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Abstract: In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution
for a monotone variational inequality with a variational inequality constraint over the common
solution set of a general system of variational inequalities, and a common fixed point problem of
a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically
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solution of the problem is established under some suitable assumptions.
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1. Introduction

We suppose that H is a real Hilbert space. We use (-,-) to stand for the inner product and
|| - || the norm. We suppose that C is a convex closed nonempty set in the Hilbert space H, and Pc
is the well-known metric projection from the space H onto the set C. Here, we also suppose that
T is a nonlinear self mapping defined in C. Let Fix(T) be the set of all fixed points of T, that is,
Fix(T) = {x € C: x = Tx}. We use the notations — and — to indicate the norm convergence and the
weak convergence, respectively. Now, we suppose that A : C — H is a nonlinear nonself mapping
in C to H. The well-known classical variational inequality (VI), whose set of all solutions denoted by
VI(C, A), is to find x* € C such that

(Ax*,x —x*) >0, VxeC. (1)

A mapping T : C — C is said to be asymptotically nonexpansive if there exists a sequence
{0,} C [0, +00) with lim;,_,« 6, = 0 such that

IT"x =Ty < [lx =yl +Onllx —yl, Vn=0, xyecC @

This mapping is Lipschitz continuous with the Lipschitz constant L > 1. Fixed points of Lipschitz
continuous mappings are a hot topic and have a lot of applications both in theoretical research, such as
in differential equations, control theory, equilibrium problems, and in engineering applications; see
References [1-6] and the references therein. In particular, T is said to be nonexpansive if |Tx — Ty|| <
lx —yll, Vx,y € C, thatis, 8 = 1 for all n. Recently, the variational inequality problem (1) has
been extensively studied via the iterative methods of Lipschitz continuous mappings, in particular,
(asymptotically) nonexpansve mappings; see References [7-12] and the references therein.
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We suppose that B, B, : C — H are two nonlinear monotone mappings. We also suppose that 1
and yi, are two positive real constants. We consider the problem of finding (x*,y*) € C x C such that
(mBy* +x* —y*,x—x*) >0, VxeC, 3)

(aBox* +y* —x*, x —y*) >0, VxeC.

Problem (3) is called a general system of variational inequalities (GSVI). From Reference [8],
the GSVI (3) can be translated into a fixed point problem of a Lipschitz continuous nonlinear operator
in the following way.

Lemma 1 ([8]). We suppose that C is a convex subset in a Hilbert space H. Fix two elements x* and y* in C,
(x*,y*) is a solution of GSVI (3) if and only if x* € GSVI(C, By, By), where GSVI(C, By, By) is the fixed point
set of the mapping G := Pc(I — p1B1)Pc(I — paBa), and y* = Pc(I — upBy)x™.

The GSVI (3), which includes the variational inequality (1) as a special case, has been investigated
via fixed-point algorithms recently in real or complex Hilbert spaces; see References [13-18] and the
references therein.

A self mapping f : C — C is said to be a strict contraction on C if there is a number ¢ € [0,1) such
that || f(x) — f(y)|| < é||x —y|| for all x,y € C. A nonself mapping F : C — H is called monotone if
(Fx — Fy,x —y) > 0Vx,y € C. Itis called 5-strongly monotone if there is # > 0 such that

nllx—yl|* < (Fx—Fy,x—y), VxyeC.

Moreover, it is called a-inverse-strongly monotone (or a-cocoercive) if there is a constant & > 0
such that
a||[Fx — Fy||*> < (Fx — Fy,x —y), Vx,y € C.

The class of inverse-strongly monotone operators or a-cocoercive operators has been in the
spotlight of theoretical research and studied from the viewpoint of numerical computation and many
results were obtained in Hilbert (and more generally, in Banach) spaces; see References [19-24] and the
references therein.

Let X be a real Banach space whose dual space is denoted by X*. The well-known normalized
duality operator ] : X — 2% is defined by

J(x) ={p e X" : (x,p) = x| = |¢l*}, VxeX,

where (-, -) is the duality pairing between E and E*. A mapping T with domain D(T) and range R(T)
in X is called pseudocontractive if the inequality holds

lx =y +r((I=T)x = (I =Tyl = lx—yll, Vxy € D(T),vr>0.

Kato’s results [25] told us that the notion of pseudocontraction is equivalent to the one that for
each x,y € D(T), there exists j(x —y) € J(x —y) such that

(Tx = Ty, j(x — y)) < [lx —yl*.

The purpose of this paper is act as a continuation of Reference [26], that is to introduce and
analyze a multiple hybrid implicit iteration method for solving a monotone variational inequality with
a variational inequality constraint for two inverse-strongly monotone mappings and a common fixed
point problem (CFPP) of a countable family of uniformly Lipschitzian pseudocontractive mappings
and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical
constrained variational inequality (THCVI). Here, the multiple hybrid implicit iteration method is
based on the Moudafi’s viscosity approximation method, Korpelevich’s extragradient method, Mann’s
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mean method, and the hybrid steepest-descent method. Under some suitable assumptions, strong
convergence of the proposed method to the unique solution of the THCVI is derived.

2. Preliminaries

Let {T; }_, be a sequence of continuous pseudocontractive self-mappings on C. Then, {T,}_,
is said to be a countable family of /-uniformly Lipschitzian pseudocontractive self-mappings on C if
there exists a constant £ > 0 such that each T}, is ¢-Lipschitz continuous. We fix an element x in H to
see that there exists a unique nearest point in C, denoted by Pcx, such that

lx = Pex|| < Jlx—yl, VvyeC

Pc is called a metric projection of H onto C. It may be a set-valued operator. Further, C is
assumed to be convex and closed, and X is assumed to be Hilbert, Pc is, in such a situation, a
single-valued operator.

We need the following propositions and lemmas to prove our main results.

Proposition 1 ([27]). We suppose C is a convex closed subset of a Banach space X. Let Sy, S1,... be a
self-mapping sequence on C. Let Y;>_ 1 sup{||Spx — S,_1x|| : x € C} < oo. We conclude {S,y}, where
y € C, converges strongly to some point in C. Moreover, we assume S is a self mapping on C generated by

Sy = limy, e Spy for all y € C. Therefore, lim,, e sup{||Sx — Syx|| : x € C} = 0.

Proposition 2 ([28]). We suppose C is a convex closed subset of a Banach space X and T is a continuous strong
pseudocontraction self-mapping. Therefore, T enjoys fixed points. Indeed, it has a unique fixed point.

