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1. Introduction

Fixed point theory and different forms of generalizations of the usual metric space are significant
topics for many researchers. This can be witnessed from the vast literature available in this topic.
In order to study some forms of generalizations of metric spaces, one can see the results in [1–41].
Let X be a non-empty set and f be a mapping on X.

If there exists a point z ∈ X such that f z = z, then such z is said a fixed point of f and the set of
all fixed points of f is denoted by F( f ). Otherwise, the fixed point theory is one of the most significant,
as well as important as famous theory in mathematics, since it has applications to very different types
of problems in enough areas of science. One of the well known fixed point result is the Banach fixed
point theorem proved by Banach in 1922 (see also [2,21]). It is worth to mention that this principle has
been generalized in two directions, by acting on the contraction (expansive) condition, or changing the
topology of the space. Among these generalizations, Matthews [22] introduced a new distance on a
non-empty set X, which is called a partial metric. Here, the distance of a point to itself need not be
equal to zero. Further, Bakhtin (1989) and Czerwik (1993) replaced the standard triangular inequality
by d($, δ) ≤ s[d($, ς) + d(ς, δ)] with s ≥ 1.

2. Definitions, Notations and Preliminaries

Definition 1. (References [8,9]) Given s ≥ 1 and X a non-empty set. If the function d : X × X → [0, ∞) is
such that for all $, δ, ς ∈ X, we have:

(b1) d ($, δ) = 0 iff $ = δ;
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(b2) d ($, δ) = d (δ, $);
(b3) d ($, δ) ≤ s [d ($, ς) + d (ς, δ)].

then d is a b-metric on X (with coefficient s).

Definition 2. (References [22,27]). Let X be a non-empty set. If p : X× X → [0, ∞) is such that

(p1) $ = δ iff p ($, $) = p ($, δ) = p (δ, δ) ;
(p2) p ($, $) ≤ p ($, δ);
(p3) p ($, δ) = p (δ, $);
(p4) p ($, δ) ≤ p ($, ς) + p (ς, δ)− p (ς, ς),

for all $, δ, ς ∈ X, then p is a partial metric.

The above definition was generalized by Shukla [35].

Definition 3. (Reference [35]) Given a non-empty set X and s ≥ 1. If pb : X× X → [0, ∞) is such that

(pb1) $ = δ iff p ($, $) = pb ($, δ) = pb (δ, δ);
(pb2) pb ($, $) ≤ pb ($, δ);
(pb3) pb ($, δ) = pb (δ, $);
(pb4) pb ($, δ) ≤ s [pb ($, ς) + pb (ς, δ)]− pb (ς, ς),

for all $, δ, ς ∈ X, then pb is a partial metric with a coefficient s ≥ 1.

In the following, a partial b-metric on X is neither a b-metric, nor a partial metric (you may
see ([15,29,35]).

Example 1. [35] Define on X = [0, ∞),

pb ($, δ) = [max ($, δ)]2 + |$− δ|2 .

Here, pb is a partial b-metric on X and the coefficient s = 2. Note that pb is neither a b-metric, nor a
partial metric on X.

The following two propositions are very useful in the context of partial b-metric spaces.

Proposition 1. Reference [35] Let X be a non-empty set. Let p (resp. d) be a partial metric (resp. a b-metric),
then pb ($, δ) = p ($, δ) + d ($, δ) is a partial b-metric on X.

Proposition 2. Reference [35] If p is a partial metric, then pb ($, δ) = [p ($, δ)]r is a partial b-metric on X
with s = 2r−1 for r > 1.

On the other hand, Mustafa et al. [29] modify (pb4) in Definition 3.

Definition 4. Reference [29] Let X be a non-empty set and s ≥ 1. A function pb : X× X → [0, ∞) is a partial
b-metric if for all $, δ, ς ∈ X: (pb1), (pb2), (pb3) are the same as in the Definition 3, while (pb4) is modified with

(pb4’) pb ($, δ) ≤ s [pb ($, ς) + pb (ς, δ)− pb (ς, ς)] + 1−s
2 (pb ($, $) + pb (δ, δ)).

The pair (X, pb) is called a partial b-metric space if it satisfies conditions (pb1), (pb2), (pb3) and (pb4’).
The real s ≥ 1 is the coefficient of (X, pb). Clearly, (pb4’) implies (pb4).

