k,j≥0

qm,n;k(−z)k Fj(x, y)
j!

.

(43)

By applying (19) and (20) to (43), we have

∑
k+j=l
k,j≥0

(
m
k

)
(m + n− k)!(−z)k Fj(x + z, y)

j!

+ (−1)n ∑
k+j=l−m−n−1

k,j≥0

m! · (n + k)!
k! · (m + n + k + 1)!

(−z)m+n+k+1 Fj(x + z, y)
j!

= ∑
k+j=l
k,j≥0

(
n
k

)
(m + n− k)!zk Fj(x, y)

j!
.

(44)

Hence, by taking l = m + n + r in (44), we get that for non-negative integers m, n and positive
integer r,

m

∑
k=0

(
m
k

)
(m + n− k)!(−z)k Fm+n+r−k(x + z, y)

(m + n + r− k)!

+
(−1)n

(r− 1)!
(−z)m+n+1

r−1

∑
k=0

(
r− 1

k

)
m! · (n + k)!

(m + n + k + 1)!
(−z)kFr−1−k(x + z, y)

=
n

∑
k=0

(
n
k

)
(m + n− k)!zk Fm+n+r−k(x, y)

(m + n + r− k)!
.

(45)

Since the two variable Fubini polynomials satisfy the addition theorem (see, e.g., [2,3])

Fn(x + z, y) =
n

∑
k=0

(
n
k

)
Fn−k(x, y)zk (n ≥ 0), (46)



Mathematics 2019, 7, 115 9 of 11

so from (46) and the property of the Beta function, we have

r−1

∑
k=0

(
r− 1

k

)
m! · (n + k)!

(m + n + k + 1)!
(−z)kFr−1−k(x + z, y)

=
r−1

∑
k=0

(
r− 1

k

)
(−z)kFr−1−k(x + z, y)

∫ 1

0
tm(1− t)n+kdt (47)

=
∫ 1

0
Fr−1(x + zt, y)tm(1− t)ndt.

Thus, applying (45) to (47) gives the following result.

Theorem 4. Let m, n be non-negative integers. Then, for positive integer r,

m

∑
k=0

(
m
k

)
(m + n− k)!(−z)k Fm+n+r−k(x + z, y)

(m + n + r− k)!

+
(−1)m+1

(r− 1)!
zm+n+1

∫ 1

0
Fr−1(x + zt, y)tm(1− t)ndt

=
n

∑
k=0

(
n
k

)
(m + n− k)!zk Fm+n+r−k(x, y)

(m + n + r− k)!
.

(48)

If we take y = −1/2 in Theorem 4 then we get that for non-negative integers m, n and positive
integer r,

m

∑
k=0

(
m
k

)
(m + n− k)!(−z)k Em+n+r−k(x + z)

(m + n + r− k)!

+
(−1)m+1

(r− 1)!
zm+n+1

∫ 1

0
Er−1(x + zt)tm(1− t)ndt

=
n

∑
k=0

(
n
k

)
(m + n− k)!zk Em+n+r−k(x)

(m + n + r− k)!
.

(49)

In particular, if we take r = 1 in (49), in view of En(1− x) = (−1)nEn(x) for non-negative integer
n, we get that for non-negative integers m, n and x + y + z = 1,

(−1)n
m

∑
k=0

(
m
k

)
zk Em+n+1−k(y)

m + n + 1− k

+ (−1)m
n

∑
k=0

(
n
k

)
zk Em+n+1−k(x)

m + n + 1− k
= −zm+n+1 m! · n!

(m + n + 1)!
,

(50)

which was firstly discovered by Sun [20], and also appeared in ([19], Corollary 1.4). For some similar
results to (42) and (49), one is referred to [21,22].

Remark 1. We mention that the corresponding result stated in ([23], Theorem 3.2) has a misprint: L(α+k)
r−1−k(x)

should be L(α+m+n+k+1)
r−1−k (x), which leads to the corresponding misprints, for example, −k appearing in the

binomial coefficients in the second sum of the left hand side of ([23], Equations (3.10), (3.11), (3.23) and
(3.24)) should be −(m + n + k + 1); L(α+k)

l−m−n−k−1(x) in ([23], Equation (3.26)) should be L(α+m+n+k+1)
l−m−n−k−1 (x);

L(α+k)
r−1−k(x) in ([23], Equation (3.28)) should be L(α+n+k+1)

r−1−k (x). The second author expresses his sincere gratitude
to Professor Marek Vandas for pointing out a misprint in ([23], Theorem 3.2) in a recent private communication.

4. Conclusions

In this paper, we use the generating function methods and Padé approximation techniques
to establish some new identities for the two variable Fubini polynomials. Moreover, we discuss
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some special cases as well as immediate consequences of our main results. It turns out that some
known results are obtained as special cases. The methods shown in this paper may be applied to
many other families of special polynomials, for example, one could consider the n-dimensional
case instead, in particular, the readers could connect the two dimensional analysis with the
one-dimensional polynomials.
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final manuscript.
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