The following lemma is trivial.
Lemma 2. In a real Hilbert space H, there holds the inequality
20y +xy) > llx+yl* = Ix|?, vy e H.
Lemma 3 ([29]). We suppose that {a, } is a nonnegative number sequence satisfying the restrictions
pi1 < A+ ApYn — Antn, V1 20,

where {Ay, } and {7y, } are sequences of real sequences such that

(i) limsup,, v < 00r oo [Anyn| < oo;
(it) {An} C [0,1] and Y5 g An = oo, or equivalently,

n
nli_r)r(}og(l —Ax) =0.

Hence, a,, — 0asn — oo.
The following lemma is a direct consequence of Yamada [30].

Lemma 4. Let F : H — H be a x-Lipschitzian and n-strongly monotone. We suppose A is a positive real
number in (0,1] and T : C — H is a nonexpansive nonself mapping, and we define the mapping T* : C — H by

Thx := Tx — AuF(Tx), Vx € C.
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Ifo<u< 12(—’27, then T is a contraction operator, that is,
IT'x — Ty < 1= A1)|lx—y|, VxryeC,
where T =1 — /1 — u(2y — ux?) € (0,1].

Lemma 5 ([31]). We suppose that the nonself mapping A : C — H is a-inverse-strongly monotone. Then, for
agiven A > 0,
11 = AA)x = (I = AA)y[? < [lx = y[I> + A(A = 2a) || Ax — Ay]]>.

In particular, if 0 < A < 2a, then I — A A is nonexpansive. Further, we suppose A : C — H is a monotone
and hemicontinuous mapping. Then, the following hold:

(i) VI(C,A) = {x* € C: (Ay,y —x*) >0, Yy € C};
(i) VI(C, A) = Fix(Pc(I — AA)) forall A > 0;
(iii) VI(C, A) consists of one point if A is strongly monotone and Lipschitz continuous.

Lemma 6 ([8]). We suppose the nonself operators By, B, : C — H are a-inverse-strongly monotone and
B-inverse-strongly monotone, respectively. Let the self operator G : C — C be defined in G := Pc(I —
#1B1)Pc(I — upBy). G : C — C is nonexpansive if 0 < py < 2aand 0 < pp < 2p.

Lemma 7 ([32]). We suppose the Banach space X enjoys a weakly continuous duality mapping, and C is a
convex closed set in X. Let T : C — C be an asymptotically nonexpansive self mapping on C with a nonempty
fixed point set. Then, I — T is demiclosed at zero, i.e., if {x,} is a sequence in C converging weakly to some
x € C and the sequence {(I — T)x, } converges strongly to zero, then (I — T)x = 0, where I is the identity

mapping of X.

Lemma 8 ([33]). Let both {x, } and {hy} be a bounded sequence in a Banach space X. Let {B,} C (0,1) bea
number sequence such that
0 < liminf B, < limsup B, < 1.
n—oo n—co
Suppose that X, 11 = BuXy + (1 — Bn)hy Vn > 0 and limsup,,_, (|1 — || — [[Xp41 — x2]]) < 0.
So, limy,—sc0 ||y — x| = 0.

3. Main Results

Let C be a convex closed subset of a real Hilbert space H. Let B1, B, : C — H be monotone
mappings, A — ¢ : C — H be a monotone mapping with A,¢ : C —+ H, T : C — C be an
asymptotically nonexpansive mapping, and {S, }_, be a countable family of /-uniformly Lipschitzian
pseudocontractive self-mappings defined on C. We suppose Q) := N, Fix(S,) N GSVI(C, By, By) N
Fix(T) # @ and studied the variational inequality for monotone mapping A — g over the common
solution set () of the GSVI (3) and the CFPP of {S,}7> , and T:

Findx e VI[Q,A—-g):={x € Q: (A—-g)x,y—x) >0Vy € Q}.

This section introduces the following monotone variational inequality problem with the inequality
constraint over the common solution set of the GSVI (2) and the CFPP of T and {S,}°,, which is
named the triple hierarchical constrained variational inequality:

Assume that

(C1) T : C — Cis an asymptotically nonexpansive mapping with a sequence {6, };

(C2) {Sn}y is a countable family of /-uniformly Lipschitzian pseudocontractive self-mappings
on C;
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(C3) By,Bp : C — H are a-inverse-strongly monotone and pB-inverse-strongly
monotone, respectively;

(C4) GSVI(C, By, By) := Fix(G) where G := Pc(I — p1B1)Pc(I — upBy) for uy, up > 0;

(C5) O := N Fix(Sn) N GSVI(C, By, By) NFix(T) # @;

(C6) Y01 sup,cp [|Sux — S—1x|| < oo for any bounded subset D of C;

(C7) S : C — C is the mapping defined by Sx = lim, 0 Syx Vx € C, such that Fix(S) =
Mo Fix(S,);

(C8) g: C — Hisl-Lipschitzian and A : C — H is {-inverse-strongly monotone such that A — g
is monotone;

(C9) f : C — Cis a contraction mapping with coefficient § € [0,1) and F : C — H is k-Lipschitzian
and #-strongly monotone;

(C10) VI(Q), A — g) # @.

Problem 1. The objective is to

find x* € VI(VI(QQ, A —g),I - f)
={x* e VI(Q,A—g): ((I-fx*,v—x*) >0, Vo e VI[Q,A—-Q)}.

Since the original problem is a variational inequality, in this paper, we call it a triple hierarchical
constrained variational inequality. Since the mapping f is a contractive, we easily get that the solution
of the problem is unique. Inspired by the results announced recently, we introduce the following
multiple hybrid implicit iterative algorithm to find the solution of such a problem.

Algorithm 1: Multiple hybrid implicit iterative algorithm.
Step 0. Take {a, }5 o, {Bn oo {vn iy C (0,00), and p > 0, choose xy € C arbitrarily, and let
n:=0.
Step 1. Given x,, € C, compute x,, 1 € C as

Uy = YnXn + (1 - ’)’n)snun/

On = Pc(un — paBautn),

Zn = PC(UH - VlBlvn)/ )
Yn = Pclang(xn) + (I — anA)zy],

wy = Pelanxy + (I — aypF)T"yy],

Xnt1 = “nf(xn) + ﬁnxn + (1 — &p — ﬁn)wn-

Update n := n + 1 and go to Step 1.

We remark here that our algorithm is quite general. It includes mean-valued techniques, gradient
techniques, and implicit iteration techniques. Our algorithm can also generate a strong convergence
without any compact assumptions in infinite dimensional spaces.

We now state and prove the main result of this paper, that is, the following convergence analysis
is presented for our Algorithm 1.