Example 2. Reference [29] Define pb ($, δ) = ($, δ)2 + 5 for all $, δ ∈ X = R. Then pb is a partial b-metric
on X with s = 2 (in the sense of Definition 4). Here pb is not a partial metric on X. Indeed, for x = 1, y = 4
and z = 2, we have

pb(1, 4) = 14 � pb(1, 2) + pb(2, 4)− pb(2, 2) = 10.
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Proposition 3. Reference [29] Each partial b-metric pb defines a b-metric db, where

db ($, δ) = 2pb ($, δ)− pb ($, $)− pb (δ, δ) , for all $, δ ∈ X. (1)

Definition 5. Reference [29] Given {$n} a sequence in a partial b-metric space (X, pb).

(i) {$n} pb-converges to $ ∈ X if limn→∞ pb ($, $n) = pb ($, $);
(ii) {$n} is pb-Cauchy if limn,m→∞ pb ($n, $m) exists (and is finite).

(iii) Also, (X, pb) is said to be pb-complete if each pb-Cauchy sequence {$n} in X, pb-converges to $ ∈ X
so that

lim
n,m→∞

pb ($n, $m) = lim
n→∞

pb ($n, $) = pb ($, $) . (2)

Lemma 1. Reference [29] A sequence {$n} is pb-Cauchy in a partial b-metric space (X, pb) iff it is db-Cauchy
in the b-metric space (X, db).

Lemma 2. Reference [29] A partial b-metric space (X, pb) is pb-complete iff the b-metric space (X, db) is
db-complete. Further, limn,m→∞ db ($n, $m) = 0 iff

lim
n→∞

pb ($, $n) = lim
n,m→∞

dpb ($n, $m) = pb ($, $) . (3)

Further, in ([12], Definition 2.1.) authors introduced the following notions on a partial b-metric
space (for some other details, see also [17]).

Definition 6. Let (X, pb) be a partial b -metric space.

1. A sequence {$n} is called 0− pb-Cauchy if limn,m→∞ pb ($n, $m) = 0.
2. (X, pb) is called 0− pb-complete if for each 0− pb-Cauchy sequence {$n} in X, there is $ ∈ X such that

lim
n,m→∞

pb ($n, $m) = lim
n→∞

pb ($n, $) = pb ($, $) = 0.

The relation between pb-completeness and 0− pb-completeness of a partial b-metric space is given
in the following.

Lemma 3. (Reference [12], Lemma 2.2.) Let (X, pb) be a partial b-metric space. If (X, pb) is pb-complete, then
it is 0− pb-complete.

The converse of Lemma 3 does not hold as shown in Example 2.3 in [12]. Also, in [12] (similarly as
in [17] for partial metric spaces), authors state the relation between a partial b-metric pb and a certain
b-metric on

(
X, dpb

)
as follows.

Theorem 1. (References [1], Lemma 2.1, [12], Theorem 2.4.) Let (X, pb) be a partial b-metric with coefficient
s ≥ 1. For all x, y ∈ X, put

dpb ($, δ) =

{
0 if $ = δ

pb ($, δ) if $ 6= δ.

Then

1. dpb is a b-metric with coefficient s on X.
2. If limn→∞ $n = x in

(
X, dpb

)
, then limn→∞ $n = x in (X, pb) .

3. (X, pb) is 0− pb-complete iff
(
X, dpb

)
is dpb - complete.

Remark 1. For more significant and important results in the context of partial b-metric spaces, readers also
can see ([1], Lemma 2.1, Lemma 2.2 and final Conclusion). Example 2.5 from [12] shows that the converse of
statement 2 from Theorem 1 does not hold.
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Lemma 4. Reference [29] Let (X, pb) be a partial b-metric space with s > 1. If {$n} and {δn} are
pb-convergent to $ and δ, respectively, then

1
s2 pb ($, δ)− 1

s
pb ($, $)− pb (δ, δ) ≤ limn→∞ pb ($n, δn)

≤ limn→∞ pb ($n, δn) ≤ spb ($, $) + s2 pb (δ, δ) + s2 pb ($, δ) .

Definition 7. Reference [42] The function ψ : [0, ∞)→ [0, ∞) is said an altering distance if it is continuous,
nondecreasing and ψ (t) = 0 iff t = 0.

Let Θ be the set of altering distance functions.
In this manuscript, we discuss and improve many known results in literature.

3. Improvement Results and Remarks on Recent Ones

In 2014, Mukheimer [Definition 2.1] [27] introduced the α− ψ− ϕ-contractive self maps on partial
b-metric spaces as follows.

