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Abstract: Finding a simple root for a nonlinear equation f (x) = 0, f : I ⊆ R → R has always
been of much interest due to its wide applications in many fields of science and engineering.
Newton’s method is usually applied to solve this kind of problems. In this paper, for such
problems, we present a family of optimal derivative-free root finding methods of arbitrary high order
based on inverse interpolation and modify it by using a transformation of first order derivative.
Convergence analysis of the modified methods confirms that the optimal order of convergence is
preserved according to the Kung-Traub conjecture. To examine the effectiveness and significance of
the newly developed methods numerically, several nonlinear equations including the van der Waals
equation are tested.

Keywords: nonlinear equations; simple roots; inverse interpolation; optimal iterative methods;
higher order of convergence

1. Introduction

In this paper, we present optimal derivative-free methods to solve a nonlinear equation of the
form f (x) = 0 [1–3]. Multipoint iterative methods for this problem have been extensively studied in
the last decade as they are computationally efficient than the one-point methods such as the methods
of Newton, Halley and Laguerre. According to the conjecture of Kung and Traub [4], the order
of convergence of any multipoint method requiring n + 1 evaluations cannot exceed the bound 2n.
The methods that satisfy this bound are called optimal methods. There is a vast literature on optimal
multipoint methods, which are developed by using the famous one-step Newton method or the
Steffensen method at the first step. The following is the iteration of Newton’s scheme to find a simple
root α of a nonlinear equation f (x) = 0, where f : I ⊆ R→ R is a scalar function on an open
interval I [1]:

xn+1 = xn −
f (xn)

f ′(xn)
, n ≥ 0. (1)

For a background study of multi-point optimal methods, one may consult [2,3,5–9].
Steffensen’s iterative scheme is a well-known modification of Newton’s method obtained by using
the approximation

f ′(xn) ≈
f (xn)− f (zn)

xn − zn
= f [xn, zn], (2)

in the Newton’s scheme and is given as follows [10]:

xn+1 = xn −
f (xn)

f [zn, xn]
, n ≥ 0, (3)
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where zn = xn + f (xn). Both methods are quadratic in some neighborhood of α but Steffensen’s
method has an advantage that it does not need the evaluation of the function’s derivative, which may
be problematic and expensive to calculate for certain functions. To determine the computational
efficiency of an iterative method, Ostrowski [11] defined the efficiency index as q1/n, where q is the
convergence order and n is the number of functional evaluations per iterative step. In a recent paper [6],
Cordero and Torregrosa conjectured an approximation of the first derivative:

f ′(xn) ≈ f [xn, zn], zn = xn + γ f (xn)
m, m ≥ q, γ ∈ R− {0} (4)

to transform a multipoint with derivative iterative method of order 2q to a derivative-free method
possessing the same order. Here, we use this conjecture by omitting the parameter γ to develop a family
of n-point optimal derivative-free methods based on inverse interpolation. In Section 2, we present
optimal derivative-free iterative methods based on inverse interpolation. The derivative-free forms of
the methods are obtained using the conjecture of Cordero and Torregrosa [6] such that the convergence
order is preserved. In Section 3, we consider some nonlinear equations and van der Waals equation for
the numerical comparisons of presented methods with the existing methods of same kind.

2. Optimal Iterative Methods Based on Inverse Interpolation

In this section, we present optimal iterative methods based on inverse interpolation involving
first derivative. The first derivative is further approximated by using the conjecture of Cordero and
Torregrosa [6] to transform derivative methods into derivative-free methods such that the convergence
order is preserved.

2.1. Optimal Two-Point Fourth Order Method

To construct an optimal two-point method, we use the following quadratic polynomial,

x = R( f (x)) = a1 + b1( f (x)− f (xn)) + g1( f (x)− f (xn))
2. (5)

By substituting x = xn into Equation (5), we get:

a1 = xn = R( f (xn)). (6)

Now by differentiating Equation (5) with respect to x, we get:

1 = R′( f (x)) f ′(x) = (b1 + 2g1( f (x)− f (xn))
2) f ′(x).

