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Abstract: In this paper, we study the regularity of the weak solution of the coupled system derived
from the microwave heating model with frequency variable. We first show that the weak solution E
of the system is Hölder continuous near the boundary of S = ∂Ω. The main idea of the proof is based
on the estimation of linear degenerate system in Campanato space. Then we show that the solution u
of the heat conduction equation is Hölder continuous with exponent α

2 . Finally, under the appropriate
conditions we show that the coupled system with microwave heating has a weak solution. Moreover
the regularity of the weak solution is studied.

Keywords: time-harmonic Maxwell’s equations; microwave heating model; regularity of
weak solutions

1. Introduction

Microwave heating is a kind of heating method that can be converted into heat energy by
absorbing microwave energy from an object. As a new type of energy carrier, it has been widely
used in many fields such as food heating and thawing, biological sterilization, chemical synthesis and
metal smelting (see [1–5]). Compared with the traditional heating mode, microwave heating has the
characteristics of short heating time, high efficiency and small thermal inertia. Hence, the automatic
control skill is able to be used in microwave heating process. However, due to the internal heat energy
generated by the microwave, the heating of some heated stuff may be uneven or even “runaway
heating” (see [6–10]). Therefore, it is a meaningful problem to realize uniform heating and minimum
energy dissipation in microwave heating process.

The heat produced by microwaves causes the temperature of the heated object to be unevenly
distributed. This is partly because various physical parameters such as electric permittivity,
electric conductivity and magnetic permeability strongly depend on the temperature. Understanding
the complicated dynamic interactions between electric field, magnetic field and temperature is of great
important to the system modeling and design process.

If the variable coefficients of Maxwell’s equations are not smooth, it will be difficult to obtain
the regularity of the solution for Maxwell’s equations. This also leads to the heat source of heat
conduction equation is only belong to L1(QT). Therefore, it is difficult to prove the existence and
regularity of solutions. Furthermore, the necessary optimality conditions for optimal control cannot be
derived. Under the condition of the coefficient has better smoothness, Yin [9] proved the existence
of the solution of the coupled system. But the smoothness of the coefficient is unattainable in the
practical problems, even is discontinuity. The study of weak solution to the corresponding coupling
system has become a significant problem. At the same time, in order to study necessary optimality
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conditions of the optimal control problem with frequency variable, we need to study the regularity of
the weak solution.

In this paper, we prove that the weak solution of system (4) is continuous. When γ
ω is bounded,

the real part of γ
ω has a positive lower bound and ξ is Lipschitz continuous. Assume that the regularity

of the coefficients γ
ω and ξ are minimal, then this regularity is optimal. The basic idea is to use

Campanato type of estimates(see [11,12]).
We have derived weak coupling mathematical model of microwave heating system with frequency

variation in [13]. In paper [13], the existence of global weak solutions is established by assuming
suitable conditions. By applying Lax-Milgram theorem and monotone operator theory, the existence
and uniqueness of solutions for weakly coupled systems are proved in [13]. However, the regularity of
the weak solution has not been studied for the coupled system in [13]. Particularly, we consider the
uniformity and boundedness of temperature. In this paper. We study that the temperature is Hölder
continuous by appropriate assumptions.The regularity results provide the basis about the derivation
of optimal conditions for uniform microwave heating

This paper is organized as follows. In Section 2, for completeness we introduce the mathematical
model of microwave heating with frequency variable from [13]. In Section 3, we impose some basic
assumptions which ensure the well-posedness of the underlying system. Existence of a weak solution
is also established from [13]. In Section 4, some important estimates are derived. In Section 5, regularity
of the weak solution is investigated.

2. Weak Coupling Mathematical Model of Microwave Heating System

We consider that the electromagnetic field does not change with temperature during microwave
heating. In particular, the distribution of dielectric, permeability, and electric conductivity functions
are temperature independent. The frequency of microwave is dependent only on its position x, i.e.,
ω = ω(x), and has nothing to do with time.

In this paper, we assume that Ω is a bounded simply-connected domain in three-dimensional
space R3. The boundary of Ω is C1 continuous. Let QT = Ω× (0, T] and ST = ∂Ω× (0, T]. Hereafter,
a bold letter represents a vector in R3.

