Article

Existence and Unique Coupled Solution in S_b-Metric Spaces by Rational Contraction with Application

Jelena Vujaković, Gajula Naveen Venkata Kishore, Konduru Pandu Ranga Rao, Stojan Radenović, and Shaik Sadik

1 Faculty of Sciences and Mathematics, University of Priština, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia; jelena.vujakovic@pr.ac.rs
2 Department of Mathematics, SRKR Engineering College, Bhimavaram, West Godavari 534 204, India; kishore.apr2@gmail.com
3 Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India; kpprrao2004@yahoo.com
4 Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
5 Department of Mathematics, Sir C R R College of Engineering, Eluru, West Godhavari 534 007, India; sadikcrce@gmail.com

* Correspondence: stojan.radenovic@tdtu.edu.vn; Tel.: +381-066-800-6569

Received: 30 January 2019; Accepted: 14 March 2019; Published: 28 March 2019

Abstract: In this paper, we prove a unique common coupled fixed point theorem for two pairs of w-compatible mappings in S_b-metric spaces. We also furnish an example to support our main result.

Keywords: S_b-metric space; w-compatible pairs; S_b-completeness.

1. Introduction

In 2012, Sedghi et al. [1] introduced the notion of S-metric space and proved several results. Some other authors also worked on this (e.g., [2–6]). On the other hand, the concept of b-metric space was introduced by Bakhtin [7] and Czerwik [8] (see also [9–11]).

Recently, Sedghi et al. [1] defined S_b-metric spaces using the concepts of S and b-metric spaces and proved common fixed point theorem for four maps in S_b-metric spaces (see also [12]). Bhaskar and Lakshmikantham [13] introduced the notion of coupled fixed point and proved some coupled fixed point results as well.

The aim of this paper is to prove a unique common coupled fixed point theorem for four mappings in S_b-metric spaces. Throughout this paper, \mathbb{R}^+ and \mathbb{N} denote the set of all non-negative real numbers and positive integers, respectively.

First, we recall some definitions, lemmas and examples.

Definition 1. Ref. [4] Let X be a nonempty set. A S-metric on X is a function $S : X^3 \to \mathbb{R}^+$ that satisfies the following conditions for each $x, y, z, a \in X$:

- (S1) $S(x, y, z) = 0$ if and only if $x = y = z$,
- (S2) $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a)$.

Then, the pair (X, S) is called a S-metric space.

Definition 2. (8) Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d : X \times X \to \mathbb{R}^+$ is called a b-metric if the following axioms are satisfied for all $x, y, z \in X$:

- (b1) $d(x, y) = 0$ if and only if $x = y$;
(b2) \(d(x, y) = d(y, x) \); and
(b3) \(d(x, y) \leq s[d(x, z) + d(z, y)] \).

The pair \((X, d)\) is called a b b-metric space.

Definition 3. ([1]) Let \(X \) be a nonempty set and \(b \geq 1 \) be a given real number. Suppose that a mapping \(S_b : X^3 \to \mathbb{R}^+ \) is a function satisfying the following properties:

\(S_b(x, y, z) = 0 \) if and only if \(x = y = z \); and
\(S_b(x, y, z) \leq b(S_b(x, x, a) + S_b(y, y, a) + S_b(z, z, a)) \) for all \(x, y, z, a \in X \).

Then, the function \(S_b \) is called a \(S_b \)-metric on \(X \) and the pair \((X, S_b)\) is called a \(S_b \)-metric space.

Remark 1. ([1]) It should be noted that the class of \(S_b \)-metric spaces is effectively larger than that of \(S \)-metric spaces. Indeed, each \(S \)-metric space is a \(S_b \)-metric space with \(b = 1 \).

The following example shows that a \(S_b \)-metric on \(X \) need not be a \(S \)-metric on \(X \).

Example 1. ([1]) Let \((X, S_b)\) be a \(S \)-metric space and \(S_b(x, y, z) = S^p(x, y, z) \), where \(p > 1 \) is a real number.

Note that \(S_b \) is a \(S_b \)-metric with \(b = 2^{(p-1)} \). In addition, \((X, S_b)\) is not necessarily a \(S \)-metric space.

Definition 4. ([1]) Let \((X, S_b)\) be a \(S_b \)-metric space. Then, for \(x \in X, r > 0 \), we defined the open ball \(B_{S_b}(x, r) \) and closed ball \(B_{S_b}[x, r] \) with center \(x \) and radius \(r \) as follows, respectively:

\[
B_{S_b}(x, r) = \{ y \in X : S_b(y, y, x) < r \},
\]
\[
B_{S_b}[x, r] = \{ y \in X : S_b(y, y, x) \leq r \}.
\]

Lemma 1. ([1]) In a \(S_b \)-metric space, we have

\[
S_b(x, x, y) \leq bS_b(y, y, x)
\]

and

\[
S_b(y, y, x) \leq bS_b(x, x, y).
\]

Lemma 2. ([1]) In a \(S_b \)-metric space we have

\[
S_b(x, x, z) \leq 2bS_b(x, y, x) + b^2S_b(y, y, z).
\]

Definition 5. ([1]) Let \((X, S_b)\) be a \(S_b \)-metric space. A sequence \(\{x_n\} \) in \(X \) is said to be:

(1) \(S_b \)-Cauchy sequence if, for each \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(S_b(x_m, x_n, x_m) < \epsilon \) for each \(m, n \geq n_0 \).

