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Abstract: We generalize a family of optimal eighth order weighted-Newton methods to Banach
spaces and study their local convergence. In a previous study, the Taylor expansion of higher order
derivatives is employed which may not exist or may be very expensive to compute. However,
the hypotheses of the present study are based on the first Fréchet-derivative only, thereby the
application of methods is expanded. New analysis also provides the radius of convergence,
error bounds and estimates on the uniqueness of the solution. Such estimates are not provided
in the approaches that use Taylor expansions of derivatives of higher order. Moreover, the order of
convergence for the methods is verified by using computational order of convergence or approximate
computational order of convergence without using higher order derivatives. Numerical examples are
provided to verify the theoretical results and to show the good convergence behavior.
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1. Introduction

In this work, we generate a sequence {xn} for approximating a locally unique solution α of the
nonlinear equation

F(x) = 0, (1)

where F is a Fréchet-differentiable operator defined on a closed convex subset D of Banach space
B1 with values in a Banach space B2. In computational sciences, many problems can be written in
the form (1). See, for example [1,2]. The solutions of such equations are rarely attainable in closed
form. This shows why most methods for solving these equations are usually iterative in nature.
The important part in the construction of an iterative method is to study its convergence analysis.
In general, the convergence domain is small. Therefore, it is important to enlarge the convergence
domain without using extra hypotheses. Knowledge of the radius of convergence is useful because it
gives us the degree of difficulty for obtaining initial points. Another important problem is to find more
precise error estimates on ‖xn+1 − xn‖ or ‖xn − α‖. Many authors have studied convergence analysis
of iterative methods, see, for example [1–7].

The most widely used iterative method for solving (1) is the quadratically convergent
Newton’s method

xn+1 = xn − F′(xn)
−1F(xn), n = 0, 1, 2, . . . , (2)
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where F′(x)−1 is the inverse of first Fréchet derivative F′(x) of the function F(x). In order to
accelerate the convergence, researchers have also obtained modified Newton’s or Newton-like methods
(see [4,6,8–17]) and references therein.

There are numerous higher order iterative methods for solving a scalar equation f (x) = 0
(see, for example [2]. Contrary to this fact, higher order methods are rare for multi-dimensional cases,
that is, for approximating the solution of F(x) = 0. One possible reason is that the construction of
higher order methods for solving systems is a difficult task. Another factual reason is that not every
method developed for single equations can be generalized to solve systems of nonlinear equations.
Recently, a family of optimal eighth order methods for solving a scalar equation f (x) = 0 has been
proposed in [16], which is given by

yn = xn −
f (xn)

f ′(xn)
,

zn = φ4(xn, yn), (3)

xn+1 = zn −
f [zn, yn]

2 f [zn, yn]− f [zn, xn]

f (zn)

f [zn, xn]
,

where φ4(xn, yn) is any optimal fourth order scheme with the base as Newton’s iteration yn and f [·, ·]
is Newton’s first order divided difference. In particular, they have considered the following optimal
fourth order schemes in the second step of (3):

Ostrowski method (see [12]):

zn = yn −
1

2 f [yn, xn]− f ′(xn)
f (yn). (4)

Ostrowski-like method (see [12]):

zn = yn −
(

2
f [yn, xn]

− 1
f ′(xn)

)
f (yn). (5)

Kung-Traub method (see [15]):

zn = yn −
f ′(xn) f (yn)

f [yn, xn]2
. (6)

Motivated by the above methods defined on the real line, we propose the methods that follow but
for Banach space valued operators. It can be observed that the above family of eighth order methods
can be easily extendable for solving (1). In view of this, here we study the method (3) in Banach space.
The iterative methods corresponding to the fourth order schemes (4)–(6) in the Banach space setting
are given as

yn = xn − F′(xn)
−1F(xn),

zn = yn −
(
2F[yn, xn]− F′(xn)

)−1F(yn), (7)

xn+1 = Ψ8(xn, yn, zn),

yn = xn − F′(xn)
−1F(xn),

zn = yn −
(
2F[yn, xn]

−1 − F′(xn)
−1)F(yn), (8)

xn+1 = Ψ8(xn, yn, zn)
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and

yn = xn − F′(xn)
−1F(xn),

zn = yn − F[yn, xn]
−1F′(xn)F[yn, xn]

−1F(yn), (9)

xn+1 = Ψ8(xn, yn, zn).