According to literature [13], the microwave heating process can be described by the weakly
coupled system of Maxwell equations and heat conduction equations and the corresponding initial
boundary value conditions as follows:

∇× ( γ(x)
ω(x)∇× E) + ξ(x, ω)E = 0, (x, t) ∈ QT ,

ut −∇[k(x, u)∇u] = 1
2 a2(x, ω)|E|2, (x, t) ∈ QT ,

n× E = n×G, (x, t) ∈ ST ,
un(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0, x ∈ Ω,

(1)

where the unknown functions E(x, t) and u(x, t) respectively represent the electric field intensity and
temperature at time t at x ∈ Ω, and n is the outward unit normal vector on S = ∂Ω and un = ∇u · n is
the outward the normal derivative on S = ∂Ω. The G(·) is the time-harmonic electromagnetic field
generated by the external photoelectric device.

γ(x) =
1

µ0(x)
(

µ′

(µ′)2 + (µ′′)2 + i
µ′′

(µ′)2 + (µ′′)2 ) , γ1(x) + iγ2(x), (2)

ξ(x, ω) = −ε0ε′ω + i(ε0ε′′ω + σ) , −a1(x, ω) + ia2(x, ω), (3)

where functions ε, µ and σ represent the dielectric, permeability and electric conductivity respectively.
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3. The Well-Posedness of Solution of Weak Coupling System

V(·) is the vector valued function in three dimensions.

Definition 1. (see [14]) H(curl, Ω), H(div, Ω) and H(curl, div, Ω) space

H(curl, Ω) = {V(·) ∈ (L2(Ω))3 : ∇× V ∈ (L2(Ω))3},
H(div, Ω) = {V(·) ∈ (L2(Ω))3 : ∇ · V ∈ (L2(Ω))3},

H(curl, div, Ω) = H(curl, Ω) ∩ H(div, Ω).

H(curl, Ω) is the Hilbert space with the following inner product:

〈V, F〉 =
∫

Ω
[(∇× V) · (∇× F∗) + V · F∗]dx,

where F∗is the complex conjugate of F (see [9]).
The norm is (derived from inner product)

‖V‖H(curl,Ω) =
√
(V, V)H(curl,Ω).

We impose some basic assumptions which ensure the well-posedness of the underlying system
and proof of regularity.

H(1). The functions u0(·) and uT(·) are nonnegative with u0(·) and uT(·) ∈ L2(Ω).

H(2). The function k : Ω× R→ R is given. Suppose that x 7→ k(x, u) is measurable on Ω for all
u ∈ R and u 7→ k(x, u) is uniformly Lipschitz continuous on R for almost all x ∈ Ω. The following
inequality conditions are satisfied:

0 < k0 ≤ k(x, u) ≤ k1 ≤ 1,

for all x ∈ Ω, u ∈ R with positive constants k0 and k1.

H(3).

(a) The functions a1, a2 are bounded. Assume that a1, a2 are Lipschity continuous with respect
to ω−variables. At the same time there is

0 < a0 ≤ a1(x, ω), a2(x, ω) ≤ b0,

for some constants a0 > 0, b0 > 0.
(b) Assumed that the function γ = 1

µ , γ1 + iγ2 is a bounded complex function. The
real functions

γ1(x), γ2(x) ≥ γ0 > 0,

for all x ∈ Ω and some constant γ0 > 0.
(c) The function G is given and defined on ST with the extended function G ∈ H(curl, Ω). G is

Hölder continuous on Ω, and we have ‖G(·, t)‖H(curl,Ω) ≤ c0‖G(·, t)‖L2(S) for all t, where c0

is a constant that depends only on Ω.
(d) Assumed that the function ω : Ω→ R is measurable. Let

Uad = {ω : Ω→ R is measurable : 0 < ω0 ≤ ω(x) ≤ ω1},

where ω0 and ω1 are positive constants.

Since the controlled system we are considering is a weakly coupled system. Its heating process
can be described by Maxwell equations determining the distribution of its electric field intensity.
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The intensity of the electric field produces an internal heat source in the heating process, causing the
temperature of the heated material to rise. In this way, the material can be heated.

Therefore, in mathematical analysis, we can first study the existence and uniqueness of Maxwell
equations. Then we consider the existence and uniqueness of the solution for the initial boundary
value problem of heat conduction equation under a given electric field intensity distribution.

We consider the system:{
∇× ( γ(x)

ω(x)∇× E) + ξ(x, ω(x))E = 0, (x, t) ∈ QT ,

n× E = n×G, (x, t) ∈ ST .
(4)

From Theorem 3.2. of literature [13], the system (4) exists unique solution Ẽ ∈
L∞(0, T; H0(curl, Ω)) for given ω(·) ∈ Uad.

Next, we study the existence and uniqueness of the solution to the heat conduction equation
under a given electric field intensity distribution. Consider the following system:

ut −∇[k(x, u)∇u] = 1
2 a2(x, ω(x))|E|2, (x, t) ∈ QT ,

un(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0(x), x ∈ Ω.