(2) \(S_b \)-convergent to a point \(x \in X \) if, for each \(\epsilon > 0 \), there exists a positive integer \(n_0 \) such that \(S_b(x_n, x_n, x) < \epsilon \) or \(S_b(x_n, x, x_n) < \epsilon \) for all \(n \geq n_0 \) and we denote that by \(\lim_{n \to \infty} x_n = x \).

Definition 6. ([1]) A \(S_b \)-metric space \((X, S_b)\) is called complete if every \(S_b \)-Cauchy sequence is \(S_b \)-convergent in \(X \).

Lemma 3. ([14]) If \((X, S_b)\) is a \(S_b \)-metric space with \(b \geq 1 \) and \(\{x_n\} \) is a \(S_b \)-convergent to \(x \), then for all \(y \in X \), we have

(i) \[\frac{1}{2b} S_b(y, y, x) \leq \liminf_{n \to \infty} S_b(y, y, x_n) \leq \limsup_{n \to \infty} S_b(y, y, x_n) \leq 2bS_b(y, y, x) ; \] and

(ii) \[\frac{1}{b^2} S_b(x, x, y) \leq \liminf_{n \to \infty} S_b(x_n, x_n, y) \leq \limsup_{n \to \infty} S_b(x_n, x_n, y) \leq b^2S_b(x, x, y) . \]
In particular, if \(x = y \), then we have \(\lim_{n \to \infty} S_b(x_n, x_n, y) = 0 \).

Definition 7. ([13]) Let \(X \) be a nonempty set. An element \((x, y) \in X \times X \) is called a coupled fixed point of a mapping \(F : X \times X \to X \) if \(x = F(x, y) \) and \(y = F(y, x) \).

Definition 8. ([15]) Let \(X \) be a nonempty set. An element \((x, y) \in X \times X \) is called:

(i) a coupled coincident point of mappings \(F : X \times X \to X \) and \(f : X \to X \) if \(f(x) = F(x, y) \) and \(f(y) = F(y, x) \); and

(ii) a common coupled fixed point of mappings \(F : X \times X \to X \) and \(f : X \to X \) if \(x = f(x) = F(x, y) \) and \(y = f(y) = F(y, x) \).

Definition 9. ([16]) Let \(X \) be a nonempty set. An element \(x \in X \) is called a coupled fixed point of a mapping \(F : X \to X \) if \(x = F(x, x) \).

For more details of other generalized metric spaces as well as on some rational contraction, see [9,17–19].

Now, we give our main result.

2. Main Results

Let \(\Phi \) denote the class of all functions \(\phi : [0, \infty) \to [0, \infty) \) such that \(\phi \) is a non-decreasing, continuous, \(\phi(t) < \frac{t}{4t^4} \) for all \(t > 0 \) and \(\phi(0) = 0 \).

Theorem 1. Let \((X, S_b)\) be a \(S_b \)-metric space. Suppose that \(A, B : X \times X \to X \) and \(P, Q : X \to X \) satisfy:

1. \(A(X \times X) \subseteq Q(X) \), \(B(X \times X) \subseteq P(X) \);
2. \(\{A, P\} \) and \(\{B, Q\} \) are \(w \)-compatible pairs;
3. one of \(P(X) \) or \(Q(X) \) is \(S_b \)-complete subspace of \(X \); and
4. \(2b^5 S_b(A(x, y), A(x, y), B(u, v)) \)

\[
\begin{align*}
\phi
\leq \max \left\{ S_b(P(x), P(x), Q(u)), S_b(P(y), P(y), Q(v)), S_b(A(x, y), A(x, y), P(x)), S_b(A(y, x), A(y, x), P(y)), S_b(B(u, v), B(u, v), Q(u)), S_b(B(v, u), B(v, u), Q(v)), S_b(A(x, y), A(x, y), Q(u)), S_b(B(u, v), B(u, v), P(x)) \right\} \leq \frac{S_b(A(x, y), A(x, y), Q(u)) S_b(B(u, v), B(u, v), P(x))}{1 + S_b(P(x), P(x), Q(u))}, \frac{S_b(A(y, x), A(y, x), Q(v)) S_b(B(v, u), B(v, u), P(y))}{1 + S_b(P(y), P(y), Q(v))},
\end{align*}
\]

for all \(x, y, u, v \in X, \phi \in \Phi. \)

Then, \(A, B, P \) and \(Q \) have a unique common coupled fixed point in \(X \times X \).

Proof of Theorem. Let \(x_0, y_0 \in X \). From Equation (1), we can construct the sequences \(\{x_n\}, \{y_n\}, \{z_n\} \) and \(\{w_n\} \) such that

\[
\begin{align*}
A(x_{2n}, y_{2n}) &= Q(x_{2n+1}) = z_{2n}, \\
A(y_{2n}, x_{2n}) &= Q(y_{2n+1}) = w_{2n}, \\
B(x_{2n+1}, y_{2n+1}) &= P(x_{2n+2}) = z_{2n+1}, \\
B(y_{2n+1}, x_{2n+1}) &= P(y_{2n+2}) = w_{2n+1}, \quad n = 0, 1, 2, \ldots
\end{align*}
\]