Theorem 1. We suppose j1 € (0,2a), pz € (0,2B), and 1 +6 < 1:=1— /1 —u(2n — ux?) € (0,1] for
ne (0, i—’;) Let number sequences {an }, {Bn} and {yn} lie in (0, 1] such that

() imy oo 0y = 0 and Yy = 00;

(i) limy, o 82 = 0;

(ii1) 0 < liminf, .o By < limsup,, . Bn < land ay +p, <1Vn > 0;

(iv) 0 < liminf, e vy < limsup,, o vn < 1and limy eo [Yn41 — Tn| = 0;
() limy, 00 || Ty, — Ty, || = 0.Then, we have the following conclusions:
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(a) {x}2_, is bounded;

(b) imy, 0 || x5 — Yu|| = 0 and limy, o0 ||xn — wy|| = 0;

(c) limy o0 ||Xn — Gxy|| =0, limy_yeo ||Xy — Txy|| = 0 and limy, 0 || X, — Sxu|| = 0;

(@) If (||xn — yull + |xn — wnl|) = o(an), then {x, }_, converges strongly to the unique solution of the
Problem 1.

Proof. Observe that the metric projection Pyyq, 4 ¢) is nonexpansive. Indeed, it is firmly nonexpansive.
The mapping f is contractive. Thus, the composition mapping Pyyq 44 f is a contraction mapping
and hence Pyyq 44 f has a unique fixed point. Say x* € C, thatis, x* = PVI(Q/A,g)f(x*). By Lemma 5,

{x*} = Fix(PVI(Q,A_g)f) =VI(VI(Q,A—Q),I—f).

Therefore, Problem 1 has a unique solution. Without loss of the generality, we can assume that
{an} C (0,27] and {yn} C [a,b] C (0,1) for some a,b € (0,1). By Lemma 6, we know that G is
nonexpansive. It is easy to see that for each n > 0 there exists a unique element u, € C such that

Uy = YnXn + (1 _'Yn)snuw (5)
Therefore, it can be seen that the multiple hybrid implicit iterative scheme (4) can be rewritten as

Up = YnXn + (1 — 'Yn)Snun/

zy = Guy,

Yn = Pclang(xn) + (I — anA)zy),

Xpi1 = &nf(xXn) + Buxn + (1 — ay — Bn)Pclanxy + (I — ayuF)T"yy,], Vn > 0.

(6)

Next, we divide the rest of the proof into several steps.

Step 1. We prove {x,}, {vn}, {zn}, {ttn},{vn}, {T"yn}, and {F(T"y,)} are bounded. Indeed,
We can take an element p € Q = ;" Fix(S,) N GSVI(C, By, By) N Fix(T) arbitrarily. Then, we have
Spup = p,Gp = pand Tp = p. Since S, : C — C is a pseudocontraction self mapping, one can
show that

lun = pll < 0 = pll, ¥n>o0. @)
Hence, we get
llzn = pll = [IGun — pll < lun = pll < llxn —pll ®)
Since lim, so0&y = 0 and 1 > limsup, . By > liminf, . By > 0, we may assume that
{an + Bn} is a set in [c,d]|. Here, ¢,d € (0,1). In addition, since lim;,_c % = 0, we may further

assume that
T—1-9)

0,(1+ anl) < & . (< an(T—1—0)).

From Lemma 5 and (8), we can prove that

lyn —pll < (I —anA)zn — (I —anA)p + an(g(xn) — Ap)|l
< llzn — pll + anllg(xn) — Ap|l )
< (T +anl)|xn — pll + anllg(p) — Apll-

We have from (6) and using Lemma 4 and (9) that
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[xn+1 = pll
< anllf(xn) = Pl + Bullxn — pll + (1 — an — Bu) | Pclanxn + (I — anpF) T"yn] — pl|
< anllf(xn) = f(p) + f(p) — Pl + Bullxn — pll
+ (1= an = Bu)llan(xn = p) + (I = anpF)T"yy — (I — anptF)p + an (I — pF)p||
< (and + Bu)l[xn — pll + anllf(p) — Pl
+ (L= an — Bn)anl[xn — pl + (1 — anT) (1 + 04) [|yn — pll + an[|(I — uF)pll]
< (and + Bu)llxn — pll +anl f(p) — pll
+ (1 —an = Bn)lanl|xn — pll + (1 — anT+04) lyn — pll + anl|(I — pF)pl|]
< (and + Bn)llxn — pll +anll f(p) — pll + (1 — an — Bu){anllxn — p|
+ (1= anT)[(1 +anl)|lxn — pll + anllg(p) — Apll] + 02 [(1 + anl)[|xn — p||
+anlg(p) — Apll] + anl[(I = uF)p|}
< (and + Bn)llxn — pll +anll f(p) — pll + (1 — an — Bu){anllxn — p|
+ [ —an(t=Dllxn — pll + (1 — anT)an|g(p) — Apl| + 0n (1 + anl)[|xn — p|
+a;7llg(p) — Apll} + anl[ (I — uF)p]|
< (and + Bn)llxn — pll + el f(p) — pll + (1 —an — Bu)an + 1 — an(t — D]|[xn — pll
+ anllg(p) — Apll 4 6n (1 + anl) [[xn — pll + aul|(I — uF)p|
={l—an(t—=1-20) = (an + Bn)an[l — (t = D]}|xn — pll
+ 0n(L+ anl)|[xn — pll +an(llf(p) — Pl + llg(p) — Apll + (I — uF)pl)
<1 an(e— 1= )y — pll+ 2Dy

+an(lf(p) —pll +llg(p) — Apll + (I = uF)pl|)
. o (T —1 _5)]||xn Cpl+ an(t—1=0) 2(|f(p) —pl + llg(p) — Apll + |(L — uF)pl)

Y
2(|Lf(p) — pll + llg(p) — Apll + [I(I — ﬂF)Pll)} ‘
! T—1-96 )

< max{|x, - p|

By induction, we have

2l = FI+ 1Ay s+ I=1DD 1y s o

%1 = pll < max{

Thus, {x,} is a bounded sequence, and so are the sequences {y.}, {zn}, {tn}, {T"yn}, and
{F(T"yy)}. Since {S, } is f-uniformly Lipschitzian on C, we know that

[Snttn|| < \ISuten = pll + lIpll < €llun —pll +pll,

which implies that the set {S,u,} is bounded. Additionally, from Lemma 1 and p € Q C
GSVI(C, By, By), it follows that (p, q) is a solution of the GSVI (3), where ¢ = Pc(I — p2B;)p. Noting
that v, = Pc(I — upBy)uy, for alln > 0, by Lemma 5, we have