Therefore,

b1 =
1

f ′(xn)
. (7)

Now, by substituting x = yn and using Equations (6) and (7) in Equation (5), we get:

g1 =
1

[ f (yn)− f (xn)] f [yn, xn]
− 1

[ f (yn)− f (xn)] f ′(xn)
, (8)

where yn is the Newton’s iterate and f [y, x] = f (y)− f (x)
(y−x) .

Hence, by using Equations (6)–(8) in Equation (5), we obtain the following two-point optimal
fourth order method:

yn = xn −
f (xn)

f ′(xn)
, n ≥ 0,

xn+1 = R(0) = yn + g1 f (xn)
2, (9)
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where g1 is given by Equation (8).

Theorem 1. Let α be a simple root of f , where f : I ⊆ R→ R is a sufficiently differentiable function in an open
interval I. If x0 is sufficiently close to α, then the iterative method in Equation (9) is fourth order convergent and
possesses the following error relation:

en+1 = c2(−c3 + 2c2
2)e

4
n + O(e5

n), (10)

where cj =
f (j)(α)
j! f ′(α) , j ≥ 2 and en = xn − α.

Proof. By using Taylor’s expansions about α, we have

f (xn) = f ′(α)[en + c2e2
n + c3e3

n + c4e4
n] + O(e5

n)

and
f ′(xn) = f ′(α)[1 + 2c2en + 3c3e2

n + 4c4e3
n] + O(e4

n)

By using above expressions in the first step of Equation (9), we get

yn − α = c2e2
n + (2c3 − 2c2

2)e
3
n + (3c4 − 7c3c2 + 4c3

2)e
4
n + O(e5

n).

Again, by using Taylor’s expansion, we have

f (yn) = c2 f ′(α)e2
n + (2c3 − 2c2

2) f ′(α)e3
n + (3c4 − 7c3c2 + 4c3

2) f ′(α)e4
n + O(e5

n).

Hence, we get the following error equation of the method in Equation (9) by using the above
expressions in its second step:

en+1 = c2(−c3 + 2c2
2)e

4
n + O(e5

n).

Thus, the proof is complete.

Now, we modify the new two-point optimal scheme in Equation (9) to obtain a derivative-free
method by using the conjecture in Equation (4) such that the optimal order is preserved.

Therefore, with the help of the approximation given in Equation (4), the iterative method in
Equation (9) is modified as follows:

yn = xn −
f (xn)

f [zn, xn]
, zn = xn + f (xn)

2, n ≥ 0,

xn+1 = yn + h1 f (xn)
2, (11)

where
h1 =

1
[ f (yn)− f (xn)] f [yn, xn]

− 1
[ f (yn)− f (xn)] f [zn, xn]

. (12)

Similar to Theorem 1, we can prove that the iterative method in Equations (11) and (12) has
convergence order four with the following error equation:

en+1 = −c2(c3 + f ′(α)2c2 − 2c2
2)e

4
n + O(e5

n).

2.2. Optimal Three-Point Eighth Order Method

In [12], Neta and Petkovic proposed the following three-point optimal method based on
inverse interpolation:
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yn = xn −
f (xn)

f ′(xn)
, n ≥ 0,

wn = ψ4(xn, yn),

xn+1 = yn + b2 f (xn)
2 − g2 f (xn)

3, (13)

where ψ4 is a real function that should be chosen such that it provides the fourth order convergence of
the sequence {xn} and it requires already computed values f (xn), f ′(xn) and f (yn). The iteration in
Equation (9) is an example of such function. The values of g2 and b2 are given as:

g2 = 1
[ f (yn)− f (xn)][ f (yn)− f (wn)] f [yn ,xn ]

− 1
[ f (wn)− f (xn)][ f (yn)− f (wn)] f [wn ,xn ]