Case (i). Suppose \(z_{2m} = z_{2m+1} \) and \(w_{2m} = w_{2m+1} \) for some \(m \). Assume that \(z_{2m+1} \neq z_{2m+2} \) or \(w_{2m+1} \neq w_{2m+2} \).
From Equation (4), we have
\[S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}) \]
\[\leq 2b^5 S_b(A(x_{2m+2}, y_{2m+2}), A(x_{2m+2}, y_{2m+2}), B(x_{2m+1}, y_{2m+1})) \]
\[
\begin{align*}
\leq \phi \left\{ \max \left\{
\begin{array}{l}
S_b(p(x_{2m+2}), p(x_{2m+2}), q(x_{2m+1})), S_b(p(y_{2m+2}), p(y_{2m+2}), q(y_{2m+1})), \\
S_b(A(x_{2m+2}, y_{2m+2}), A(x_{2m+2}, y_{2m+2}), p(x_{2m+2})), \\
S_b(A(y_{2m+2}, y_{2m+2}), A(y_{2m+2}, y_{2m+2}), p(y_{2m+2})), \\
S_b(B(x_{2m+1}, y_{2m+1}), B(x_{2m+1}, y_{2m+1}), q(x_{2m+1})), \\
S_b(B(x_{2m+1}, y_{2m+1}), B(x_{2m+1}, y_{2m+1}), q(y_{2m+1})), \\
S_b(A(x_{2m+2}, y_{2m+2}), A(x_{2m+2}, y_{2m+2}), q(x_{2m+1})), S_b(B(x_{2m+1}, y_{2m+1}), B(x_{2m+1}, y_{2m+1}), p(x_{2m+2})), \\
S_b(A(x_{2m+2}, y_{2m+2}), A(x_{2m+2}, y_{2m+2}), p(y_{2m+2})), S_b(B(x_{2m+1}, y_{2m+1}), B(x_{2m+1}, y_{2m+1}), q(y_{2m+1})), \\
1 + S_b(p(x_{2m+2}, p(x_{2m+2}), q(x_{2m+1})), S_b(p(y_{2m+2}, p(y_{2m+2}), q(y_{2m+1}))) \\
\end{array} \right\} \right. \\
= \phi \left\{ \max \left\{
\begin{array}{l}
S_b(z_{2m+1}, z_{2m+1}, z_{2m}), S_b(w_{2m+1}, w_{2m+1}, w_{2m}), S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), \\
S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}), S_b(z_{2m+1}, z_{2m+1}, z_{2m}), S_b(w_{2m+1}, w_{2m+1}, w_{2m}), \\
S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}) S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \\
1 + S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \\
\end{array} \right\} \right. \\
= \phi \left\{ \max \left\{
\begin{array}{l}
S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \end{array} \right\} \right. \\
= \phi \left(\max \left\{ 0, 0, S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \right\} \right).
\end{align*}
\]

Similarly, we can prove that
\[S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \leq \phi \left(\max \left\{ S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \right\} \right). \]

It follows that
\[\max \left\{ S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \right\} \leq \phi \left(\max \left\{ S_b(z_{2m+2}, z_{2m+2}, z_{2m+1}), S_b(w_{2m+2}, w_{2m+2}, w_{2m+1}) \right\} \right). \]

Hence, \(z_{2m+2} = z_{2m+1} \) and \(w_{2m+2} = w_{2m+1} \).

Continuing in this process, we can conclude that \(z_{2m+k} = z_{2m} \) and \(w_{2m+k} = w_{2m} \) for all \(k \geq 0 \).

It follows that \(\{z_m\} \) and \(\{w_m\} \) are Cauchy sequences.

Case (ii). Assume that \(z_{2n} \neq z_{2n+1} \) or \(w_{2n} \neq w_{2n+1} \) for all \(n \).

Put \(S_n = \max \left\{ S_b(z_{n+1}, z_{n+1}, z_n), S_b(w_{n+1}, w_{n+1}, w_n) \right\} \).

From Equation (4), we have
\[S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}) \]
\[\leq 2b^5 S_b(A(x_{2n+2}, y_{2n+2}), A(x_{2n+2}, y_{2n+2}), B(x_{2n+1}, y_{2n+1})) \]
\[
\begin{align*}
\leq \phi \left\{ \max \left\{
\begin{array}{l}
S_b(p(x_{2n+2}), p(x_{2n+2}), q(x_{2n+1})), S_b(p(y_{2n+2}), p(y_{2n+2}), q(y_{2n+1})), \\
S_b(A(x_{2n+2}, y_{2n+2}), A(x_{2n+2}, y_{2n+2}), p(x_{2n+2})), \\
S_b(A(y_{2n+2}, y_{2n+2}), A(y_{2n+2}, y_{2n+2}), p(y_{2n+2})), \\
S_b(B(x_{2n+1}, y_{2n+1}), B(x_{2n+1}, y_{2n+1}), q(x_{2n+1})), \\
S_b(B(x_{2n+1}, y_{2n+1}), B(x_{2n+1}, y_{2n+1}), q(y_{2n+1})), \\
S_b(A(x_{2n+2}, y_{2n+2}), A(x_{2n+2}, y_{2n+2}), q(x_{2n+1})), S_b(B(x_{2n+1}, y_{2n+1}), B(x_{2n+1}, y_{2n+1}), p(x_{2n+2})), \\
S_b(A(x_{2n+2}, y_{2n+2}), A(x_{2n+2}, y_{2n+2}), p(y_{2n+2})), S_b(B(x_{2n+1}, y_{2n+1}), B(x_{2n+1}, y_{2n+1}), q(y_{2n+1})), \\
1 + S_b(p(x_{2n+2}, p(x_{2n+2}), q(x_{2n+1})), S_b(p(y_{2n+2}, p(y_{2n+2}), q(y_{2n+1}))) \\
\end{array} \right\} \right. \\
= \phi \left\{ \max \left\{
\begin{array}{l}
S_b(z_{2n+1}, z_{2n+1}, z_{2n}), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}), \\
S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}), S_b(z_{2n+1}, z_{2n+1}, z_{2n}), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), \\
S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}) S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \\
1 + S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \\
\end{array} \right\} \right. \\
= \phi \left\{ \max \left\{
\begin{array}{l}
S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \end{array} \right\} \right. \\
= \phi \left(\max \left\{ 0, 0, S_b(z_{2n+2}, z_{2n+2}, z_{2n+1}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \right\} \right).
\end{align*}
\]
From Equations (4) and (5), we have