[onll < 1Pc(I — paBa)un — ql| + llq||
= ||Pc(I — p2Ba)un — Pc(I — p2B2)q|| + |4l
< Jun —qll + ll4l],

which shows that {v, } also is bounded.
Step 2. We prove that ||x,,+1 — x,|| = 0and ||y,4+1 — yu|| — 0as n — oo. Indeed, we set
Xn41 = BnXn + (1- ﬁn)hn

and notice
wy = Pe[(I — anpuF) Ty, + apxn).
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Then,
o Xy
hn = 57— f () + (1 = )Pclanxy + (I — anpF)T"yy].
1 - ﬁn ]- - ,Bn
Simple calculations show that
hn+1 hn
— 1 (F(rnn) — F(0) + (1= 5 ) (Pl + (L= g1 fF) Ty 0]

— Pelanxy + (I — anpF)T"yn) } + (1?15;:1 — 125.) (f (xn) — wn).
It follows from (6) that

17n1 — M|

< &ﬁ”f(xﬂ) - f(xn+1)|| + (1 - 15“1 )||PC[“n+1xn+1 + (1 - o‘n+1VF)Tn+lyn+1]
bl + (1~ wnF) Tl |15 — 8l — ()|

€ 8 e+ (L g ) [Ty Ty, Ty, Ty,
+ app1 (Xns1 — #F(Tnﬂl/nﬂ)) - “n(xn HE(T"yn)) |

+ |1”‘n+1 (xn) = T"yn — an(xn — uF(T"yn)) ||

n+1

<l e (L )14 B lymes — ol + T — TPy

+ [ 001 = pE(T" Y1) |+ anl| 20 — wE(T"y) |
+ |l — (xn) = T"yn — an(xn — wE(T"yn)) ||

ﬁn-%—l
o
< Nyusr = yall + Onrallyn — Yl + 2525 1xns1 — xull + 1Ty — Ty
+ st [ Xns1 — pE(T" i) [+ a0 — pE(T"y) |

+ |1“73+,111 - 15?3,1 [1f (xn) = Ty — an (xn — uF(T"yn)) |-

(10)

Since {a,} C (0,2¢] and A is {-inverse-strongly monotone, by Lemma 5, we obtain

Y1 = nll

= ||Pclang(xn) + (I — anA)zu] — Pclany18(Xny1) + (I — apy14)zn1a]|l

< (I = any1A)zn1 — (I — anA)zn + a0y 118 (Xn11) — ang(xn) ||

=[[(I —ans14)zn1 — (I — wp114)zn + (a0 — @y 1) Azn + @18 (Xnt1) — ang(xn) | (11)
< NI = ant1A)zn1 — (I — a1 A)znl| + |an — ania ||| Aznl| + l|an+18(xns1) — ang(xn) |

< llzns1 = zall + |an — ana| | Aznl] + ani1 | (1) [| + an | g (xn) |

< lunsr — unll + | Azulllan — ana] + ania 1§ (xnr1) | + anl[g(xn) |-

Furthermore, simple calculations show that
Uny1 = Un = Y1 (Xng1 — %n) + (1= Yuy1) (Sng1thns1 — Sntin) + (Vg1 — Yn) (Xn — Sntin),
which hence yields

g1 — un)?

= Yn+1{Xn+1 = X, U1 — Un) + (1 — Y1) (Sn1tn1 — Sntbn, Uni1 — Un)
+ ('Yn-i—l - '}’n)(xn — Splp, Upy1 — un>

= Vi1 {Xn41 = Xn, U1 — Un) + (1= Y1) [(Sup1tn1 — Snlhni1, Uns1 — tn)
+ <Snun+1 — Splly, Upy1 — un>] + ('Yn+1 - ')/n)<xn — Sply, Upy1 — un>

< Yus 1% = Xnlllln1 = unll + (1= Ynsa) [[[Snsrttnr1 — Suttna [ [un1 — un|
+ lun1 — ”nHZ] + Y1 = valllxn — Snttn||[[ttn 1 — ten |-

So it follows that

lunt1 —unll < YurrllXner = xnll + (1= Yur) lISns1tnr1 — Sty
+ |tng1 — unll] + [vng1 — vulllxn — Snunl],
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which immediately leads to

1— -S
%:Yﬁl ISna1tni1 — Snttyaall + |vne1 — ’Yn|“|xnwj1unH (12)
—S
< Nnsr — Xnll + LIS psattnir — Suttura |l + |ynga — | Fo=Sniinl

||un+1 - uﬂ” < ||xn+1 - leH +

Put D = {u, : n > 0}. Since {u, } is a bounded sequence, we know that D is a bounded set. Then,
by the assumption of this theorem, we get

Y sup [[Sys1x — Sux]| < oo.

n=0xeD
Noticing that
[Snt1ttn1 — Snttnsa || < sup [|Spax — Sux[,  Vn >0,
xeD
we have
(o)
|Sns1ttns1 — Snttpy || < oo. (13)
n=0

Therefore, from (10)-(12) we deduce that

[P = | 5
n
< Ol =9l + 725 =l T = Tl + = o
n
+ i [xp41 — Vi(Tn+l]/n+1)H + |20 — pF(T"yn) |
n+1 _ n 7 . . "
+ |1 7,Bn+1 1— ‘Bn|||f(xn> T ]/n D‘n(xn ]/lF(T ]/n))H

< unsa = unll + lan = [[|Aza || + anal|g () || + anllg ()

44 15
+ Ot Y1 =yl + 75— e =l + [T Yy — Ty
n

sl na = pE(T" Nynin) |+ anllxn — pE(T"yn) |

I = TR o) = Ty — aaln — RE(Ty))|

< Hxn-i-l - xn” + ;Hsn—l-lun—&-l - Snun-HH + |')’n+1 -

+ lan — apy1|l|Aza|| + ang1 1§ (enr) | + anllg(xn) | + Ongallyns1 — yall

|60 — Spin|
Yn|———

Kyy10
T = xall 1T = Tyl s~ RE(T )]
n
o o
+ an[xn — pE(T"yn) || + |1 _n+1 1 _n £ (xn) = T"yn — an(xn — pE(T"yn)) ||,
an+l ﬁn
which immediately attains
n_sn n
a1 = hull = [[xn41 — x| < %HSnJrlunJrl = Sutbpra |l + [vns1 — ’)’n|Hx,17uH