(5)

Similarly, from Theorem 3.5. of literature [13], there exists a unique solution u ∈ W[0, T] to the
problem (5) for any given ω(·) ∈ Uad and its corresponding solution E ∈ L∞(0, T; H(curl, Ω)) to (4).

In conclusion, the existence and uniqueness theorem (see [13] Theorem 3.6) of solutions for the
coupled system (1).

4. Estimates of Solution for the Underlying System

Definition 2. (A weighted Sobolev Space) Let ξ ∈ L∞(Ω) with |ξ(x)| ≤ ξ0 for some constant ξ > 0. Set

H0(curl, divξ , Ω) = {V ∈ H0(curl, Ω) : div (ξV) ∈ (L2(Ω))3},

with the norm

‖V‖2
H0(curl,divξ ,Ω)

=
∫

Ω

[
|∇ ×V)|2 + |∇(ξV)|2 + |V|2

]
dx.

The space H0(curl, divξ , Ω) is a Banach space. Moreover, the embedding operator from
H0(curl, divξ , Ω) into L2(Ω) is compact (see [15]).

For all x0 ∈ Ω and ρ > 0, we set

B(x0, ρ) = {x ∈ Ω : |x− x0| < ρ}.

Definition 3. (Campanato space L2,µ(Ω)) Let function f in L2(Ω) and a nonengative constant µ ≥ 0. Set

L2,µ(Ω) = { f (x) ∈ L2(Ω) : ‖ f ‖L2,µ(Ω) = ‖ f ‖L2(Ω) + [ f ]2,µ < ∞},

with the semi-norm

[ f ]2,µ = sup
ρ>0,x0∈Ω

ρ−µ
∫

B(x0,ρ)
| f − ( f )x0 |2dx,

where
( f )x0 =

1
B(x0, ρ)

∫
B(x0,ρ)

f (x)dx.
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The space L2,µ(Ω) is a Banach space (see [11]). It has the following properties (see [11,12]).

Lemma 4. For µ ∈ (n, n + 2), the space L2,µ(Ω) is equivalent to Cα(Ω̄), where α = µ−n
2 .

For weakly coupled systems, we first consider the regularity of the solution to the linear Maxwell
Equations (4). Let

F = −
(
∇× (

γ(x)
ω(x)

∇×G) + ξ(x, ω(x))G
)

.

Lemma 5. Under the assumption H(3), let q(x) = γ(x)
ω(x) = q1(x) + iq2(x), ξ(x, ω(x)) = ξ1(x) + iξ2(x) for

any ω ∈ Uad. There exists positive constant α0 and β0 such that

q1(x), q2(x), γ1(x), γ2(x) ≥ α0 > 0, (6)

‖q‖L∞(Ω) + ‖ξ‖L∞(Ω) ≤ β0, (7)

and there exists a positive constant B0 such that

‖F‖L2(Ω) ≤ B0, (8)

for F ∈ L2(Ω).

The System (4) is degenerate. The classical regularity theory for elliptic system is not valid here.
We will prove Hölder continuous of the solution for System (4). The following Lemma plays a key role
in the following proof.

Lemma 6. (see [16] Lemma 3.3) Let F ∈ H(div, Ω) with divF = 0. There exist vector field V(x) such that
∇× V = F, in Ω,
∇ · V = 0, in Ω,
n · V = 0, on S,

(9)

and

‖V‖H1(Ω) ≤ C3‖F‖L2(Ω), (10)

‖V‖L2,2(Ω) ≤ C3‖F‖L2(Ω), (11)

where C3 depends only on Ω.

5. Regularity of Weak Solution

Theorem 7. Under the assumption H(3), then the weak solution E of the System (4) is Hölder continuous in Ω̄
for any ω ∈ Uad, and there exists a constant C4 > 0 such that

‖E‖Cα(Ω̄) ≤ C4,

where C4 depends only on known data.

Proof. Let Ẽ = E−G. From (4), we know that Ẽ satisfies the following equations{
∇× ( γ(x)

ω(x)∇× Ẽ) + ξ(x, ω(x))Ẽ = F, x ∈ Ω,

n× Ẽ = 0, x ∈ S.
(12)
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From the existence theorem (see [13] Theorem 3.2.) of solutions, the System (12) has a unique
solution Ẽ ∈ H(curl, Ω).