Definition 8. Let (X, pb) be a partial b-metric space with s ≥ 1. f : X → X is said an α− ψ− ϕ-contractive
map if there are ψ, ϕ ∈ Θ and α : X× X → [0, ∞) so that

α ($, δ)ψ (spb ( f $, f δ)) ≤ ψ
(

M f
s ($, δ)

)
− ϕ

(
M f

s ($, δ)
)

(4)

for all $, δ ∈ X, where

M f
s ($, δ) = max

{
pb ($, δ) , pb ($, f $) , pb (δ, f δ) ,

pb ($, f δ) + pb (δ, f $)

2s

}
. (5)

Definition 9. Reference [29] Given f : X → X on a partial b-metric space (X, pb). Such f is α-admissible
if $, δ ∈ X, α ($, δ) ≥ 1 implies that α ( f $, f δ) ≥ 1. f is L α-admissible (resp. R α-admissible) if $, δ ∈
X, α ($, δ) ≥ 1 implies that α ( f $, δ) ≥ 1 (resp. α ($, f δ) ≥ 1) .

In [27], we have

Theorem 2. (Reference [27], Theorem 2.1.) Let (X,�, pb) be a pb-complete ordered partial b-metric space with
s ≥ 1. Let f : X → X be an α− ψ− ϕ-contractive self mapping. Suppose that:

(1) f is α-admissible and L α-admissible (or R α-admissible);
(2) there is $1 ∈ X so that $1 � f $1 and α ($1, f $1) ≥ 1;
(3) f is continuous, nondecreasing, with respect to � and if f n$1 → z then α (z, z) ≥ 1.

Then, f has a fixed point.

Mukheimer [27] omits the condition of continuity in the previous theorem.

Theorem 3. (Reference [27], Theorem 2.2) Let(X,�, pb) be a pb-complete ordered partial b-metric space with
s ≥ 1. Let f : X → X be an α− ψ− ϕ- contractive self mapping. Assume that:

(1) f is α-admissible and L α-admissible (or R α-admissible);
(2) there is $1 ∈ X so that $1 � f $1 and α ($1, f $1) ≥ 1;
(3) f is nondecreasing, with respect to �;
(4) If {$n} is such that $n � $ for each n ∈ N, α ($n, $n+1) ≥ 1 and $n → $ ∈ X, as n → ∞,

then α ($n, $) ≥ 1 for each n ∈ N;

Then, f has a fixed point.
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Now, we shall improve the proofs of Theorem 2 and Theorem 3. First of all, we prove the following:

Lemma 5. Let (X, pb) be a partial b-metric space with s ≥ 1 and T : X → X be a mapping. If {$n} is a
sequence in X such that $n+1 = T$n and

pb ($n, $n+1) ≤ λpb ($n−1, $n) (6)

for each n ∈ N, where λ ∈ [0, 1), then {$n} is 0− pb- Cauchy.

Proof of Lemma. Let $0 ∈ X and $n+1 = T$n for all n ∈ N∪ {0}. We divide the proof into three cases.
Case 1. Let λ ∈ [0, 1

s ) (s > 1) . By the hypotheses, we have

pb ($n, $n+1) ≤ λpb ($n−1, $n) ≤ λ2 pb ($n−2, $n−1) ≤ · · · ≤ λn pb ($0, $1) . (7)

Thus, for n > m, we have

pb ($m, $n) ≤ s [pb ($m, $m+1) + pb ($m+1, $n)]

≤ spb ($m, $m+1) + s2 [pb ($m+1, $m+2) + pb ($m+2, $n)]

≤ spb ($m, $m+1) + s2 pb ($m+1, $m+2) + s3 [pb ($m+2, $m+3) + pb ($m+3, $n)]

≤ spb ($m, $m+1) + s2 pb ($m+1, $m+2) + s3 pb ($m+2, $m+3)

+ · · ·+sn−m−1 pb ($n−2, $n−1) + sn−m−1 pb ($n−1, $n)

≤ sλm pb ($0, $1) + s2λm+1 pb ($0, $1) + s3λm+2 pb ($0, $1)

+ · · ·+sn−m−1λn−2 pb ($0, $1) + sn−m−1λn−1 pb ($0, $1)

≤ sλm

(
1 + (sλ) + (sλ)2 + · · ·+ (sλ)n−m−2 +

(sλ)n−m−1

s

)
pb ($0, $1)

≤ sλm

(
1

1− sλ
+

(sλ)n−m−1

s

)
pb ($0, $1)