+ 1
[ f (wn)− f (xn)][ f (yn)− f (wn)] f ′(xn)

− 1
[ f (yn)− f (xn)][ f (yn)− f (wn)] f ′(xn)

,

(14)

b2 = 1
[ f (yn)− f (xn)] f [yn ,xn ]

− 1
f ′(xn)[ f (yn)− f (xn)]

− g2[ f (yn)− f (xn)]. (15)

By using the approximation given by Equation (4) and the iterative scheme in Equations (11)
and (12) at the second step of the three-point method in Equation (13), we obtain a new optimal
derivative-free method as follows:

yn = xn −
f (xn)

f [zn, xn]
, zn = xn + f (xn)

3, n ≥ 0,

wn = yn + h2 f (xn)
2,

xn+1 = yn + b3 f (xn)
2 − g3 f (xn)

3, (16)

where

h2 =
1

[ f (yn)− f (xn)] f [yn, xn]
− 1

[ f (yn)− f (xn)] f [zn, xn]
,

g3 =
1

[ f (yn)− f (xn)][ f (yn)− f (wn)] f [yn, xn]

− 1
[ f (wn)− f (xn)][ f (yn)− f (wn)] f [wn, xn]

+
1

[ f (wn)− f (xn)][ f (yn)− f (wn)] f [zn, xn]

− 1
[ f (yn)− f (xn)][ f (yn)− f (wn)] f [zn, xn]

,

b3 =
1

[ f (yn)− f (xn)] f [yn, xn]
− 1

f [zn, xn][ f (yn)− f (xn)]
− g3[ f (yn)− f (xn)]. (17)

Theorem 2. Let α be a simple root of f , where f : I ⊆ R → R is a sufficiently differentiable function
in an open interval I. For an initial approximation x0 sufficiently close to α, the iterative methods given
by Equations (16) and (17) is optimal eighth order convergent with the following error relation:

en+1 = −c2
2(−10c5

2 + 15c3
2c3 − 5c2c2

3 − 2c4c2
2 + 2c3

2 f ′(α)3

+c3c4 − c3 f ′(α)3c2)e8
n + O(e9

n),

where cj =
f (j)(α)
j! f ′(α) , j ≥ 2 and en = xn − α.
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Proof. With the help of Taylor’s expansions, the proof is similar to the proof for Theorem 1 and those
already taken in [6,8]. Hence, it is omitted.

2.3. Optimal Four-Point Sixteenth Order Method

Neta and Petkovic [12] also presented an optimal four-point scheme with sixteenth order
convergence using inverse interpolation requiring an evaluation of first derivative f ′(xn) at each
step and four evaluations of the function.

We transform their four-point optimal scheme and use the scheme in Equations (11) and (12) at
the second step to develop a new derivative-free optimal four-point method as follows:

yn = xn −
f (xn)

f [zn, xn]
, zn = xn + f (xn)

4, n ≥ 0,

wn = yn + h2 f (xn)
2,

tn = yn + b3 f (xn)
2 − g3 f (xn)

3,

xn+1 = yn + b4 f (xn)
2 − g4 f (xn)

3 + g5 f (xn)
4, (18)

where h2, g3and b3 are given in Equation (17) and the values of g5, g4 and b4 are given as:

g5 =

ϕt−ϕw
[ f (tn)− f (wn)]

− ϕy−ϕw
[ f (yn)− f (wn)]

[ f (tn)− f (yn)]
,

g4 =
ϕt − ϕw

[ f (tn)− f (wn)]
− g5([ f (tn)− f (xn)] + [ f (wn)− f (xn)]),

b4 = ϕt − g4[ f (tn)− f (xn)]− g5[ f (tn)− f (xn)]
2 (19)

where

ϕt =
1

f [tn, xn][ f (tn)− f (xn)]
− 1

f [zn, xn][ f (tn)− f (xn)]
,

ϕw =
1

f [wn, xn][ f (wn)− f (xn)]
− 1

f [zn, xn][ f (wn)− f (xn)]
,

ϕy =
1

f [yn, xn][ f (yn)− f (xn)]
− 1

f [zn, xn][ f (yn)− f (xn)]
.