+ lan — || Az || + ania |8 () || + anllg ()] + Onpa[Ynia — vl

14
0y — )+ Ty — Tl + gt — (T y0) | (9
+ anllxn — pF(T"yn)|| + |1f'/§:11 - 1575,1 [1f(xn) = T"yn — an (xn — wF(T"yn)) |-
Since limy 00 8, = 0 and limy, 0 || T" "'y, — T"yy4|| = 0 (due to condition (v)), from (13) and

conditions (i), (iii), (iv), it follows that

imsup([|fy 1 = all = |%n 1 = xa]) <0.
n—oo
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Hence, by condition (iii) and Lemma 8, we get lim, o ||1n — x5 || = 0. Consequently,
im0 — ol = Tim (1= B[y — ]| = 0. (15)
Again from (11) and (12), we conclude that

41 — vl

< lotnrr — sl + an — et | Azl + 1 1§ (i) |+ ullg o) |

< %1 — x|+ 2Susattst — Suttall + [vnen — vu =m0l oy — ||| Az
+ 118 (Xus1) | + anllg(xn)|| =0 (n — o0),

and
lzn = zns1ll = [[Gun — Gupsa || < [[un — tpsal| =0 (n — o0).
Thus,
Jim [lyn —yniall =0, lim [Juy —wpq]] =0 and  lim [[zy — 2,44 = 0.

Step 3. We prove ||x, — Gx,|| — 0as n — oo. Indeed, noticing wy, = Pc[(I — aypF)T"yy + anxy]
foralln > 0, we have

(I — ayuF)T"yy + anxy — Polanxy + (I — anpuF)T"yy], p — wy) < 0. (16)
From (16), we have

Hwn - sz <PC[(I - “n.uF)Tn]/n + “nxn] p, Wy — P>

= (Pc[(I — anpuF)T"yn + anxy) — anxy — (I — anuF)T"yp, wy — p)
+ <“nxn + (I = anpF)T"yn — p,wn — p)
(@nxn + (I = anptF)T"yn — p,wn — p)
<(1 - anuF )T"yn = (I = anpF)p,wn — p) + an(xn — uFp,wn — p)
(1-

IA I IA

S T[Ty — P||Hwn—f||+“n<xn—ﬂpl%wn—l7>
2(1_%7) ||Tnyn_P‘|2+§Hwn_?7||2+"‘n<xn_VPP/wn_P>-

IN

Hence, we have

lwn = plI* < (1= an?)?|T"n — pll* + 200 (xn — uFp,wn — p)
< (1= anT)(1+60n)*|yn — plI> + 200 (xu — uFp,wy — p) (17)
= (1= anT)[[lyn — plI> + 0a(2+0u)llyn — plI*] + 200 (xn — uFp,wn — p)
< (1= an®)llyn — pIIP + 622+ 00) lyn — pII* + 200 (xn — uFp,wn — p).

From (9) and (17), we get
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[xp41 — plI?
= [|Bu(xn = p) + an(f(xn) = f(p)) + (1 — an — Bu) (wn — p) + an(f(p) — p)|I*
< |1Bu(xn —p) +an(f(xn) = f(p)) + (1 — an — Bn)(wy — P)Hz +2an(f(p) = P, Xny1 = P)
< tnl[ f(xn) = F(P)IP + Bullxn — plI* + (1 = an — Bu) [|wn — plI* + 20 (f(p) = p, Xns1 — p)
< wnbl|xn = pl* + Bullxn — pl* + (1 — aw — Bu) [(1 — anT)[lyn — plI?
+ 0 (24 0n) |lyn — PHZ + 20y (xn — pFp,wn — p)] + 200 (f(P) — P, Xn11 — P)
< wnbl2n = plI> + Bullxn — plI* + (1 — an — Bu) {(1 = ) (|20 — pll + anllg(xn) — Ap|)? (18)
+0n(2+0n)llyn — pII* + 200 (xn — pFp,wn — p)} + 20u(f (p) = p, Xns1 — p)
< wndl|xn — plI* + Bullxn — plI* + (1 — an — Bu){(1 — an 7120 — p||?
+ anl|g(xn) — Apl|(2l|zn — pll + anllg(xn) — Apll) + 64(2 + 64) lyn — plI?
+ 20 (xn — uFp,wn — p)} + 200 (f(p) = P, Xns1 — p)
< wnblxn = plI* + Bullxn — pl* + (1 — an — Bu) (1 — @) |20 — p|?
+ anllg(xn) — Apl|2llza = pll + aullg(xn) — Apll) + 62(2 + 6,)[lyn — plI?
+ 2 || X0 — uEp||lwn — pll + 20l f(p) = pll |01 — Pl

T —

T~

We now note that g = Pc(p — u2Bap), vn = Pc(un — paBouy), and z, = Pc(vy — u1B1on).
Then, z, = Gu,. By Lemma 5, we have

lon — qlI* = |Pc(un — paBaun) — Pc(p — p2Bap) ||
< lun — p — p2(Baun — Bap) || (19)
< lun = plI* = p2(2B — u2) || B2un — Bapl|?
and
lzn = plI* = IIPc(vn — p1B1on) — Pc(q — p1B19)|?
< on — g — p1(B1on — B1g) |2 (20)
< lon — qlI* = p1 (2 — 1) |Byow — Bag|*.

Substituting (19) for (20), we obtain from (7) that

lzn = plI* < llun = pll* = p2(2B — p2) | Battn — Bop||* = p1 (2 = 1) || Byon — Baq> 1)
< ot = plI* = 12(2B — p2) [ Baun — Bap||* — pa (20 — 1) || Brow — Bag|*.

Combining (18) and (21), we get

%11 — P12
< aydl|xn — PHZ + Ballxn — PHZ + (1 —an—Bn)(1 —an7)||zn — PHZ
+anl[g(xn) — Apll(2llzn — pll + anllg(xn) — Apll) + 61(2+6x) lyn — plI?
+ 20 || xn — pFpllwn — pll + 2| f(p) — pll|1Xn42 — Pl
< ayllxn — PHZ + Ballxn — sz + (1 —an —Bn) (1 — anT)[[|xn — P||2
— 1#2(2B — p2)||Baun — Bap||* — 1 (26 — 1) | Biow — Bg?]
+an[g(xn) — Apll(2llzn — pll + anllg(xn) — Apll) + 61(2+6x) lyn — plI?
+ 20n || xn — pFp|lwn — pll + 2| f(p) = pll1Xn41 — Pl
= [1—an(1 = an = Bu)Tlxn — plI> = (1 — an — Bu) (1 — &) [#2(2B — p2) || Battn — Bap||?
+ 1 (20 — 1) | Biog — Big|[?] + an[g (xn) — Apll(2]|zn — pll + anllg(x4) — Apl])
+6n(2+0) lyn — pI* + 2| xn — uFpllllwn — pll + 2aull f(p) = plllIx0s1 — pll
< lxn = plI* = (1= an — Bu) (1 — anT) [12(2B — p2) | Battn — Bop||?
+ p1 (20 — 1) [ Brog — Bag|’] + anllg(xn) — Apll(2]|zn — pll + anllg(xn) — Ap|l)
+0n(2+00) lyn — pI* + 2an||xn — uEpl|llwn — pll + 2anll f () = plllIxns1 — pll,
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which immediately yields

(1—an — Bu) (1 — @) [2(2B — p2) || Battn — Bapl|* + p1 (2 — p1) | Bron — B1q||?]