=

(
sλm

1− sλ
+ (sλ)n−1

)
pb ($0, $1)→ 0 (n, m→ ∞) , (8)

which implies that {$n} is 0− pb-Cauchy, that is, {Tn$0}n∈N is 0− pb-Cauchy.
Case 2. Let λ ∈ [ 1

s , 1) (s > 1) . In this case, we have λn → 0 as n→ ∞ , then there is k ∈ N such
that λk < 1

s . Thus, by Case 1, we have that{
Tk+n$0

}+∞

n=0
:= {$k, $k+1, $k+2, ..., $k+n, ...} , (9)

is a 0− pb-Cauchy sequence. Since

{$n}∞
n=0 = {$0, $1,..., $k−1} ∪ {$k, $k+1, $k+2, ..., $k+n, ...} (10)

we obtain that {$n}∞
n=1 = {Tn$0}+∞

n=1 is a 0− pb-Cauchy sequence in X.
Case 3. Let s = 1, then (X, pb) is a partial metric space. In this case, the result is valid and hence

we omit the proof (see [21], Theorem 14.1).

Remark 2. Lemma 5 generalizes Lemma 2.2 in [24] from b-metric spaces to partial b-metric spaces. However,
the condition (6) implies that

dpb ($n, $n+1) ≤ λdpb ($n−1, $n) , (11)
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for all n ∈ N. Fix n ∈ N. If $n = $n−1, then $k = $n−1 for all k ≥ n and (11) holds. If $n 6= $n−1, then we get

dpb ($n, $n+1) ≤ pb ($n, $n+1) ≤ λpb ($n−1, $n) = λdpb ($n−1, $n) ,

that is, the result follows. This shows that according to [Lemma 2.2] [24], the sequence {$n} is dpb -Cauchy in
the dpb -metric space

(
X, dpb

)
.

Now, in the sequel we show that it is possible to simplify the proof of Theorem 3 if s > 1. This will
be done without applying Lemma 4. Namely, we shall prove that the sequence {$n} in X induced by
$n+1 = T$n in [27] satisfies the condition (6), that is, {$n} is 0− pb-Cauchy. Indeed, in [27], in page
172 we get

ψ (spb ($n+1, $n+2)) ≤ ψ (max {pb ($n, $n+1) , pb ($n+1, $n+2)}) . (12)

Assume that max {pb ($n, $n+1) , pb ($n+1, $n+2)} = pb ($n+1, $n+2) for some n. We get s ≤ 1,
which is a contradiction. Hence, from (12), it follows that spb ($n+1, $n+2) ≤ pb ($n, $n+1),
or equivalently

pb ($n+1, $n+2) ≤
1
s

pb ($n, $n+1) , for all n ∈ N.

Now, according to Lemma 5, the sequence {$n} is 0− pb- Cauchy. The rest of the proof is the
same as in the paper of Mukheimer.

On the other hand, a Sehgal-Guseman theorem for partial b-metric spaces is also true. Namely,
we have the following.

Theorem 4. Let (X, pb, s ≥ 1) be a pb-complete partial b-metric space and let T : X → X be such that: for
every x ∈ X there is n (x) ∈ N so that

pb

(
Tn(x)x, Tn(x)y

)
≤ λpb (x, y) , (13)

for all y ∈ X, where λ ∈ (0, 1). Then T has a unique fixed point u ∈ X , and limn→∞ pb (Tnx, u) =

pb (u, u) = 0 for each x ∈ X.

Proof of Theorem. We shall show that (13) implies

dpb

(
Tn(x)x, Tn(x)y

)
≤ λdpb (x, y) , (14)

where dpb is a b-metric defined in Theorem 1.

Indeed, if x = y, then dpb

(
Tn(x)x, Tn(x)y

)
= 0 ≤ λdpb (x, y) . If x 6= y, then dpb (x, y) =

pb (x, y) and we have dpb

(
Tn(x)x, Tn(x)y

)
≤ pb

(
Tn(x)x, Tn(x)y

)
≤ λpb (x, y) = λdpb (x, y) . Therefore,

(14) holds for all x, y ∈ X. The result further follows according to (Theorem 2.2) [25].

It is known that a self-map T has the property P if F (T) = F (Tn) for all n ∈ N. For more details,
see [19]. The first result for the property P in the context of partial b-metric spaces is the following.

Theorem 5. Let T be a self-map on a partial b-metric space (X, pb, s ≥ 1) satisfying

pb

(
T$, T2$

)
≤ λpb ($, T$) (15)

for some λ ∈ (0, 1) , either (i) for each $ ∈ X, or (ii) for each $ ∈ X, $ 6= T$ and suppose that T has a fixed
point. Then T has the property P.
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Proof of Theorem. First, we shall prove that (15) implies that

dpb

(
T$, T2$

)
≤ λdpb ($, T$) , (16)

either for each $ ∈ X, or for each $ ∈ X with $ 6= T$. The result then follows by [Proposition 2] [11].
If $ = T$, then (16) clearly holds. Let $ 6= T$. In this case, we have

dpb

(
T$, T2$

)
≤ pb

(
T$, T2$

)
≤ λpb ($, T$) = λdpb ($, T$) ,

that is, (16) holds.