Theorem 3. Let α be a simple root of f , where f : I ⊆ R → R is a sufficiently differentiable function in an
open interval I. For an initial approximation x0 close enough to α, the iterative method given by Equations (18)
and (19) is optimal sixteenth order convergent with the following error equation:

en+1 = −c4
2(c4c2 f ′(α)4c2

3 − 4c4c3 f ′(α)4c3
2 − 4c5c2

2c4c3 − 3c4c4
3 + 20c7

2c5

−24c5
2c2

4 + 15c5
3c2 − 180c4

3c3
2 + 715c3

3c5
2 + 20 f ′(α)4c8

2 − 176c8
2c4

−1250c7
2c2

3 + 980c3c9
2 − 280c11

2 − 5c2
2 f ′(α)4c3

3 + 24c3
2c2

4c3 − 6c2
4c2

3c2

+4c4
2c5c4 − 40c3 f ′(α)4c6

2 − 5c5c3
3c2 + 25c2

3c3
2c5 + c2

3c5c4

+25c2
3 f ′(α)4c4

2 − 260c4c2
3c4

2 − 40c3c5
2c5 + 63c4c3

3c2
2 + 380c6

2c4c3

+4c4 f ′(α)4c5
2)e

16
n + O(e17

n ),

(20)

where cj =
f (j)(α)
j! f ′(α) , j ≥ 2 and en = xn − α.

Proof. The proof is similar to those already taken in [6,8] by using the Taylor’s expansions.
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2.4. n-Point Method of Optimal Order 2n

In [2], Petkovic et al. proposed an n-point n-step iterative scheme of order 2n that requires
one evaluation of first derivative f ′(xn) and n evaluations of function at each step. We develop the
following n-point n-step derivative-free method by using the approximation given in Equation (4):

φ1(xk) = xk −
f (xk)

f [zk, xk]
, zk = xk + f (xk)

m, m ≥ n ≥ 0,

φ2(xk) = R2(0),
...

xk+1 = φn(xn) = Rn(0). (21)

where Rn is an inverse interpolating polynomial of degree n given as:

x = Rn( f (x)) = d0 + d1[ f (x)− f (xk)] + d2[ f (x)− f (xk)]
2 + · · ·+ dn[ f (x)− f (xk)]

n, (22)

with the conditions:

Rn( f (xk)) = xk, R′n( f (xk)) =
1

f [zn, xn]
,

Rn( f (φ1)) = f (φ1), ..., Rn( f (φn)) = f (φn). (23)

By the use of the conditions in Equation (23), the coefficients d0, d1, ..., dn can be determined easily
and hence we obtain an n-point derivative-free family of following form:

φ1(xk) = xk −
f (xk)

f [zk, xk]
, zk = xk + f (xk)

m, m ≥ n ≥ 0,

φ2(xk) = R2(0),
...

xk+1 = φn(xk) = Rn(0) = φ1(xk) + d2 f (xk)
2 + · · ·+ (−1)ndn f (xk)

n. (24)

Theorem 4. Let α be a simple root of f , where f : I ⊆ R → R is a sufficiently differentiable function in an
open interval I. For an initial approximation x0 sufficiently close to α, the n-point iterative method defined
by Equation (24) is of optimal order 2n.