\[
= \phi \left(\max \left\{ S_b(z_{n+1}, z_{n+1}, z_n), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), S_b(z_{n+2}, z_{n+2}, z_{n+1}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}), S_b(z_{n+1}, z_{n+1}, z_{n+1}), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), S_b(z_{n+2}, z_{n+2}, z_{n+1}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \right\} \right)
\]

\[
= \phi \left(\max \left\{ S_b(z_{n+1}, z_{n+1}, z_n), S_b(w_{2n+1}, w_{2n+1}, w_{2n}), S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \right\} \right)
\]

\[
= \phi \left(\max \left\{ S_{2n+1}, S_{2n} \right\} \right).
\]

Similarly, we can prove

\[
S_b(w_{2n+2}, w_{2n+2}, w_{2n+1}) \leq \phi \left(\max \{ S_{2n+1}, S_{2n} \} \right).
\]

Thus,

\[
S_{2n+1} \leq \phi(\max \{ S_{2n}, S_{2n+1} \}).
\]

If \(S_{2n+1} \) is maximum, then we get contradiction so that \(S_{2n} \) is maximum.

Thus,

\[
S_{2n+1} \leq \phi(S_{2n}) < S_{2n}.
\]

Similarly, we can conclude that \(S_{2n} < S_{2n-1} \).

It is clear that \(\{ S_n \} \) is a non-increasing sequence of non-negative real numbers and must converge to a real number, say \(r \geq 0 \).

Suppose \(r > 0 \). Letting \(n \to \infty \), in Equation (1), we have \(r \leq \phi(r) \leq r \).

It is a contradiction. Hence, \(r = 0 \).

Thus,

\[
\lim_{n \to \infty} S_b(z_{n+1}, z_{n+1}, z_n) = 0
\]

and

\[
\lim_{n \to \infty} S_b(w_{n+1}, w_{n+1}, w_n) = 0.
\]

Now, we prove that \(\{ z_{2n} \} \) and \(\{ w_{2n} \} \) are Cauchy sequences in \((X, \mathcal{B})\). On the contrary, we suppose that \(\{ z_{2n} \} \) or \(\{ w_{2n} \} \) is not Cauchy. Then, there exist \(\epsilon > 0 \) and monotonically increasing sequence of natural numbers \(\{ 2m_k \} \) and \(\{ 2n_k \} \) such that for \(n_k > m_k \)

\[
\max \{ S_b(z_{2m_k}, z_{2m_k}, z_{2n_k}), S_b(w_{2m_k}, w_{2m_k}, w_{2n_k}) \} \geq \epsilon
\]

and

\[
\max \{ S_b(z_{2m_k}, z_{2m_k}, z_{2n_k}), S_b(w_{2m_k}, w_{2m_k}, w_{2n_k}) \} < \epsilon.
\]

From Equations (4) and (5), we have
\[c \leq \max \{ S_b(z_{2m_l}, z_{2m_l}, z_{2m_l}), S_b(w_{2m_l}, w_{2m_l}, w_{2m_l}) \} \]
\[\leq 2b \max \{ S_b(z_{2m_l}, z_{2m_l}, z_{2m_l} + 2), S_b(w_{2m_l}, w_{2m_l}, w_{2m_l} + 2) \} + b \max \{ S_b(z_{2m_l}, z_{2m_l}, z_{2m_l} + 2), S_b(w_{2m_l}, w_{2m_l}, w_{2m_l} + 2) \} \]
\[\leq 2b^5 \max \{ S_b(z_{2m_l} + 1, z_{2m_l} + 1, z_{2m_l}), S_b(w_{2m_l} + 1, w_{2m_l} + 1, w_{2m_l}), S_b(z_{2m_l} + 2, z_{2m_l} + 2, z_{2m_l} + 1), \]
\[S_b(w_{2m_l} + 2, w_{2m_l} + 2, w_{2m_l} + 1), S_b(z_{2m_l} + 1, z_{2m_l} + 1, z_{2m_l}), S_b(w_{2m_l} + 1, w_{2m_l} + 1, w_{2m_l}), \]
\[S_b(z_{2m_l} + 2, z_{2m_l} + 2, z_{2m_l}), S_b(w_{2m_l} + 2, w_{2m_l} + 2, w_{2m_l}), S_b(z_{2m_l} + 1, z_{2m_l} + 1, z_{2m_l} + 1), \]
\[\frac{1 + S_b(z_{2m_l} + 1, z_{2m_l} + 1, z_{2m_l})}{1 + S_b(w_{2m_l} + 1, w_{2m_l} + 1, w_{2m_l})} \} \]
\[\leq \phi \]

Similarly,
\[2b^5 S_b(w_{2m_l} + 2, w_{2m_l} + 2, w_{2m_l} + 1) \]
\[\leq \phi \]

Thus,
\[2b^5 \max \{ S_b(z_{2m_l} + 2, z_{2m_l} + 2, z_{2m_l} + 1), S_b(w_{2m_l} + 2, w_{2m_l} + 2, w_{2m_l} + 1) \} \]
\[\leq \phi \]