< lxn = plI> = xns1 — plI* + anllg(xn) — Apll(2l|zn — pll + anllg(xn) — Apll)
+ 00 (24 0)lyn — plI> + 20n || xn — uFpl|lwn — pll + 2l f(p) — pllllxns1 — pll

< (llxn = pll + l1xns1 = plD e — xus1ll + anllg(xn) — Apl[(2l|zn — pll + anllg(xn) — Apll)
+ 604 (2+ 60) lyn — plI> + 20n X0 — pFplllwn — pll + 2l f(p) — pll 1 Xns1 — plI-

(1 —an — Bn) (1 — ayT)[H2(2B — p2)||Battn — Bap||? + w1 (26 — 1) || Byoy — B1g||?] — 0 as n — co. Since
liminf, (1 — &y — Bn) > 0 (due to condition (iii)), #1 € (0,2a), px € (0,28), lim, 060, = 0 and
limy, 0 &, = 0, we obtain from (15) that
nlgl(‘)lo ||Bzun — sz” =0 and nlgl;lo ||Blvn — quH =0. (22)
On the other hand, we have

I

lon —q]|? | Pc(1n — p2Battn) — Pc(p — p2Bap)

< (uy — paBotty — (p — p2Bap), vn — q)
= (Up — p,vn —q) + p2(Bop — Botty, vy — q)
< 3w = plIP + llow — ql1* = lun — v — (p — q)1?] + u2l|B2p — Bouu || [|on — ql,

which implies that

lon =gl < llun = pII* = lltw —on = (p = 9)|1* + 2u2||Bap — Baun[|on — q]I. (23)
In the same way, we derive

I?

llzn — plI? |Pc(vn — u1B1on) — Po(q — p1B1q)

< (vn — w1 B1on — (9 — p1B19), 20 — p)
= (Un —q,2n — p) + p1(B1g — B10n, 2n — p)
< 3llon —ql* + llzn — pII* = llon — za + (p — @) 1)l + 41l|B1g — Byou||[|lzn — plI,

which implies that
20 = plI* < llon = ql1> = lon = 20 + (p — @) |1 + 21| B1g — Broul||z — pll- (24)

Substituting (23) for (24), we deduce from (7) that

I? I

lzn = pI? < llun = pl* = llunw — 00 = (p = @)1 = llon — 20 + (p — q)
+ 2p2|[Bap — Bautn||[|on — ql| + 21 (| B1g = Byou|[|zn — p 25)

< llan = plI* = llun — 00 = (p = ) 1> = llon — 20 + (p — I

+ 2p12|[Bap — Bautn|l[|on — qll +2p1(|B1g = Broa|[|z0 — p|-

Combining (18) and (25), we have



Mathematics 2019, 7, 187 13 of 19

%11 — plI?

< wndlxn = plI> + Bullxn — plI* + (1 — an — Bn) (1 — anT) |20 — plI?
+an[g(xn) — Apll(2llzn — pll + anllg(xn) — Apll) + 64(2+6x) lyn — plI?
+ 20 |xn — uFp||[lwn — pll + 2| f(p) = plll[xni1 — Pl

< anllxn = pl2+ Bullxn — plI* + (1 — an — Bn) (1 — anT)[[|x0 — p|1?
—lttn =00 — (p = @) I* = llon — 2 + (p — @) > + 2p11(|B1g — Brou || |20 — p|
+ 242||B2p — Baun||l|on — ql|] + anllg(xn) — Apl|(2[|zn — pll + anllg(xn) — Apl])
+ 00 (24 0n) lyn — pII* + 2an]| %0 — pFpllllwn — pll + 2au]| f (p) = pllll%ns1 — P

= [1—an(l —an — Bn)]||xn — PH2 — (T —an—Bn)(1 — an?)[[|ttn —vn — (p — ‘7)”2
+ llon —zn + (p — ) 11?] + 241 B1qg — Bronl|l|zn — pll + 2p2|[B2p — Boutn||[|0n — q|
+an[g(xn) — Apll(2llzn — pll + anllg(xn) — Apll) + 64(2+6x) lyn — plI?
+ 2an|xn — uFp||llwn — pll + 2| f(p) = plll[xn1 — Pl

<l = plI> = (1= an = Bu) (1 = ) [[[tn — 5 — (p = |I> + [|on — 20 + (p — ) ||?]
+ 241||B1g — Byoa||l|zn — pll + 2p2 B2p — Baun || [|on — gl + anl[g(xn) — Ap||
X (2)|zn — pll + anllg(xn) — Apll) + 04(2+ 6,) lyn — p|I*
+ 2an[|xn — uFp||[lwn — pll + 2| f(p) = plllxn+1 — P,

which hence yields

(1 —an—Bn) (1 — anT)[[[ttn — v — (p — ‘7)”2 +|lon —zn+ (p— ‘7)”2]
< lxn = plI*> = lxns1 = plI> +2p1[|B1g — Brou | 24 — p|
+ 242 Bop — Boun||||[vn — gl + anl|g(xn) — Apl[(2]|zn — pll + anl|g(xn) — Apl])
+00(2+0n) lyn — pII* + 2anlxn — uFpll[|wn — pll + 2au | f(p) = plll[xns1 — P
< (lxn = pll + lIxns1 = pIDIxn = X4 ll + 21| Big — Bronl[[|zn — pll
+ 242 Bop — Boun||||[vn — gl + anllg(xn) — Apl[(2]|zn — pll + anl|g(xn) — Apl])
+00(2+0n) lyn — pII* + 2an]l2n — pFplll|wn — pll + 2anl f(p) = pllllx0s1 = pI-

Since liminf, 00 (1 — &y — By) > 0 (due to condition (iii)), lim,—e0 0, = 0 and lim, 0 &, = 0, we
conclude from (15) and (22) that

Tim [y — o0~ (p— ) =0 and  Tim [jo, — 2, + (p — )] =0. (26)
It follows that
[un —znl| < lun —vn —(p =@l +llon—za+ (p—q)| =0 (1 — o).