In above each case, we have that

Ψ8(xn, yn, zn) = zn −
(
2F[zn, yn]− F[zn, xn]

)−1F[zn, yn]F[zn, xn]
−1F(zn). (10)

Here F[·, ·] : D×D → L(B1, B2) is a first order divided difference on D×D satisfying F[x, y](x−
y) = F(x)− F(y) for x 6= y and F[x, x] = F′(x) if F is differentiable, where L(B1, B2) stands for the
space of bounded linear operators from B1 into B2. Methods (7)–(9) require four inverses and four
function evaluations at each step.

The rest of the paper is summarized as follows. In Section 2, the local convergence, including
radius of convergence, computable error bounds and uniqueness results of the proposed methods,
is presented. In order to verify the theoretical results of convergence analysis, some numerical examples
are presented in Section 3. Finally, the methods are applied to solve systems of nonlinear equations in
Section 4.

2. Local Convergence

Local convergence analysis of the methods (7)–(9) is presented by using some real functions and
parameters. Let λ0 : [0,+∞)→ [0,+∞) be a continuous and increasing function satisfying λ0(0) = 0.
Suppose that equation

λ0(t) = 1 (11)

has positive solutions. Denote by $ the smallest such solution. Let λ : [0, $) → [0,+∞), µ : [0, $) →
[0,+∞), λ1 : [0, $) × [0, $) → [0,+∞) and µ1 : [0, $) × [0, $) → [0,+∞) also be continuous and
increasing functions satisfying λ1(0, 0) = 0. Define functions g1 and h1 on the interval [0, $) by

g1(t) =
∫ 1

0 λ((1−θ)t)dθ

1−λ0(t)
and h1(t) = g1(t)− 1.

We have that h1(0) = −1 < 0 and h1(t) → +∞ as t → $−. By applying the Bolzano’s theorem on
function h1, we deduce that equation h1(t) = 0 has solutions in the interval (0, $). Let r1 be the smallest
such zero.

Moreover, define function p and hp on the interval [0, $) by

p(t) = 2λ1(g1(t)t, t) + λ0(t)

and
hp(t) = p(t)− 1.

We get hp(0) = −1 < 0 and hp(t) → +∞ as t → $−. Let rp be the smallest solution of equation
hp(t) = 0 in the interval (0, $). Furthermore, define functions g2 and h2 on the interval [0, rp) by

g2(t) =
(

1 +

∫ 1
0 µ(θg1(t)t)dθ

(1− p(t))(1− λ0(t))

)
g1(t)

and
h2(t) = g2(t)− 1.
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We obtain h2(t) = −1 < 0 and h2(t) → +∞ as t → r−p . Let r2 be the smallest solution of equation
h2(t) = 0 in the interval (0, rp). Define functions q and hq on the interval (0, rp) and functions ϕ and ψ

on the interval [0, rp), respectively by

q(t) = 2λ1(g2(t)t, g1(t)t) + λ1(g2(t)t, t),

hq(t) = q(t)− 1,

ϕ(t) = λ1(g2(t), t),

ψ(t) = ϕ(t)− 1.

We get hq(0) = ψ(0) = −1 < 0 and hq(t) → +∞ as t → r−p , ψ(t) → +∞ as t → r−ψ . Let rq, rψ be the
smallest solutions of equations hq(t) = 0, ψ(t) = 0 in the intervals (0, rp), (0, $), respectively. Finally,
define functions g3 and h3 on the interval [0, $0) by

g3(t) =
(

1 +
µ1(g2(t)t, g1(t)t)

(1− q(t))(1− λ1(g2(t)t, t))

)
g2(t)

and
h3(t) = g3(t)− 1,

where $0 = min{rq, rψ}. We have that h3(0) = −1 < 0 and h3(t) → +∞ as t → $−0 . Let r3 be the
smallest solution of equation h3(t) = 0 in the interval (0, $0). Set

r = min{ri} i = 1, 2, 3..... (12)

to be the radius of convergence for method (7). Then, for each t ∈ [0, r), it follows that

0 ≤ gi(t) ≤ 1, (13)

0 ≤ p(t) ≤ 1, (14)

0 ≤ ϕ(t) ≤ 1 (15)

and
0 ≤ q(t) ≤ 1. (16)

Let U(a, b) and Ū(a, b) stand, respectively for the open and closed balls in B1 with center a ∈ D
and of radius b > 0.