We prove that there is µ ∈ (1, 2) such that

∇× Ẽ ∈ L2,µ(Ω),

∇ · Ẽ ∈ L2,µ(Ω),

and
‖∇ · Ẽ‖L2,µ(Ω) + ‖∇× Ẽ‖L2,µ(Ω) ≤ C.

where C depends only on known data.
From the System (12), we know

div(ξẼ− F) = 0.

From Lemma 6, we know that there exists a potential vector field V(x) such that
ξẼ− F = ∇×V, x ∈ Ω,
∇ ·V = 0, x ∈ Ω,
n×V = 0, x ∈ S.

(13)

Moreover

‖V‖H1(Ω) + ‖V‖L2,2(Ω) ≤ C(‖Ẽ‖L2(Ω) + ‖F‖L2(Ω)),

where C depends only on Ω and the upper bound of ξ.
Substitute V(x) into Equations (12), and we have

∇× ( γ(x)
ω(x)∇× Ẽ−V) = 0, x ∈ Ω,

n× Ẽ = 0, x ∈ S,
n ·V = 0, x ∈ S.

(14)

From the boundary condition n× Ẽ = 0, we have

n · (∇× Ẽ) = 0, x ∈ S.

For any smooth function Ψ ∈ C
∞
(Ω), we can use Gauss’s divergence theorem to get∫

Ω
n · (∇× Ẽ)Ψds =

∫
Ω
∇((∇× Ẽ)Ψ)dx

=
∫

Ω
(∇× Ẽ) · ∇Ψdx =

∫
S
(n× Ẽ) · ∇Ψds

= 0.

Hence,
n · (∇× Ẽ) = 0, x ∈ ∂Ω.

Since Ω is simply-connected, there exists the potential function Ψ(x). The following
equation holds

γ(x)
ω(x)

∇× Ẽ−V = ∇Ψ, x ∈ Ω. (15)

Therefore,

∇× Ẽ =
ω(x)
γ(x)

[∇Ψ + V], x ∈ Ω. (16)
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By calculation 
∇ · [ω(x)

γ(x) (∇Ψ + V)] = 0, x ∈ Ω,

n · [ γ(x)
ω(x)∇× Ẽ] = 0, x ∈ S,

n ·V = 0, x ∈ S,

(17)

that is

n · (∇Ψ) = n · (ω(x)
γ(x)

∇× Ẽ−V) = 0, x ∈ Ω.

From γ(x)
ω(x) has a positive lower bound, we use L2(Ω)-theory of elliptic equations to get

‖Ψ‖H1(Ω) ≤ C‖V‖L2(Ω).

where C depends only on known data.
According to the estimate of Campanato space L2,µ(Ω), we see that there exist µ ∈ (1, 2) such that

‖∇Ψ‖L2,µ(Ω) ≤ C(‖V‖L2,µ(Ω) + ‖Ψ‖H1(Ω)).

which is bounded from the estimate for V(x).
From the Equations (15), one can see that

‖∇× Ẽ‖L2,µ(Ω) ≤ C‖∇Ψ‖L2,µ(Ω).

On the other hand, from (13) we know

∇(ξ(x)Ẽ) = 0.

From the boundedness of ξ(x), we have∫
Bρ

|∇ · Ẽ|2dx ≤ C
∫

Bρ

|Ẽ|2dx,

for ∀x ∈ Ω and ρ > 0, where Bρ is Bρ ∩Ω and Ẽ ∈ H1(Ω).
From Lemma 4, we know that Ẽ ∈ L2,2(Ω) and

sup
ρ>0,x0∈Ω

ρ−2
∫

Bρ

|∇ · Ẽ|dx ≤ C.

From what has been discussed above, we get

∇ · Ẽ ∈ L2,µ

∇× Ẽ ∈ L2,µ

and
‖∇ · Ẽ‖L2,µ(Ω) + ‖∇× Ẽ‖L2,µ(Ω) ≤ C‖F‖L2,µ(Ω),

where C only depends on the known data constant, i.e.,

‖Ẽ‖L2,2+µ(Ω) ≤ C‖F‖L2,µ(Ω).

From Lemma 4, the space dimension n = 3 and µ0 = 2 + µ > 3. We see that

Ẽ ∈ Cα(Ω̄),
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where α = µ−n
2 > 0. Hence Ẽ is Hölder continuous.

Let Ẽ = E−G, we have E = Ẽ + G. From the hypothesis of G in assumption H(3), we know that

E ∈ Cα(Ω̄).