That is,
lim ||uy — Guy|| = lim |ju, — z,|| = 0. (27)
n—oo n—oo

Additionally, according to (6), we have

lun = plI> = vu(xn — p,utn — p) + (1= vu) (Suttn — p, ttn — p)
< Yulxn = poun — p) + (L= ya) Jun — plI?,

which implicitly yields that

2|uy — PHZ < 2(xp — p,un —p)
= |lxn = plI® = llxn — wnll® + llun — plI*.
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This immediately implies that
[l — PH2 < lxn — PH2 — [Jxn — ”nHzr
which together with (3.16), yields

[xns1 = plI* < andllxn — plI* + Bullxn — plI> + (1 — an — Bu) (1 — anT)||20 — plI?
+anllg(xn) — Apll(2llzn — pll + anllg(xn) — Apll) +62(2 4 6x) lyn — plI?
+ 2| X0 — uFp|llwn — pll +2aul f(p) = pll X041 — pll

< tnllxn = plI*+ Bullxn — plI* + (1= an — Bu) (1 — @) [[lxn — plI* = |00 — un||?]
+anllg(xn) — Apll(2llzn — pll + anllg(xn) — Apll) + 62 (24 6x) lyn — plI?
+ 20 [lxn — uFp|llwn — pll + 2anl f(p) — pllllxnt1 — Pl

=[1—an(l—an— Bn)T]|xn — PH2 — (T —an —Bn)(1 — anT)[xn — “nH2
+an[g(xn) — Apl(2llzn — pll + anllg(xn) — Apll) +64(2+ 6x) lyn — P>
+ 20 [lxn — uFp|[lwn — pll + 2l f(p) — plll[xn+1 — Pl

< lxw = pl* + anllg(xn) — Apll2llzn = pll + anl|g(xn) — Apl])
+ 60124 04) llyn — pII* + 20n]| 0 — pFpllJwn — pl|
+ 2an | f(p) — Pllllxnt1 — pll = (1 —an — Bu) (1 — anT) |20 — un .

Hence, we have

(1 =y —Bn)(1 —ayT)||xy — unHz

< lxw = plI* = lxn1 = plI* + anllg(xa) — Apll2l|zn — pll + anllg(xa) — Apll)
+ 60124 04) lyn — plI* + 2an]lxn — pFpll[[wn — pll + 2l f (p) — pllllxns1 — Pl

< (Ixn = pll + N1 = pID lxn — X1l + anlig(xn) — Apll(2llzn — pll + anllg(xn) — Apl|)
+601(2 4 00) llyn — pII* + 2n]| 0 — pFpll[lwn — pll + 2l f (p) = plll| 2011 — plI-

Since liminf, (1 — a0y — By) > 0, limy, 50 0, = 0 and limy, ;e &, = 0, we obtain from (15) that
nlglc}o |27 — un|| = 0. (28)
Moreover, observe that
20 — zal| < l[xn — tnll + || Gy — unl|,

lxn — Gxull < [lxn — znll + [|Gun — Gxul| < [|xn — zull + [[un — xal|,

and
20 = ynll < llxn — ang(xn) — (I — anA)zul| < [|xn — zn|| + anl|g(xn) — Aza|.

Then, from (27) and (28), it follows that
lim |[x, —z,| =0, lm |x, —Gx,||=0 and lm |x, —yu| =0. (29)
n—oo n—oo n—oo

Step 4. Let us prove ||x;, — Suxu| — 0, ||xp — wy|| = 0and ||x, — Tx,|| — 0asn — oco. Indeed,
combining (5) and (8), we obtain that

Ty — | <

b
T 1_b||xn—un\|—>0 (n — o).

[Snttn — tnl|| =

That is,
lim ||Spun — uy|| = 0. (30)
n—oo
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Observe {5}, is f-uniformly Lipschitzian. We further get from (28) and (30) that

||Snxn - an < Hsnxn - SnunH + Hsnlfln — un|| + HMn — an
< llxn — nll 4 [|Snttn — n || + [[un — xa|

That is,
lim ||x, — Spxu|| = 0. (31)
n—o0

We note that {a,, + Bn} C [c,d] C (0,1) for some c,d € (0,1), and observe that

[xn = T"yull < llxn — Xngll + 1001 — T"ynl|
< lxn — xps1ll + anll f(xn) = T"yull + Bullxn — T"ya||
+ (1= an — Bn)[|Pcanxn + (I — anptF)T"yn] — T"yn||
< lxn = 21l + anll f(xn) = T"yull + Bullxn — T"ynll + anllxn — pE(T"yn)||-

Then,

lxn = Tyl < =g {lln = xnga ||+ an(1f (xn) = Tyull + 200 = pE(T"ya) )}

<
< ﬁ{llxn — Xpp1 ||+ an ([ f(xn) = T"yall + [[xn — wF(T"ya) )}

Hence, we get

lyn = T"yull < lyn — xnll + [|xn — T"yul|
< lyn — xull + 117{”3‘" — Xpp1ll + an([[f(xn) = Tyull + |20 — pF(T"yn)[|) }-

Consequently, from (15), (29) and lim;, o & = 0, we obtain that
nh_rfgo lxn = T"yu| =0 and nlg{}o lyn = T"yull = 0. (32)

So it follows that

[0 —wnll < [|xn — anxn — (I — anptF) T yy||
< lxn — T"yull + anllxn — pF(T"yn)|| =0 (1 — oo).

That is,
lim ||x, — wy| = 0. (33)
n—o0

We also note that
1y = Tynll < llyn = T"Yall + [ T"yn — T* Lyl + | T yn — Tya||
< lyn = Tl + Ty — Tyl + (14 00| T"yn — yall
= T"yn — Tn“]/ﬂ“ + 2+ 0)[IT"yn — yall-
By the condition (v) and (32), we get
lim ||y — Tynl| = 0.
Further, noticing that

llxn — Txull < %0 —yall + lyn — Tynll + 1 Tyn — Txull < lyn — Tyull + (2 +61) [|xn — yall,

we deduce from (29) that
nh_r)r(}o [xn — Txul| = 0. (34)
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Step 5. Set S := (21 — S)~!. We aim to prove ||x, — Sx,|| — 0 asn — co. We show that
S : C — Cis pseudocontractive and /-Lipschitzian such that lim,_, ||Sx;, — x,|| = 0, where Sx =
lim, 00 Spx Vx € C. Observe thatforall x,y € C, limy 0 [|Spx — Sx|| = 0and lim, e || Sny — Sy|| = 0.
Since each S, is a pseudocontractive operator, we get

(Sx = Sy,x —y) = lim (Syx — Sy, x —y) < [lx —y|>
This presents that S is pseudocontractive. Note that {S,,}%°  is f-uniformly Lipschitzian
152 = Syll = lim [|Sux = Suy|| < £lx —yll, Vx,yeC.