3. Review of Some Four-Point Optimal Methods and Numerical Results

Here, we use the transformation in Equation (4) to modify optimal four-point iterative scheme
of Sharifi et al. [13] denoted by SL16 and optimal four-point method by Geum and Kim [14] denoted
by GK16. Table 1 presents the original and modified forms of four-points methods where

K1(un) =
1 + ρun + (−9 + 5ρ/2)u2

n
1 + (ρ− 2)un + (−4 + ρ/2)u2

n
,

K2(un, vn, wn) =
1 + 2un + (2 + ξ)wn

1− vn + ξwn
,

K3(un, vn, wn, tn) =
1 + 2un + (2 + ξ)vnwn

1− vn − 2wn − tn + 2(1 + ξ)vnwn
− 1

2
unwn[6 + 12un

+u2
n(24− 11ρ) + u3

n(11ρ2 − 66ρ + 136) + 4ξ]

+(2un(ξ
2 − 2ξ − 9)− 4ξ − 6)w2

n
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and

L1(un) = 1 + 2un + 5u2
n − 6u3

n,

L2(un, vn, wn) = 1 + 2un + 4wn + 6u2
n + vn

L3(un, vn, wn, pn, qn, tn) = 1 + 6u2
n + 2un − v3

n + vn + 4wn − 4w2
n + unwn

+6u2
nwn + 2u3

nwn − 10unw2
n + tn + 2qn + 8pn

+2untn + 2vnwn + 6u2
ntn − 4v2

nwn + 24u4
nwn,

are weight functions,

un =
f (yn)

f (xn)
, vn =

f (rn)

f (yn)
, wn =

f (rn)

f (xn)
, tn =

f (sn)

f (rn)
, pn =

f (sn)

f (xn)
, qn =

f (sn)

f (yn)
(25)

and ρ, ξ are free parameters. Here, we have chosen ρ = 2, ξ = −2.
A family of optimal derivative-free iterative methods of arbitrary high order by using polynomial

interpolation presented by Cordero et al. [7] is given as follows:

y0 = xk, k ≥ 0,

y1 = y0 + f (y0),

xk+1 = yk+1 = yj −
f (yj)

p′j(yj)
, j = 1, 2, ..., n, (26)

where pj is the polynomial that interpolates f in y0, y1, ..., yj.

Table 1. Four-point methods and their modifications.

Original Iterative Method Modified Iterative Method

GK16: MGK16:
yn = xn − f (xn)

f ′(xn)
, n ≥ 0, yn = xn − f (xn)

f [zn ,xn ]
, zn = xn + f (xn)4, n ≥ 0,

rn = yn − K1(un)
f (yn)
f ′(xn)

, rn = yn − K1(un)
f (yn)

f [zn ,xn ]
,

sn = rn − K2(un, vn, wn)
f (rn)
f ′(xn)

, sn = rn − K2(un, vn, wn)
f (rn)

f [zn ,xn ]
,

xn+1 = sn − K3(un, vn, wn, tn)
f (sn)
f ′(xn)

. xn+1 = sn − K3(un, vn, wn, tn)
f (sn)

f [zn ,xn ]
.

SL16: MSL16:
yn = xn − f (xn)

f ′(xn)
, n ≥ 0, yn = xn − f (xn)

f [zn ,xn ]
, zn = xn + f (xn)4, n ≥ 0,

rn = yn − L1(un)
f (yn)
f ′(xn)

, rn = yn − L1(un)
f (yn)

f [zn ,xn ]
,

sn = rn − L2(un, vn, wn)
f (rn)
f ′(xn)

, sn = rn − L2(un, vn, wn)
f (rn)

f [zn ,xn ]
,

xn+1 = sn − L3(un, vn, wn, pn, qn, tn)
f (sn)
f ′(xn)

. xn+1 = sn − L3(un, vn, wn, pn, qn, tn)
f (sn)

f [zn ,xn ]
.

Now, we test all the discussed optimal with- and without-derivative methods using different
types of nonlinear equations. We employed multi-precision arithmetic with 4000 significant decimal
digits in the programming package of Maple 16 (Waterloo Maple Inc., Waterloo, ON, Canada) to obtain
a high accuracy and to avoid the loss of significant digits.