(7)
However,
\[
\max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \}
\leq 2b \max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \}
+ b \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \}
\leq 2b \max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \}
+ b^2 \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \}
\leq 2b \max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \}
+ b^2 \left(2b \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \} \right)
+ b^3 \left(b \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \} \right)
\leq 2b \max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \}
+ 2b^3 + b^4 \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \}
+ b^3 \left(b \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \} \right)
\leq 2b \max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \}
+ 2b^3 + b^4 \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \}
+ b^5 \max \{ S_b(z_{2m_1}, z_{2m_1}, z_{2m_1}), S_b(w_{2m_1}, w_{2m_1}, w_{2m_1}) \}.
\]

Letting \(k \to \infty \), we have
\[
\lim_{k \to \infty} \max \{ S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1}), S_b(w_{2m_1 + 1}, w_{2m_1}, w_{2m_1}) \} \leq 2b^3 e.
\]

In addition,
\[
\lim_{k \to \infty} \frac{S_b(z_{2m_1 + 2}, z_{2m_1 + 2}, z_{2m_1 + 2}) S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1})}{1 + S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1})}
\leq \lim_{k \to \infty} \frac{1}{1 + S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1})} \cdot \left[2b S_b(z_{2m_1 + 2}, z_{2m_1 + 2}, z_{2m_1 + 2}) + b S_b(z_{2m_1 + 2}, z_{2m_1 + 2}, z_{2m_1 + 2}) \right]
= \lim_{k \to \infty} \frac{b^3 S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1}) S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1})}{1 + S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1})}
\leq \lim_{k \to \infty} b^3 S_b(z_{2m_1 + 1}, z_{2m_1 + 1}, z_{2m_1 + 1})
\leq 2b^6 e.
\]

Similarly,
\[
\lim_{k \to \infty} \frac{S_b(z_{2m_1 + 2}, z_{2m_1 + 2}, z_{2m_1 + 2}) S_b(w_{2m_1 + 1}, w_{2m_1 + 1}, w_{2m_1 + 1})}{1 + S_b(w_{2m_1 + 1}, w_{2m_1 + 1}, w_{2m_1 + 1})} \leq 2b^6 e.
\]

Letting \(k \to \infty \) in Equation (7), we have
\[
\lim_{k \to \infty} \max \{ S_b(z_{2m_1 + 2}, z_{2m_1 + 2}, z_{2m_1 + 2}), S_b(w_{2m_1 + 2}, w_{2m_1 + 2}, w_{2m_1 + 2}) \}
\leq \frac{1}{2b} \phi \left(\max \{ 2b^3 e, 0, 0, 0, 0, 2b^6 e, 2b^6 e \} \right)
= \frac{1}{2b} \phi(2b^6 e).
\]
Now, letting $n \to \infty$ in Equation (6), from Equations (2), (3) and (8), we have

$$\epsilon \leq 0 + 0 + b^2 \frac{1}{2b^5} \phi(2b^6 \epsilon) < \epsilon.$$

It is a contradiction. Hence, $\{z_{2n}\}$ and $\{w_{2n}\}$ are S_b-Cauchy sequences in (X, S_b). In addition,

$$\max\{S_b(z_{2n+1}, z_{2n+2}, z_{2m+1}), S_b(w_{2n+1}, w_{2n+2}, w_{2m+1})\}$$

$$\leq 2b \max\{S_b(z_{2m+1}, z_{2n+1}, z_{2n}), S_b(w_{2m+1}, w_{2n+1}, w_{2n})\}$$

$$+ b \max\{S_b(z_{2m+1}, z_{2n+1}, z_{2n}), S_b(w_{2m+1}, w_{2m}, w_{2n})\}$$

$$\leq 2b^2 \max\{S_b(z_{2m+1}, z_{2n+1}, z_{2n}), S_b(w_{2m+1}, w_{2n+1}, w_{2n})\}$$

$$+ 2b^2 \max\{S_b(z_{2m+1}, z_{2n+1}, z_{2m}), S_b(w_{2m+1}, w_{2m+1}, w_{2m})\}$$

Since $\{z_{2n}\}$ and $\{w_{2n}\}$ are S_b-Cauchy sequences, from Equations (2) and (3), it follows that $\{z_{2n+1}\}$ and $\{w_{2n+1}\}$ are also S_b-Cauchy sequences in (X, S_b). Hence, $\{z_n\}$ and $\{w_n\}$ are S_b-Cauchy sequences in (X, S_b).

Suppose $P(X)$ is a S_b-complete subspace of (X, S_b). Then, the sequences $\{z_n\}$ and $\{w_n\}$ converge to a and b in $P(X)$. Thus, there exist a and b in $P(X)$ such that

$$\lim_{n \to \infty} z_n = a = P(a) \quad \text{and} \quad \lim_{n \to \infty} w_n = b = P(b). \quad (9)$$

Now, we have to prove that $A(a, b) = a$ and $A(b, a) = b$. On the contrary, suppose that $A(a, b) \neq a$ or $A(b, a) \neq b$.