Next we study the regularity of the heat conduction equation. Let

Q(x0, t0; ρ) = B(x0, ρ)× (t0 − ρ, t0], (x0, t0) ∈ QT ,

for B(x0, ρ). One has a similar result to Lemma 4 with dimension n replaced by n + 1.
We consider the following parabolic equation

ut − L[u] = f0(x, t) + ∑n
i=1( fi(x, t))xi , (x, t) ∈ QT ,

un(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0(x), x ∈ Ω,

where
L[u] = (aij(x, t)uxi )xj + bi(x, t)uxi + c(x, t)u.

The following basic assumptions are needed.

H(4).

(a) Let aij(x, t) be measurable in QT and satisfy the following conditions for ellipticity:

a1|ξ|2 ≤ aijξiξ j ≤ a2|ξ|2, ξ ∈ Rn, a1, a2 > 0.

(b) Let bi(x, t) and ci(x, t) belong to L∞(QT) with

n

∑
i=1
‖bi‖L∞(QT)

+ ‖c‖L∞(QT)
≤ A3.

(c) Let

f0(x, t) ∈ L2,(µ−2)+(QT),

fi(x, t) ∈ L2,µ(QT),

for some µ > 0.

Lemma 8. (see [17]) Under the assumption H(4), the solution u ∈ C([0, T]; H1(Ω)) of the general parabolic
equation satisfies the following estimate:

‖∇u‖L2,µ(QT)
≤ C(‖ f0‖L2,(µ−2)+ (QT)

+
n

∑
i=1
‖ fi‖L2,µ(QT)

,

where C is a constant depending only on known data a1, a2, A3 and QT . In particular, there is

u ∈ Cα, α
2 (Q̄T),

for µ ∈ (n, n + 2), where α = µ−n
2 .

Remark 9. The significance of Lemma 8 is that when µ ∈ (n + 2, n + 4), the condition f0, fi for the continuity
of Hölder of the weak solution are weaker than that of the classical result. (see [18–20]).
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Theorem 10. Under the assumpotions of H(1), H(2), H(3) and H(4), There exists unique weak solution (E, u)
for the coupled System (1) with

E−G ∈ L∞(0, T; H0(curl, Ω)),

u ∈ C([0, T]; H1(Ω)).

Moreover, the weak solution possesses the following regularity:

∇× E ∈ L∞(0, T; L2,µ0(Ω)),

∇u ∈ L2,µ0+2(QT).

In particular,
u ∈ Cα, α

2 (Q̄T),

where α = µ0−1
2 .

Proof. From Theorem 3.6. of literature [13], we know that there exists the solution (E, u) for coupled
system (1) with

E−G ∈ L∞(0, T; H0(curl, Ω)),

u ∈ C([0, T]; H1(Ω)).

We assume that G(x, t) = 0 on ∂Ω. Otherwise, we define

Ê = E−G.

From Theorem 7, we have
E ∈ Cα(Ω̄),

for any given t ∈ [0, T]. Moreover

‖E(·, t)‖Cα(Ω̄) ≤ C,

‖∇× E‖L2,2+µ(Ω̄) ≤ C.

Now we think that k(x, u) is independent of u. Let k(x, u) = k̃(x), we use L2,µ theory of parabolic
equation and Lemma 8. We have

‖∇u‖L2,2+µ0 (QT)
≤ C‖∇× E‖L2,2+µ(QT)

.

From the standard embedding (see [19]), we have

u ∈ L2,µ+4(QT).

For µ ∈ (1, 2), we have µ + 4 ∈ (5, 7). Therefore

u ∈ Cα, α
2 (Q̄T),

where α = µ−1
2 .

In the case of k = k(x, u), we have

u ∈ C1+α, 1+α
2 (Q̄T).



Mathematics 2019, 7, 501 10 of 11

Since k(x, u) is smooth, we can use Schauder’s theorem to get the following result

u ∈ C2+α,1+ α
2 (Q̄T).

Remark 11. The necessary optimality conditions for the optimal control problem in the microwave heating
process will be carried out in a separate paper.

6. Conclusions

In this paper, we study the regularity of the weak solution of the coupled system derived from
the microwave heating model with frequency variable. The distribution of dielectric, permeability,
and electric conductivity functions are temperature independent. The frequency of microwave is
dependent only on its position x, i.e., ω = ω(x), and has nothing to do with time. We established
that the temperature is Hölder continuous, even if electric conductivity has a jump discontinuity with
respect to the temperature change. This paper presents a method that is based on the estimation
of linear degenerate system in the Campanato space. We use this idea to deal with time harmonic
Maxwell equations with rough coefficients. On the other hand, by using the regularity results of the
coupled system, the necessary optimality conditions for uniform microwave heating in three directions
are derived.
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