In chemistry, several nonlinear systems can be found, for example in the investigation of stability
of chemical reactions. Here, our concern is to deal with the solution of Van der Waals equation for
finding the volume of a gas. Van der Waals equation is given by

(P +
an2

V2 )(V − nb) = nRT, (27)
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which relates the pressure (P), volume (V) and temperature (T) of a gas. Here, n represents the number
of moles of gas present and R is the universal gas constant. The term involving the parameter a corrects
the pressure for intermolecular attractive forces, while the term involving b is a correction for that
portion of the volume of gas that is not compressible due to the intrinsic volume of the gas molecules.
We have to find the solution of a nonlinear equation in V to determine the volume V of the gas in
terms of the remaining parameters as follows:

PV3 − (nbP + nRT)V2 + an2V − an2b = 0. (28)

Suppose that one mole of chlorine gas has a pressure of 2 atmospheres and a temperature of 313 K.
For chlorine gas, a = 6.29 atm·L2/mol2 and b = 0.0562 L/mol. The universal gas constant has the
value R = 0.08206 atm·L/mol·K. Hence, we obtain following equation, which is cubic in V:

f1(V) = 2V3 − 25.79718V2 + 6.29V − 0.353498, (29)

with a root α = 0.087113811.
We compare the convergence behavior of the modified methods MGK16, MSL16 and

Equations (18) and (19) denoted by MNP16 with their with derivative versions, i.e., GK16, SL16
and (NP16) [12], respectively, and the family (Equation (26)) denoted by (CT16) for n = 4, using
f1(V) and the nonlinear functions given in Table 2. The error between approximated and exact root
(|xn − α|) and the computational order of convergence (coc) for first three iterations of various methods
is displayed in Tables 3–9, where E(−i) denotes E× 10−i, which means that the absolute error for
the corespondent method is zero up to i − 1 decimal places. It is observed that the computational
order of convergence (coc) supports the theoretical order of convergence. The formula to compute the
computational order of convergence (coc) is given by [15]:

coc ≈ log |(xn+1 − α)/(xn − α)|
log |(xn − α)/(xn−1 − α)| .

It was observed from the numerical experiments that the modified four-point methods MGK16,
MSL16 and MNP16 are comparable and competitive to the methods GK16, SL16, NP16 and CT16.
Especially, for the case of f7, all the with-derivative four-point methods failed to converge when the
initial guess was taken far from the required root, while the modified derivative-free four-points
methods provided remarkably fast convergence. We see that schemes GK16 and CT16 failed to
converge to the required root for the case of f4.

Table 2. Test functions.

Test Functions Exact Root α x0

f2(x) = (2 + x3) cos(πx
2 ) + log(x2 + 2x + 2) −1 −0.93

f3(x) = x2ex + x cos 1
x3 + 1 −1.5650602... −1.25

f4(x) = xex + log(1 + x + x4) 0 −0.5
f5(x) = (x− 1)(x + 1 + log(2 + x + x2)) 1 1.05
f6(x) = −20x5 − x

2 + 1
2 0.42767729... 0.38

f7(x) = esin(8x) − 4x 0.34985721... 7

Table 3. Numerical results for f1, x0 = 0.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| 2.81(−5) 3.02(−4) 5.28(−5) 1.73(−4) 9.73(−6) 2.87(−4) 4.36(−5)
|x2 − α| 6.12(−54) 4.70(−38) 1.17(−49) 2.96(−40) 2.44(−61) 2.05(−38) 5.52(−51)
|x3 − α| 1.42(−832) 6.75(−580) 4.03(−764) 1.68(−612) 5.89(−951) 1.19(−585) 2.36(−785)

coc 16.00 16.00 16.00 16.00 16.00 16.00 16.00
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Table 4. Numerical results for f2, x0 = −0.93.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| 1.44(−10) 2.63(−9) 1.83(−10) 6.42(−10) 1.65(−10) 2.59(−9) 1.83(−10)
|x2 − α| 8.08(−147) 1.61(−127) 2.77(−145) 9.99(−136) 6.82(−147) 1.23(−127) 2.58(−145)
|x3 − α| 7.29(−2327) 6.48(−2019) 1.98(−2302) 1.18(−2148) 4.69(−2327) 8.22(−2021) 6.18(−2303)