From Equation (4) and Lemma 3, we obtain that

$$\frac{1}{2b} S_b(A(a, b), A(a, b), a)$$

$$\leq \lim_{n \to \infty} \inf_\phi \frac{1}{2b} S_b(A(a, b), A(a, b), B(x_{2n+1}, y_{2n+1}))$$

$$= \phi \left(\max \left\{ \begin{array}{c} 0, 0, S_b(A(a, b), A(a, b), a), S_b(A(a, b), A(a, b), \beta), S_b(z_{2n+1}, z_{2n+2}, z_{2n}), S_b(w_{2n+1}, w_{2n+2}, w_{2n}), S_b(A(a, b), A(a, b), Q(x_{2n+1})), S_b(z_{2m+1}, z_{2n+1}, z_{2n}), S_b(w_{2m+1}, w_{2n+1}, w_{2n}), S_b(A(a, b), A(a, b), Q(y_{2n+1})), S_b(z_{2m+1}, z_{2n+1}, z_{2n}), S_b(w_{2m+1}, w_{2n+1}, w_{2n}) \end{array} \right\} \right).$$
Similarly,

\[
\frac{1}{2b} S_b(A(b,a), A(b,a), \beta) \leq \phi \left(\max \left\{ S_b(A(a,b), A(a,b), a), S_b(A(b,a), A(b,a), \beta) \right\} \right).
\]

Thus,

\[
\frac{1}{2b} \max \left\{ S_b(A(a,b), A(a,b), a), S_b(A(b,a), A(b,a), \beta) \right\} \leq \phi \left(\max \left\{ S_b(A(a,b), A(a,b), a), S_b(A(b,a), A(b,a), \beta) \right\} \right).
\]

By the definition of \(\phi \), it follows that \(A(a,b) = a = P(a) \) and \(A(b,a) = \beta = P(b) \). Since \((A, P) \) is \(\alpha \)-compatible pair, we have that \(A(\alpha, \beta) = P(\alpha) \) and \(A(\beta, \alpha) = P(\beta) \).

From Equation (4) and Lemma 3, we have

\[
\frac{1}{2b} S_b(A(\alpha, \beta), A(\alpha, \beta), a)
\leq \limsup_{n \to \infty} 2b S_b(A(a,b), A(a,b), B(x_{2n+1}, y_{2n+1}))
\leq \limsup_{n \to \infty} \phi \left(\max \left\{ S_b(P(a), P(a), Q(x_{2n+1})), S_b(P(\beta), P(\beta), Q(y_{2n+1})), S_b(A(\alpha, \beta), A(\alpha, \beta), a), S_b(A(\beta, \alpha), A(\beta, \alpha), \beta) \right\} \right)
\leq \limsup_{n \to \infty} \phi \left(\max \left\{ S_b(A(\alpha, \beta), A(\alpha, \beta), a), S_b(A(b,a), A(b,a), \beta) \right\} \right)
\leq \phi \left(\max \left\{ 2b S_b(A(\alpha, \beta), A(\alpha, \beta), a), 2b S_b(A(\beta, \alpha), A(\beta, \alpha), \beta), 0, 0, 2b S_b(a, a, A(\alpha, \beta), A(\beta, \alpha), a), 2b S_b(\beta, \beta, A(\alpha, \beta), A(\beta, \alpha)) \right\} \right).
\]
By the definition of \(\phi \), it follows that \(A(a, \beta) = a = P(a) \) and \(A(\beta, a) = \beta = P(\beta) \).

Therefore, \((a, \beta)\) is a common coupled fixed point of \(A\) and \(P\).

Since \(A(X \times X) \subseteq Q(X) \), there exist \(x \) and \(y \) in \(X \) such that \(A(a, \beta) = a = Q(x) \) and \(A(\beta, a) = \beta = Q(y) \).

From Equation (4), we have

\[
S_b(a, a, B(x, y)) = S_b(A(a, \beta), A(\alpha, \beta), B(x, y)) \leq 2b^2 S_b(A(a, \beta), A(\alpha, \beta), B(x, y)) \leq \phi \max \left\{ \frac{S_b(P(a), P(x), Q(y)), S_b(P(\beta), P(\beta), Q(y)), S_b(A(a, \beta), A(\alpha, \beta), P(x)), S_b(A(\beta, a), A(\alpha, \beta), P(\beta)), S_b(B(x, y), B(x, y), Q(y)), S_b(B(y, x), B(y, x), Q(y)), S_b(B(a, \beta), A(\alpha, \beta), Q(y)), S_b(B(\beta, a), B(\beta, a), Q(y)), S_b(A(\alpha, \beta), A(\beta, a), Q(y)), S_b(A(\alpha, \beta), B(\beta, a), B(\beta, a), P(\beta))}{1 + S_b(P(a), P(x), Q(y)), S_b(P(\beta), P(\beta), Q(y))} \right\}
\]

Similarly,

\[
S_b(\beta, \beta, B(x, y)) \leq \phi \left(b \max \left\{ S_b(a, a, B(x, y)), S_b(\beta, \beta, B(y, x)) \right\} \right).
\]

Thus,

\[
\max \left\{ S_b(a, a, B(x, y)), S_b(\beta, \beta, B(y, x)) \right\} \leq \phi \left(b \max \left\{ S_b(a, a, B(x, y)), S_b(\beta, \beta, B(y, x)) \right\} \right).
\]

It follows that \(B(x, y) = a = Q(x) \) and \(B(y, x) = \beta = Q(y) \).

Since \((B, Q)\) is \(\alpha \)-compatible pair, we have \(B(a, \beta) = Q(a) \) and \(B(\beta, a) = Q(\beta) \).