The local convergence analysis of method (7), method (8) and method (9) is based on the
conditions (A):

(a1) F : D ⊂ B1 → B2 is continuously Fréchet differentiable and D is a convex set. The operator
F[·, ·] : D× D → L(B1, B2) is a divided difference of order one satisfying

F[x, y](x− y) = F(x)− F(y) for x 6= y

and
F[x, x] = F′(x).

(a2) There exists α ∈ D such that F(α) = 0 and F′(α)−1 ∈ L(B2, B1).
(a3) There exists function λ0 : [0,+∞)→ [0,+∞) continuous and increasing with λ0(0) = 0 such that

for each x ∈ D
‖F′(α)−1(F′(x)− F′(α))‖ ≤ λ0(‖x− α‖).

Set D0 = D ∩U(α, $), where $ is given in (11).
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(a4) There exist continuous and increasing functions λ : [0, $)→ [0,+∞), λ1 : [0, $)× [0, $)→ [0,+∞),
µ : [0, $)→ [0,+∞) and µ1 : [0, $)× [0, $)→ [0,+∞) such that for each x, y ∈ D0

‖F′(α)−1(F′(x)− F′(y))‖ ≤ λ(‖x− y‖),

‖F′(α)−1(F[x, y]− F′(α))‖ ≤ λ1(‖y− α‖, ‖x− α‖),

‖F′(α)−1F′(x)‖ ≤ µ(‖x− y‖)

and
‖F′(α)−1F[x, y]‖ ≤ µ1(‖x− α‖, ‖y− α‖).

(a5) Ū(α, r) ⊆ D where r is given in (12) for method (7), by (30) for method (8) and by (31) for
method (9).

(a6) There exists R ≥ r such that ∫ 1

0
λ0(θR)dθ < 1.

Set D1 = D ∩ Ū(α, R).

Next, we first present the local convergence analysis of method (7) based on the conditions (A).

Theorem 1. Assume that the conditions (A) hold. Then, sequence {xn} generated for x0 ∈ U(α, r)− {α} by
method (7) is well defined in U(α, r), remains in U(α, r) for each n = 0, 1, 2 . . . . . . and converges to α so that

‖yn − α‖ ≤ g1(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖ < r, (17)

‖zn − α‖ ≤ g2(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖ (18)

and
‖xn+1 − α‖ ≤ g3(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖, (19)

where the functions gi are defined previously. Moreover, the solution α of equation F(x) = 0 is unique in D1.

Proof. We shall show assertions (17)–(19) using mathematical induction. Let x ∈ U[α, $). Then, using
(a3) and (12), we have that

‖F′(α)−1(F′(x0)− F′(α)
)
‖ ≤ λ0‖x− α‖ < λ0(r) < 1. (20)

By the Banach perturbation Lemma [2] and (20), we deduce that F′(x)−1 ∈ L(B2, B1) and

‖F′(x)−1F′(α)‖ ≤ 1
1− λ0‖x− α‖ . (21)

In particular for x = x0, y0 is well defined by the first substep of method (7) and (21) holds for
x = x0, since x0 ∈ U[α, r). We get by the first substep of method (7) for n = 0, (a2), (a4), (13) (for i = 1)
and (12) that

‖y0 − α‖ = ‖x0 − α− F′(x0)
−1F(x0)‖

=
∥∥∥[F′(x0)

−1F′(α)][
∫ 1

0
F′(α)−1(F′(α + θ(x0 − α))− F′(x0))(x0 − α)dθ]

∥∥∥
≤
∫ 1

0 λ((1− θ)‖x0 − α‖)dθ

1− λ0(‖x0 − α‖) ‖x0 − α‖

= g1(‖x0 − α‖)‖x0 − α‖ ≤ ‖x0 − α‖ < r, (22)
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so (17) holds for n = 0 and y0 ∈ U(α, r). We must show the existence of (2F[y0, x0]− F′(x0))
−1 which

shall imply that z0 is well defined. Using (12), (14), (a3) and (a4), we get in turn that