The following result generalizes a Boyd-Wong type theorem from both b-metric spaces and partial
metric spaces to partial b-metric spaces.

Theorem 6. Let (X, pb, s > 1) be a pb-complete partial b-metric space, and suppose T : X → X satisfies

pb (T$, Tδ) ≤ ϕ (pb ($, δ)) (17)

for all $, δ ∈ X, where ϕ : [0, ∞)→ [0, ∞) is increasing and satisfies

lim
n→∞

ϕn (t) = 0

for each t > 0. Then T has a unique fixed point u ∈ X, and limn→∞ pb (Tn ($) , u) = pb (u, u) for each $ ∈ X.

Proof of Theorem. First, we observe that the assumption on ϕ implies that

lim
t→0+

ϕ (t) = 0,

so we can take that ϕ (0) = 0, that is, ϕ (t) = 0 iff t = 0. Therefore, according to Theorem 1 the
condition (17) implies

dpb (T$, Tδ) ≤ ϕ
(
dpb ($, δ)

)
. (18)

The result further follows by ([21], Theorem 12.2).

Now, for s ≥ 1, we denote by Gs the set of functions β : [0, ∞)→ [0, 1
s ) such that

lim
n→∞

β(tn) =
1
s

implies lim
n→∞

tn = 0.

A Geraghty type result in the context of partial b-metric spaces is as follows.

Theorem 7. Let (X, pb, s > 1) be a pb-complete partial b-metric space. Assume that T : X → X is such that

pb (T$, Tδ) ≤ gs (pb ($, δ)) pb ($, δ) (19)

for all $, δ ∈ X,where gs ∈ Gs. Then T has a unique fixed point u ∈ X and for each $ ∈ X, {Tn$} converges to
u in the partial b-metric space (X, pb) , that is, limn→∞ pb (Tn$, u) = pb (u, u) = 0.

Proof of Theorem. Since gs (pb ($, δ)) < 1
s for all $, δ ∈ X, the condition (19) becomes

pb (Tx, Ty) ≤ 1
s

pb (x, y) (20)
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for all $, δ ∈ X. Now, according to Theorem 1, the condition (20) implies

dpb (T$, Tδ) ≤ 1
s

dpb ($, δ) (21)

for all $, δ ∈ X. Then the result comes from ([12], Corollary 2.7).

Now, we formulate and prove a Meir-Keeler type result in the context of partial b-metric spaces.
It generalizes ones from metric spaces and partial metric spaces to partial b-metric spaces. For more
details, see [2,23].

Theorem 8. Let (X, pb, s > 1) be a pb-complete partial b-metric space and let T be a self-mapping on
X verifying:

For ε > 0 there is τ > 0 so that

ε ≤ pb ($, δ) < ε + τ implies s · pb (T$, Tδ) < ε. (22)

Then T has a unique fixed point u ∈ X, and for each $ ∈ X, limn→∞ pb (Tn$, u) = pb (u, u) = 0.

Proof of Theorem. Note that (22) implies the following Banach contractive condition:

pb (T$, Tδ) ≤ 1
s
· pb ($, δ) , (23)

for all $, δ ∈ X. Further, according to Theorem 1, the condition (23) becomes

dpb (T$, Tδ) ≤ 1
s

dpb ($, δ) = k · dpb ($, δ) , (24)

where k = 1
s ∈ (0, 1) because s > 1. Now the result follows by known recent results (for example,

see [11,12,21,35]).

Finally, we announce an open question:

Prove or disprove the following:

Let (X, pb, s > 1) be a pb-complete partial b-metric space and let T be a self-mapping on X satisfying:
Given ε > 0, there is τ > 0 such that for all $, δ ∈ X

ε ≤ pb ($, δ) < ε + τ implies pb (T$, Tδ) < ε. (25)

Then T has a unique fixed point u ∈ X, and for each $ ∈ X, limn→∞ pb (Tn$, u) = pb (u, u) = 0.
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40. Petruşel, P.; Petruşel, G. On Reich’s strict fixed point theorem for multi-valued operators in complete metric

spaces. J. Nonlinear Var. Anal. 2018, 2, 103–112.
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