From Equation (4), we have

\[
S_b(a, a, B(\alpha, \beta)) = S_b(A(a, \beta), A(\alpha, \beta), B(\alpha, \beta)) \leq 2b^2 S_b(A(a, \beta), A(\alpha, \beta), B(\alpha, \beta)) \leq \phi \max \left\{ \frac{S_b(P(a), P(a), Q(a)), S_b(P(\beta), P(\beta), Q(\beta)), S_b(A(a, \beta), A(\alpha, \beta), P(a)), S_b(A(\beta, a), A(\alpha, \beta), P(\beta)), S_b(B(x, y), B(x, y), Q(y)), S_b(B(y, x), B(y, x), Q(y)), S_b(B(a, \beta), A(\alpha, \beta), Q(a)), S_b(B(\beta, a), B(\beta, a), Q(\beta)), S_b(A(\alpha, \beta), A(\beta, a), Q(y))S_b(B(a, \beta), B(\beta, a), P(\beta))}{1 + S_b(P(a), P(a), Q(a)), S_b(P(\beta), P(\beta), Q(\beta))} \right\}
\]

Similarly,

\[
S_b(\beta, \beta, B(\beta, a)) \leq \phi \left(b \max \left\{ S_b(a, a, B(\alpha, \beta)), S_b(\beta, \beta, B(\beta, a)) \right\} \right).
\]

Thus,

\[
\max \left\{ S_b(a, a, B(\alpha, \beta)), S_b(\beta, \beta, B(\beta, a)) \right\} \leq \phi \left(b \max \left\{ S_b(a, a, B(\alpha, \beta)), S_b(\beta, \beta, B(\beta, a)) \right\} \right).
\]

It follows that \(B(\alpha, \beta) = a = Q(a) \) and \(B(\beta, a) = \beta = Q(\beta) \).
Therefore, \((a, \beta)\) is a common coupled fixed point of \(A, B, P\) and \(Q\).

To prove uniqueness, let us take that \((a^1, \beta^1)\) is another common coupled fixed point of \(A, B, P\) and \(Q\).

From Equation (4), we have
\[
S_b(a, a, a^1) \leq 2b^2S_b(a, a, a^1) = 2b^2S_b(A(a, \beta), A(a, \beta), B(a, \beta)) \leq \phi \left(\max \left\{ \begin{array}{c}
S_b(a, a, a^1), S_b(\beta, \beta, \beta^1), S_b(a, a, a), \\
S_b(\beta, \beta, \beta), S_b(a^1, a^1, a^1), S_b(\beta^1, \beta^1, \beta^1), \\
S_b(a, a^1)S_b(a^1, a^1)S_b(\beta^1, \beta^1)S_b(1, 1, \beta^1), \\
1 + S_b(a, a^1), 1 + S_b(\beta, \beta^1)
\end{array} \right\} \right).
\]

Similarly,
\[
S_b(\beta, \beta, \beta^1) \leq \phi(\max\{bS_b(a, a, a^1), bS_b(\beta, \beta, \beta^1)\}).
\]

Thus,
\[
\max \left\{ S_b(a, a, a^1), S_b(\beta, \beta, \beta^1) \right\} \leq \phi \left(b \max \left\{ S_b(a, a, a^1), S_b(\beta, \beta, \beta^1) \right\} \right).
\]

It follows that \(a = a^1\) and \(\beta = \beta^1\). Hence, \((a, \beta)\) is a unique common coupled fixed point of \(A, B, P\) and \(Q\).

\(\square\)

Now, we give one example which support our main theoretical result.

Example 2. Let \(X = [0, 1]\) and let \(S_b : X \times X \times X \to \mathbb{R}^+\) be defined by \(S_b(x, y, z) = (|y + z| - 2x) + |y - z|)^2\). Then, \(S_b\) is a \(S_b\)-metric space with \(b = 4\). Define \(\phi : \mathbb{R}^+ \to \mathbb{R}^+\) by \(\phi(t) = \frac{t}{4^5}\), \(A, B : X \times X \to X\) and \(P, Q : X \to X\) by \(A(x, y) = \frac{x^2 + y^2}{4^5}\), \(B(x, y) = \frac{x^2 + y^2}{4^5}\), \(P(x) = \frac{x^2}{4}\) and \(Q(x) = \frac{x^2}{16}\), respectively. Then, we have
where

\[S_b(A(x, y), A(x, y), B(u, v)) \]

\[= 2 \left(4^2 \right) (|A(x, y) + B(u, v) - 2A(x, y)| + |A(x, y) - B(u, v)|)^2 \]

\[= 2 \left(4^2 \right) (2|A(x, y) - B(u, v)|)^2 \]

\[= 2 \left(4^2 \right) (|A(x, y) - B(u, v)|)^2 \]

\[= 2 \left(4^4 \right) \frac{x^2 + y^2 - u^2 + v^2}{4^4} \]

\[= 2 \left(4^4 \right) \frac{|4x^2 - u^2 + 4y^2 - v^2|}{4^4} \]

\[= \frac{2 \left(4^4 \right)}{4^4} \left(\frac{1}{4} \left\{ \frac{|4x^2 - u^2|}{16} + \frac{|4y^2 - v^2|}{16} \right\} \right)^2 \]

\[\leq \frac{2 \left(4^4 \right)}{4^4} \left(\frac{1}{4} \left\{ \frac{|4x^2 - u^2|}{16} + \frac{|4y^2 - v^2|}{16} \right\} \right)^2 \]

\[\leq \frac{2 \left(4^4 \right)}{4^4} \left(\max \left\{ \frac{4x^2 - u^2}{16}, \frac{4y^2 - v^2}{16} \right\} \right)^2 \]

\[\leq \frac{2 \left(4^4 \right)}{4^4} \left(\max \left\{ \frac{4x^2 - u^2}{16}, \frac{4y^2 - v^2}{16} \right\} \right)^2 \]

\[\leq \frac{2 \left(4^4 \right)}{4^4} \max \left\{ \frac{4x^2 - u^2}{16}, \frac{4y^2 - v^2}{16} \right\} \]

\[\leq \frac{2 \left(4^4 \right)}{4^4} \max \left\{ \frac{4x^2 - u^2}{16}, \frac{4y^2 - v^2}{16} \right\} \]

It is clear that all conditions of Theorem 1 are satisfied and \((0, 0)\) is a unique common coupled fixed point of \(A, B, P\) and \(Q\).