‖F′(α)−1(2(F[y0, x0]− F′(α)) + (F′(α)− F′(x0)))‖ ≤ 2‖F′(α)−1(F[y0, x0]− F′(α))‖
+ ‖F′(α)−1(F′(α)− F′(x0))‖
≤ 2λ1(‖y0 − α‖, ‖x0 − α‖) + λ0(‖x0 − α‖)
≤ 2λ1(g1(‖x0 − α‖)‖x0 − α‖, ‖x0 − α‖)
+ λ0(‖x0 − α‖)
= p(‖x0 − α‖) ≤ p(r) < 1,

so (2F[y0, x0]− F′(x0))
−1 exists and

‖(2F[y0, x0]− F′(x0))
−1F′(α)‖ = 1

1− p(‖x0 − α‖) . (23)

We can write

F(x) = F(x)− F(α) =
∫ 1

0
F′(α + θ(x− α))(x− α)dθ. (24)

Notice that ‖α + θ(x− α)− α‖ = θ‖x− α‖ ≤ r for each θ ∈ [0, 1]. Using (a4) and (24), we get

‖F′(α)−1F(x)‖ ≤
∫ 1

0
µ(θ‖x− α‖)dθ‖x− α‖. (25)

Then, by (12), (13) (for i = 2), (21), (22), (23), (25) and the second substep of method (7), we obtain in
turn that

‖z0 − α‖ ≤ ‖y0 − α‖+ ‖(2F[y0, x0]− F′(x0))
−1F′(α)‖‖F′(α)−1F(y0)‖

≤ ‖y0 − α‖+
∫ 1

0 µ(θ‖y0 − α‖)dθ‖y0 − α‖
(1− p(‖x0 − α‖))(1− λ0(‖x0 − α‖))

≤
(

1 +

∫ 1
0 µ(θg1(‖x0 − α‖)‖x0 − α‖)dθ

(1− p(‖x0 − α‖))(1− λ0(‖x0 − α‖))

)
g1(‖x0 − α‖)‖x0 − α‖

= g2(‖x0 − α‖)‖x0 − α‖ ≤ ‖x0 − α‖ < r,

(26)

which shows (18) for n = 0 and z0 ∈ U(α, r). We must show the existence of F[z0, x0]
−1 which shall

also imply that x1 is well defined. Using (12), (15) and (a4), we obtain in turn that

‖F′(α)−1(F[z0, x0]− F′(α))‖ ≤ λ1(‖z0 − α‖, ‖x0 − α‖) ≤ λ1(g2(‖x0 − α‖)‖x0 − α‖, ‖x0 − α‖)
= ϕ‖x0 − α‖ ≤ ϕ(r) < 1,

so F[z0, x0]
−1 exists and

‖F[z0, x0]
−1F′(α)‖ ≤ 1

1− ϕ(‖x0 − α‖) . (27)

Then, using the last substep of method (7), (10), (12), (13) (for i = 3), (18), (23), (26) and (27), we get
in turn that

‖x1 − α‖ ≤ ‖z0 − α‖+
µ1(‖z0 − α‖, ‖y0 − α‖)

∫ 1
0 µ(θ‖z0 − α‖)dθ‖z0 − α‖

(1− q(x0 − α))(1− λ1(‖z0 − α‖, ‖x0 − α‖))

≤
(

1 +
µ1(g2(‖x0 − α‖)‖x0 − α‖, g1(‖x0 − α‖)‖x0 − α‖)

(1− q(‖x0 − α‖))(1− λ1(g2(‖x0 − α‖)‖x0 − α‖, ‖x0 − α‖))

)
(28)

× g2(‖x0 − α‖)‖x0 − α‖,
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which shows (19) for n = 0 and x1 ∈ U(α, r). The induction is completed if xk, yk, zk, xk+1 replace x0,
y0, z0, x1 in the preceding estimates, respectively. Then, from the estimate