This means that S is /-Lipschitzian. Since the boundedness of {x,} and putting D = conv{x, :

n > 0} (the closure of convex hull of the set {x, : n > 0}), we have }_7” ; sup,..p ||Snx — S,—1x|| < c0.
Hence, by Proposition 1, we get

nh_r)r(}o ||Snxn — Sxyu|| = 0. (35)

Thus, combining (31) with (35) we have

That is,
lim ||x, — Sx,|| = 0. (36)
n—o0

Define S := (21 —S)~1. S : C — C is nonexpansive, Fix(S) = Fix(S) = N, Fix(S,) and
limy 00 || X5 — Sxn|| = 0. Indeed, put S := (21 — S)~!, where I is the identity mapping of H. Then, S is
nonexpansive and the fixed point set Fix(S) = Fix(S) = N, Fix(S, ). Observe that

— 771 —
Ixn — Sxull =SS "xn — Sxu||
=1
< IS “xn — x|
= ||xy — Sxy]|-
From (36), it follows that
Jim |xn — Sxn|| = 0. (37)
Step 6. We aim to present
limsup((I — f)x*, x* —x,) <0, (38)
n—oo

where {x*} = VI(VI(Q), A — g),I — f). Indeed, we choose a subsequence {x;,} of {x,} such that

lim (I — f)x*,x* — x,,) = limsup((I — f)x*, x* — x).
1—00 n—oo
We suppose a subsequence x,, — & € C. Observe that G and S have the nonexpansivity and that
T has the asymptotically nonexpansivity. Since (I — G)x, — 0, (I — T)x, — 0and (I — S)x, — 0, by
Lemma 7, we have that ¥ € Fix(G) = GSVI(C, By, B,), * € Fix(T) and x € Fix(S) = N Fix(Sy).
Then, ¥ € O = N, Fix(Sx) NGSVI(C, B, By) NFix(T). We present that ¥ € VI(Q), A — g). As a fact,
let y € Q) be a arbitrarily fixed point. Then, it follows from (6), (8), and the monotonicity of A — g that

[y —ylI* < (0 — y) — an(Azn — g(xn)) |12

= lzn — J/||2+2"‘n<AZn 8(xn), Yy — zn) + oz || Az — g(x) |7

< lxw = ylI + 200 (Azn — g(20), Yy — 2u) + 20nl|zn — xXn || ly — 2|l + a5 | A2y — g (x) |7
< [Jxn — ]/”2 + 20, (Ay — 8(y), Y — zn) + 20nl||zn — xu||[ly — zu|| + "‘nHAzn —g(x H)HZI
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which implies that, for alln > 0,

12 12
0 < Lol 4 20(A — g)y,y — zu) + 21120 — ulllly — 2zull + anll Azy — g(xa)|2
< (el Dbl 4 2((A ~ g)y,y — ) + 2|z — x|y = zall + &l Azn — ()

From (29), it is easy to see that x,, — ¥ leads to z,, — %. Since lim; . &y = 0 and ||x,;, — yu|| =
o(an) (due to the assumption), we have

0 < hﬂglf{ (Hxn*yHH\yZ;yH)Hxnfyn\l +2((A=Q)y,y — zu)
+ 21|25 — xu[ly — zn || + anl| Az — g(x)[|*}
= Uminf2((A — g)y,y — zn) < IM2((A —g)y,y —zn) = 2((A - g)y,y — 7).

It follows that
(A-Qyy—% >0, VYyeQ.

Accordingly, Lemma 5 and the Lipschitz continuity and monotonicity of A — g grant that
(A-g)xy—x) >0, VyeQ;
thatis, ¥ € VI(Q), A — g). Consequently, from {x*} = VI(VI(Q), A — g),I — f), we have

limsup((I — f)x*, x* —x,,) = im ((I — f)x*, x" —x,,) = (I — f)x",x* —x) <O. (39)

n—»00 1—o0

Step 7. Finally, we prove x, — x* as n — oo. Indeed, from (4) we get

X041 — X*Hz = Bulxn — X%, X1 — X°) + an(f (xn) — X, X101 — x¥)
+ (1 —an — Bn)(wn — X, xp11 — x*)
= an[(f(xn) — f(X*), Xp11 — x%) + (f(x*) = X%, Xpp1 — Xn)
+ (f(x*) = x*, 20 — X*)] + Buxn — X¥, X1 — X¥)
+ (1 —an — Bn) [{wn — X, Xpgp1 — x*) + (x5 — X%, X541 — X¥)]
< an[6][xn — X [|[[xns1 — 2| + [ f(x) = 2 [[[[xns1 — xa|
+ (f(x*) =, 20 — x)] + Ballxn — x| [[xn1 — x|
+ lwn = xn [ X417 — 2| + (1= an — Bn)[l2n — ™| |21 — x|
< 11— an (1 — )] — 2* e — x°1) + anlLF () = 2 Mlss —
+ o (f(x") = xZ,xn =) + lwn = xp[ [ xn41 — x*|
B O, v Lt = 12 4wl F3) = 2 1 — 0]

T f () = x, 30 — x%) + [l — x| s — 27,

IN

which immediately yields

et — 212 < 2l (%) = 0" xsr — 2al| + [1— an (1 — 8)]?]| 2 — 2
20 (f (%) = 2%, 30 — %) + 2w — ||| 21 — 2|
< [1— an (1= 6)] [l — 2% |2+ (1= 6) - 25 LI F (x*) = x*[| |41 — 2
H{f () =t — oy sl e,

(40)

Since ||wy — xu|| = 0(an), Yoo &n = 00, and lim, 0 &, = 0, we deduce from (15), (38), and (39)
that ) 5> g, (1 —9) = oo and

llwn — xul|

‘ —x*[|} <.
L =} <

limsup[|f(x") = 2" [[lxn41 = 2xull + (f(x7) = 27, 200 = %) +
n—oo
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Therefore, applying Lemma 3 to relation (40), we conclude that x, — x* as n — co. This completes
the proof. O
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