coc 16.00 16.00 16.00 16.00 16.00 16.00 16.00

Table 5. Numerical results for f3, x0 = −1.25.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| 5.84(−13) 7.09(−9) 2.49(−11) 4.10(−6) 1.37(−11) 1.57(−8) 1.46(−11)
|x2 − α| 2.58(−201) 7.05(−135) 5.79(−176) 2.16(−89) 2.07(−179) 2.53(−129) 4.07(−180)
|x3 − α| 5.49(−3215) 6.51(−2151) 4.04(−2810) 7.88(−1422) 1.46(−2864) 5.25(−2062) 5.01(−2877)

coc 16.00 16.00 16.00 16.00 16.00 16.00 16.00

Table 6. Numerical results for f4, x0 = −0.5.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| Diverges 2.9732... 1.42(−4) Diverges 1.20(−9) 1.51(−7) 6.69(−10)
|x2 − α| Diverges 7.74(−1) 1.65(−67) Diverges 3.50(−149) 1.24(−112) 2.43(−152)
|x3 − α| Diverges 4.59(−6) 1.85(−1074) Diverges 9.05(−2382) 4.90(−1794) 2.35(−2431)

coc Diverges 8.94 16.00 Diverges 16.00 16.00 16.00

Table 7. Numerical results for f5, x0 = 1.05.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| 1.02(−23) 6.99(−25) 1.29(−23) 3.40(−21) 4.19(−20) 8.96(−23) 2.69(−21)
|x2 − α| 2.44(−370) 8.60(−390) 8.99(−369) 1.83(−327) 4.78(−310) 3.43(−356) 7.83(−330)
|x3 − α| 0 0 1(−3999) 0 0 0 0

coc 16.00 16.00 16.00 16.00 16.00 16.00 16.00

Table 8. Numerical results for f6, x0 = 0.38.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| 1.65(−5) 1.28(−3) 8.41(−11) 1.70(−11) 1.10(−5) 1.04(−3) 2.78(−11)
|x2 − α| 2.04(−66) 2.68(−34) 1.59(−151) 1.86(−161) 8.28(−69) 1.04(−35) 5.53(−160)
|x3 − α| 5.69(−1041) 5.39(−525) 4.62(−2403) 7.53(−2561) 8.66(−1079) 1.60(−547) 3.22(−2539)

coc 16.00 16.00 16.00 16.00 16.00 16.00 16.00

Table 9. Numerical results for f7, x0 = 7.

Error GK16 SL16 NP16 CT16 MGK16 MSL16 MNP16

|x1 − α| Diverges Diverges Diverges 1.98(−2) 4.92(−3) 3.00(−2) 1.50(−2)
|x2 − α| Diverges Diverges Diverges 3.89(−12) 3.72(−26) 5.71(−11) 3.31(−17)
|x3 − α| Diverges Diverges Diverges 1.20(−168) 5.72(−398) 8.21(−155) 9.46(−225)

coc Diverges Diverges Diverges 16.12 16.08 16.49 16.20

4. Conclusions

In this paper, we have developed a family of optimal derivative-free root finding methods
of arbitrary high order based on inverse interpolation by applying the conjecture of Cordero
and Torregrosa. Some existing derivative based methods are modified using this conjecture.
Convergence analysis is studied for the proposed optimal methods. Finally, numerical tests are
provided that support the theoretical results. It was observed that the modified derivative free
methods can compete and work better than their with-derivative versions. Especially, the proposed
derivative-free methods provided remarkably fast convergence for the case of f7, even when the initial
guess was taken far from the required root, while the derivative based methods failed to converge.
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