‖xk+1 − α‖ ≤ c‖xk − α‖ < r, (29)

where c = g3(‖xk − α‖) ∈ [0, 1), we deduce that limk→∞xk = α and xk+1 ∈ U(α, r).
Let Q =

∫ 1
0 F′(α + θ(y∗ − α))dθ for some y∗ ∈ D1 such that F(y∗) = 0. By (a3) and (a6), we have in

turn that

‖F′(α)−1(Q− F′(α))‖ ≤
∫ 1

0
λ0(‖α + θ(y∗ − α)− α‖)dθ,

≤
∫ 1

0
λ0(θ‖α− y∗‖)dθ ≤

∫ 1

0
λ0(θR)dθ < 1,

implies that Q−1 exists. Then, from the identity 0 = F(y∗)− F(α) = Q(y∗ − α), we conclude that
α = y∗.

Next, we shall show the local convergence of method (8) in an analogous way but functions g2, ϕ,
g3 shall be replaced by ḡ2, ϕ1, ḡ3 and which are given by

ḡ2(t) =
(

1 +
µ(t)

∫ 1
0 µ(θg1(t)t)dθ

(1− λ1(g1(t)t, t))2

)
g1(t),

h̄2(t) = ḡ2(t)− 1,

ϕ1(t) = λ1(g1(t)t, t),

ψ1(t) = ϕ1(t)− 1,

ḡ3(t) =
(

1 +
µ1(ḡ2(t)t, g1(t)t)

(1− q(t))(1− λ1(ḡ2(t)t, t))

)
ḡ2(t),

h̄3(t) = ḡ3(t)− 1.

We shall use the same notation for r1 as in (12) but notice that r̄2 and r̄3 correspond to the smallest
positive solutions of equations h̄2(t) = 0 and h̄3(t) = 0, respectively. Set

r̄ = min{r1, r̄2, r̄3}. (30)

The local convergence analysis of method (8) is given by the following theorem:

Theorem 2. Assume that the conditions (A) hold. Then, the conclusions of Theorem 1 also hold for method (8)
with functions ḡ2, ḡ3 and r̄ replacing g2, g3 and r, respectively.

Proof. We have that
‖yn − α‖ ≤ g1(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖ < r̄

as in Theorem 1 and using the second and third substep of method (8) we get (as in Theorem 1) that

‖zn − α‖ ≤ ‖yn − α‖+
µ(‖xn − α‖)

∫ 1
0 µ(θ‖yn − α‖)dθ‖yn − α‖

(1− λ1(‖yn − α‖, ‖xn − α‖))2

≤ ḡ2(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖
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and

‖xn+1 − α‖ ≤
(

1 +
µ1(ḡ2(‖xn − α‖)‖xn − α‖, g1(‖xn − α‖)‖xn − α‖)

(1− q(‖xn − α‖))(1− λ1(ḡ2(‖xn − α‖)‖xn − α‖, ‖xn − α‖))

)
× ḡ2(‖xn − α‖)‖xn − α‖
≤ ḡ3(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖.

We define

¯̄g2(t) =
(

1 + 2

∫ 1
0 µ(θ(g1(t)t)dθ

(1− λ1(g1(t)t, t))
+

∫ 1
0 µ(θ(g1(t)t)dθ

1− λ0(t)

)
g1(t),

¯̄h2(t) = ¯̄g2(t)− 1,

¯̄g3(t) =
(

1 +
µ1( ¯̄g2(t)t, g1(t)t)

(1− q(t))(1− λ1( ¯̄g2(t)t, t))

)
¯̄g2(t),

¯̄h3(t) = ¯̄g3(t)− 1.

Denote by ¯̄r2, ¯̄r3, the smallest positive solutions of equations ¯̄h2(t) = 0 and ¯̄h3(t) = 0. Set

¯̄r = min{r1, ¯̄r2, ¯̄r3}. (31)

Then, we have:

Theorem 3. Assume that the conditions (A) hold. Then, the conclusions of Theorem 1 also hold for method (9)
with functions ¯̄g2, ¯̄g3 and ¯̄r replacing g2, g3 and r, respectively.