Putting \(A = B = P = Q\) in Theorem 1, we obtain the next important result on unique fixed point.

Theorem 2. Let \((X, S_b)\) be a complete \(S_b\)-metric space. Suppose that \(A : X \times X \to X\) satisfies condition

\[2b^5 S_b(A(x, y), A(x, y), A(u, v)) \]

\[\leq \phi \left(\max \left\{ \frac{S_b(x, x, u), S_b(y, y, v), S_b(A(x, y), A(x, y), x), S_b(A(y, x), A(y, x), y), S_b(A(u, v), A(u, v), u), S_b(A(v, u), A(v, u), v), S_b(A(x, y), A(u, v), u), S_b(A(y, x), A(v, u), x), S_b(A(u, v), A(y, x), v), S_b(A(v, u), B(v, u), y)}{1 + S_b(x, x, u)} \right\} \right) \]

for all \(x, y, u, v \in X, \phi \in \Phi\). Then, \(A\) has a unique coupled fixed point in \(X \times X\).

3. Application

In this section, we study the existence of a unique solution to an initial value problem, as an application to Theorem 2. Consider the initial value problem:

\[x^1(t) = f(t, x(t), x(t)), \quad t \in I = [0, 1], \quad x(0) = x_0 \]

(10)

where \(f : I \times \left[\frac{x_0}{4}, \infty \right) \times \left[\frac{x_0}{4}, \infty \right) \to \left[\frac{x_0}{4}, \infty \right)\) and \(x_0 \in \mathbb{R}\).
Theorem 3. Consider the initial value problem in Equation (10) with

\[f \in C \left(I \times \left[\frac{x_0}{4}, \infty \right) \times \left[\frac{x_0}{4}, \infty \right) \right) \]

and

\[\int_0^t f(s, x(s), y(s)) ds = \frac{1}{\sqrt{5}} \min \left\{ \int_0^t f(s, x(s), x(s)) ds, \int_0^t f(s, y(s), y(s)) ds \right\} . \]

Then, there exists a unique solution in

\[C \left(I \times \left[\frac{x_0}{4}, \infty \right) \times \left[\frac{x_0}{4}, \infty \right) \right) \]

for the initial value problem in Equation (10).

Proof of Theorem. The integral equation corresponding to the initial value problem in Equation (10) is

\[x(t) = x_0 + \int_0^t f(s, x(s), x(s)) ds. \]

Let \(X = C \left(I \times \left[\frac{x_0}{4}, \infty \right) \times \left[\frac{x_0}{4}, \infty \right) \right) \) and let \(S(x, y, z) = (|y + z - 2x| + |y - z|)^2 \) for \(x, y \in X \). Define \(\phi : [0, \infty) \to [0, \infty) \) by \(\phi(t) = \frac{4t}{5} \) and \(A : X \times X \to X \) by

\[A(x, y)(t) = x_0 + \int_0^t f(s, x(s), y(s)) ds. \] (11)

Now, we have

\[\begin{align*}
&= \{ |A(x, y)(t) + A(u, v)(t) - 2A(x, y)(t)| + |A(x, y)(t) - A(u, v)(t)| \}^2 \\
&= 4 \left| A(x, y)(t) - A(u, v)(t) \right|^2 \\
&= 4 \left| \int_0^t f(s, x(s), y(s)) ds - \int_0^t f(s, u(s), v(s)) ds \right|^2 \\
&= 4 \left| \frac{1}{\sqrt{5}} \min \left\{ \int_0^t f(s, x(s), x(s)) ds, \int_0^t f(s, y(s), y(s)) ds \right\} - \frac{1}{\sqrt{5}} \min \left\{ \int_0^t f(s, u(s), u(s)) ds, \int_0^t f(s, v(s), v(s)) ds \right\} \right|^2 \\
&\leq \frac{4}{5} \max \left\{ \left| \int_0^t f(s, x(s), x(s)) ds - \int_0^t f(s, u(s), u(s)) ds \right|^2, \left| \int_0^t f(s, y(s), y(s)) ds - \int_0^t f(s, v(s), v(s)) ds \right|^2 \right\} \\
&= \frac{4}{5} \max \left\{ \left| \int_0^t f(s, x(s), x(s)) ds - \int_0^t f(s, u(s), u(s)) ds \right|^2, \left| \int_0^t f(s, y(s), y(s)) ds - \int_0^t f(s, v(s), v(s)) ds \right|^2 \right\} \\
&= \frac{1}{5} \max \left\{ 4 \left| x(t) - u(t) \right|^2, 4 \left| y(t) - v(t) \right|^2 \right\} \\
&= \frac{1}{5} \max \{ S(x, u), S(y, v) \} \\
&\leq \phi(M(x, u, y, v)).
\end{align*} \]

Hence, from Theorem 2, we conclude that \(A \) has a unique coupled fixed point in \(X \). \(\Box \)
Author Contributions: All authors contributed equally to this paper. All authors have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The first author is thankful to the Ministry of Science and Environmental Protection of Serbia TR35030.

Conflicts of Interest: The authors declare no conflict of interest.

References
15. Lakshmikantham, V.; Cirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. *Nonlinear Anal. Theory Methods Appl.* 2009, 70, 4341–4349. [CrossRef]