Proof. Notice that from the second and third substep of method (9) we obtain

‖zn − α‖ ≤ ‖yn − α‖+ ‖2F[yn, xn]
−1F′(α)‖‖F′(α)−1F(yn)‖

≤ ‖yn − α‖+ 2

∫ 1
0 µ(θ‖yn − α‖)dθ‖yn − α‖

(1− λ1(‖yn − α‖, ‖xn − α‖)) +
∫ 1

0 µ(θ‖yn − α‖)dθ

(1− λ0(‖xn − α‖))‖yn − α‖

≤ ḡ2(‖xn − α‖)‖xn − α‖ ≤ ‖xn − α‖ ≤ ¯̄r

and

‖xn+1 − α‖ ≤
(

1 +
µ1( ¯̄g2(‖xn − α‖)‖xn − α‖, g1(‖xn − α‖)‖xn − α‖)

(1− q(‖xn − α‖))(1− λ1( ¯̄g2(‖xn − α‖)‖xn − α‖, ‖xn − α‖))

)
× ¯̄g2(‖xn − α‖)‖xn − α‖.

Remark 1. Methods (7)–(9) are not effected, when we use the conditions of the Theorems 1–3 instead of stronger
conditions used in ([16], Theorem 1). Moreover, we can compute the computational order of convergence
(COC) [18] defined by

COC = ln
(
‖xn+1 − α‖
‖xn − α‖

)/
ln
(
‖xn − α‖
‖xn−1 − α‖

)
, (32)

or the approximate computational order of convergence (ACOC) [9], given by

ACOC = ln
(
‖xn+1 − xn‖
‖xn − xn−1‖

)/
ln
(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
. (33)
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In this way, we obtain in practice the order of convergence.

3. Numerical Examples

Here, we shall demonstrate the theoretical results which we have shown in Section 2. We use the
divided difference given by F[x, y] = 1

2 (F′(x) + F′(y)) or F[x, y] =
∫ 1

0 (F′(y + τ(x− y))dτ.

Example 1. Suppose that the motion of an object in three dimensions is governed by system of
differential equations

f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y− 1 = 0,

f ′3(z)− 1 = 0. (34)

with x, y, z ∈ D for f1(0) = f2(0) = f3(0) = 0. Then, the solution of the system is given for v = (x, y, z)T

by function F := ( f1, f2, f3) : D → R3 defined by

F(u) =
(

ex − 1,
e− 1

2
y2 + y, z

)T
. (35)

The Fréchet-derivative is given by

F′(u) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 . (36)

Then for α = (0, 0, 0)T we have that λ(t) = et, λ0(t) = (e − 1)t, λ1(s, t) = s+t
2 , µ(t) = 2 and

µ1(s, t) = s−t
2 . The parameters r1, r2, r3, r̄2, r̄3, ¯̄r2 and ¯̄r3 using methods (7)–(9) are given in Table 1.

Table 1. Numerical results for Example 1.

Method (7) Method (8) Method (9)

r1 = 0.324947 r1 = 0.324947 r1 = 0.324947
r2 = 0.119823 r̄2 = 0.107789 ¯̄r2 = 0.083622
r3 = 0.115973 r̄3 = 0.103461 ¯̄r3 = 0.080798
r = 0.115973 r̄ = 0.103461 ¯̄r = 0.080798

Theorems 1–3 guarantee the convergence of (7)–(9) to α = 0 provided that x0 ∈ U(α, r).
This condition yields very close initial approximation.

Example 2. Let B1 = C[0, 1], be the space of continuous functions defined on the interval [0, 1]. We shall
utilize the max norm. Let D = Ū(0, 1). Define function G on D by

G(ϕ2)(x) = φ(x)− 10
∫ 1

0
xθϕ2(θ)

3dθ.

We get that

G′(ϕ2(ξ))(x) = ξ(x)− 30
∫ 1

0
xθϕ2(θ)

2ξ(θ)dθ, f or each ξ ∈ D.

Then for α = 0 we have that λ(t) = 30t, λ0(t) = 15t, λ1(s, t) = s+t
2 , µ(t) = 1.85 and µ1(s, t) = s−t

2 .
The parameters r1, r2, r3, r̄2, r̄3, ¯̄r2 and ¯̄r3 using (7)–(9) are given in Table 2.
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Table 2. Numerical results for Example 2.

Method (7) Method (8) Method (9)

r1 = 0.033333 r1 = 0.033333 r1 = 0.033333
r2 = 0.013431 r̄2 = 0.011013 ¯̄r2 = 0.008039
r3 = 0.013389 r̄3 = 0.010972 ¯̄r3 = 0.008015
r = 0.0133889 r̄ = 0.010972 ¯̄r = 0.008015

It is clear that the convergence of (7)–(9) is guaranteed to α = 0 provided that x0 ∈ U(α, r).

Example 3. Let us consider the function H := ( f1, f2, f3) : D → R3 defined by

H(x) =
(
10 x1 + sin(x1 + x2)− 1, 8 x2 − cos2(x3 − x2)− 1, 12 x3 + sin(x3)− 1

)T , (37)

where x = (x1, x2, x3)
T .

The Fréchet-derivative is given by

H′(x) =

10 + cos(x1 + x2) cos(x1 + x2) 0
0 8 + sin 2(x2 − x3) −2 sin(x2 − x3)

0 0 12 + cos(x3)

 .

With the initial approximation x0 = {0, 0.5, 0.1}T , we obtain the solution α of the function (37)

α = {0.06897 . . . , 0.24644 . . . , 0.07692 . . .}T .

Then we get that λ(t) = 0.269812t, λ0(t) = 0.269812t, λ1(s, t) = s+t
2 , µ(t) = 13.0377 and µ1(s, t) = s−t

2 .
The parameters r1, r2, r3, r̄2, r̄3, ¯̄r2 and ¯̄r3 using methods (7)–(9) are given in Table 3.

Table 3. Numerical results for Example 3.

Method (7) Method (8) Method (9)

r1 = 2.470865 r1 = 2.470865 r1 = 2.470865
r2 = 0.288117 r̄2 = 0.612891 ¯̄r2 = 0.639134
r3 = 0.254805 r̄3 = 0.473734 ¯̄r3 = 0.461618
r = 0.254805 r̄ = 0.473734 ¯̄r = 0.461618

4. Applications

Lastly, we apply the methods (7)–(9) to solve systems of nonlinear equations in Rm.
The performance is also compared with some existing methods. For example, we choose
Newton method (NM), sixth-order methods proposed by Grau et al. [12] and Sharma and Arora [15],
and eighth-order Triple-Newton Method [14]. These methods are given as follows:

Grau-Grau-Noguera method:

yn = xn − F′(xn)
−1F(xn),

zn = yn −
(
2 F[yn, xn]− F′(xn)

)−1F(yn),

xn+1 = zn −
(
2 F[yn, xn]− F′(xn)

)−1F(zn). (38)

This method requires two inverses and three function evaluations.
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Grau-Grau-Noguera method:

yn = xn − F′(xn)
−1F(xn),

zn = yn −
(
2 F[yn, xn]

−1 − F′(xn)
−1)F(yn),

xn+1 = zn −
(
2 F[yn, xn]

−1 − F′(xn)
−1)F(zn). (39)

It requires two inverses and three function evaluations.

Sharma-Arora Method:

yn = xn − F′(xn)
−1F(xn),

zn = yn −
(
3I − 2F′(xn)

−1F[yn, xn]
)

F′(xn)
−1F(yn),

xn+1 = zn −
(
3I − 2F′(xn)

−1F[yn, xn]
)

F′(xn)
−1F(zn). (40)

The method requires one inverse and three function evaluations.

Triple-Newton Method:

yn = xn − F′(xn)
−1F(xn),

zn = yn − F′(yn)
−1F(yn),

xn+1 = zn − F′(zn)
−1F(zn). (41)

This method requires three inverses and three function evaluations.

Example 4. Let us consider the system of nonlinear equations:{
x2

i xi+1 − 1 = 0, 1 ≤ i ≤ m− 1,
x2

i x1 − 1 = 0, i = m.

with initial value x0 = {2, 2,
m−times· · · , 2}T towards the required solution α = {1, 1,

m−times· · · , 1}T of the systems
for m = 8, 25, 50, 100.

Example 5. Next, consider the extended Freudenstein and Roth function [19]:

F(x) = ( f1(x), f2(x), . . . , fm(x))T ,

where

f2i−1(x) = x2i−1 + ((5− x2i)x2i − 2)x2i − 13, for i = 1, 2, . . . ,
m
2

,

f2i(x) = x2i−1 + ((1 + x2i)x2i − 14)x2i − 29, for i = 1, 2, . . . ,
m
2

,

with initial value x0 = {3, 6,
m−times· · · , 3, 6}T towards the required solution x∗ = {5, 4,

m−times· · · , 5, 4}T of the
systems for m = 20, 50, 100, 200.

Computations are performed in the programming package Mathematica using multiple-precision
arithmetic. For every method, we record the number of iterations (n) needed to converge to the
solution such that the stopping criterion

||F(xn)|| < 10−350
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is satisfied. In order to verify the theoretical order of convergence, we calculate the approximate
computational order of convergence (ACOC) using the formula (33). For the computation of divided
difference we use the formula (see [12])

F[x, y]ij =
fi(x1, ....., xj, yj+1, ....., ym)− fi(x1, ....., xj−1, yj, ....., ym)

xj − yj
, 1 ≤ i, j ≤ m.

Numerical results are displayed in Tables 4 and 5, which include:

• The dimension (m) of the system of equations.
• The required number of iterations (n).
• The value of ||F(xn)|| of approximation to the corresponding solution of considered problems,

wherein N(−h) denotes N × 10−h.
• The approximate computational order of convergence (ACOC).

Table 4. Comparison of performance of methods for Example 4. Approximate computational order of
convergence (ACOC).

Methods (2) (38) (39) (40) (41) (7) (8) (9)

m = 8

n 10 4 4 4 3 3 3 3
||F(xn)|| 9.26(−253) 1.30(−304) 8.01(−206) 1.18(−168) 2.80(−126) 6.07(−258) 1.00(−185) 4.15(−171)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

m = 25

n 10 4 4 4 3 3 3 3
||F(xn)|| 1.64(−252) 2.29(−304) 1.42(−205) 2.10(−168) 4.95(−126) 1.07(−257) 1.77(−185) 7.33(−171)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

m = 50

n 10 4 4 4 3 3 3 3
||F(xn)|| 2.31(−252) 3.24(−304) 2.00(−205) 2.96(−168) 7.01(−126) 1.52(−257) 2.50(−185) 1.04(−170)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

m = 100

n 10 4 4 4 3 3 3 3
||F(xn)|| 3.27(−252) 4.58(−304) 2.83(−205) 4.19(−168) 9.91(−126) 2.15(−257) 3.54(−185) 1.47(−170)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

Table 5. Comparison of performance of methods for Example 5.

Methods (2) (38) (39) (40) (41) (7) (8) (9)

m = 20

n 10 3 4 4 3 3 3 3
||F(xn)|| 6.42(−327) 1.15(−63) 1.49(−278) 7.64(−234) 1.42(−162) 3.71(−246) 2.82(−184) 1.41(−197)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

m = 50

n 10 3 4 4 3 3 3 3
||F(xn)|| 1.01(−326) 1.82(−63) 2.35(−278) 1.21(−233) 2.25(−162) 5.87(−246) 4.46(−184) 2.24(−197)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

m = 100

n 10 3 4 4 3 3 3 3
||F(xn)|| 1.43(−326) 2.57(−63) 3.32(−278) 1.71(−233) 3.18(−162) 8.31(−246) 6.31(−184) 3.16(−197)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000

m = 200

n 10 3 4 4 3 3 3 3
||F(xn)|| 2.03(−326) 3.64(−63) 4.70(−278) 2.41(−233) 4.50(−162) 1.17(−245) 8.92(−184) 4.47(−197)
ACOC 2.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000
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From the numerical results shown in Tables 4 and 5 it is clear that the methods possess stable
convergence behavior. Moreover, the small values of ||F(xn)||, in comparison to the other methods,
show the accurate behavior of the presented methods. The computational order of convergence also
supports the theoretical order of convergence. Similar numerical tests, carried out for a number of
other different problems, confirmed the above conclusions to a large extent.
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