ON THE PARTIAL GENERALIZATION OF THE MEASURE OF TRANSCENDENCE OF SOME FORMAL LAURENT SERIES

Ahmet Ş. ÖZDEMİR
Atatürk Education Faculty, Department of Mathematics
Marmara University, İstanbul / TURKEY

Abstract: In this work, we determine the transcendence measure of the formal Laurent series "that"

$$\xi = \psi(r) = \sum_{k=0}^{\infty} \frac{(-1)^k r^k}{F_k}$$

whose transcendence has been established by L.I.Wade. Using the methods and lemmas in P.Bundschuh's article, measure of the transcendence for the above ξ is determined as

$$T(n, H) = H^{-\alpha d^d(\frac{1}{k} - d - 1)}.$$

On the other hand, it was proven that the transcendence series ξ is not a U but is a S or T-number according to the Mahler's classification.
INTRODUCTION

Let p a prime number and $u \geq 1$ an integer. Let F be a finite field with $q = p^u$ elements. We denote the ring of the polynomials with one variable over F by $F[x]$ and its quotient field by $F(x)$. If $a \in F[x]$ is a non-zero polynomial, denote its degree by ∂a. If $a = 0$, then its degree is defined as $\partial 0 := -\infty$. Let a and b ($b \neq 0$) two polynomials from $F[x]$ and define a discrete valuation of $F(x)$ as follows

$$|a_b| = q^{\partial a - \partial b}.$$

Let K be the completion of $F(x)$ with respect to this valuation. Every element ω of K can be uniquely represented by

$$\omega = \sum_{n=k}^{\infty} c_n x^{-n}, c_n \in F.$$

If $\omega = 0$, then all c_n are zero. If $\omega \neq 0$, then there exist an $k \in \mathbb{Z}$ for which $c_k \neq 0$. If $\omega \neq 0$, then we have

$$|\omega| = q^{-k}.$$

Therefore K is the field of all formal Laurent series. The classical theory of transcendence over complex numbers has a similar version over K. Elements of $F[x]$ and $F(x)$ correspond to integers and fractions of the classical theory, respectively.

If $\omega \in K$ is one of the roots of a non-zero polynomial with coefficients in $F[x]$, then $\omega \in K$ is said to be algebraic over $F(x)$. Otherwise, ω is called transcendental over $F(x)$. The studies of transcendental numbers in K were initiated first by Wade [1-4]. Also Geijsel [5-8] did similar studies. As it is the case in the classical theory of transcendental numbers, it is possible to define a measure of transcendence

The measure of transcendence is thoroughly studied in the classical theory. For example, the transcendence measure of e has been widely investigated by Mahler [9] and Fel’dman [10]. Examples for the transcendence measure in the field K have been given for the first time by Bundschuh [12].
In this work, we determine a transcendence measure of some formal Laurent series whose transcendence has been established by L.I.Wade [2]. If \(r^q \) (where \(r \in \text{RealNumbers} \)) and \(F_k \in F[x] \) is a fixed non-zero polynomial of degree \(\partial(r^q) = 0 \) and \(\partial(F_k) = kq^k \) then the series
\[
\xi = \psi(r) = \sum_{k=0}^{\infty} \frac{(-1)^k r^q}{F_k}
\]
is an element of \(K \), and L.I.Wade showed its transcendence in [2]. (see Theorem 3.1 and 3.2) Using the methods and lemmas in Bundschuh’s article [12], we determine a transcendence measure of \(\xi \). We take an arbitrary non-zero polynomial
\[
P(y) = \sum_{\nu=0}^{n} a_\nu y^\nu, (a_\nu \in F[x]; \nu = 0, 1, ..., n)
\]
whose degree \(\partial(P) \) is less than or equal to \(n \). The height of \(P \) is denoted by
\[
h(P) = m_{\nu=0}^{n} |a_\nu| = q_{\nu=0}^{n} |a_\nu|^\partial(\nu)
\]
For the transcendental element \(\xi \) of \(K \), we define the positive quantity
\[
\Gamma_n(H, \xi) = \min |P(\xi)|
\]
where \(P \neq 0, \partial(P) \leq n, h(P) \leq H \).

If \(T(n, H) \) is a function of the variables \(n, H \) of \(\Gamma_n(H, \xi) \) which satisfies the inequality
\[
\Gamma_n(H, \xi) \geq T(n, H)
\]
for all sufficiently large values of \(n \) and \(H \), then \(T(n, H) \) is said to be a transcendence measure of \(\xi \).
Theorem 1:

We take an arbitrary non-zero polynomial

\[P(y) = \sum_{\nu=0}^{d} a_{\nu} y^{\nu}, (a_{\nu} \in F[x]; \nu = 0, 1, \ldots, n) \quad (4) \]

further let \(\partial(P) = d \), \(h(P) = h \) and \(a = \max_{i=0}^{d} \partial a_{\nu} \). We assume that

\[dq^{d} \log h > \frac{kq^{k} \log q}{q} \quad (5) \]

we have

\[|P(\xi)| \geq h^{-aq^{d}(\frac{1}{k} - d - 1)} \quad (6) \]

and a transcendence measure of \(\xi \) is

\[T(n, H) = H^{-aq^{d}(\frac{1}{k} - d - 1)}. \quad (7) \]

As in the classical theory of transcendental number theory (see Schneider [13], page 6), it is possible to define Mahler’s classification on \(K \). Let \(\xi \in K \) be transcendental, and define:

\[\Gamma_{n}(\xi) := \lim_{H \to \infty} \sup_{n} \frac{-\log \Gamma_{n}(H, \xi)}{\log H} \]

\[\Gamma(\xi) = \lim_{H \to \infty} \frac{1}{n} \Gamma_{n}(\xi) \quad (8) \]

Hence \(\Gamma_{n}(\xi) \geq n \) for every \(n \in \mathbb{N} \) and so \(\Gamma(\xi) \geq 1 \). For every \(n, H \in \mathbb{N} \),

\[\Gamma_{n}(H, \xi) < H^{-n} q^{n} \max(1, |\xi|^{n}) \quad (9) \]

is satisfied (see Bundschuh [12], Lemma 3).

On the other hand, let the least naturel number \(n \) satisfying \(\Gamma_{n}(\xi) = \infty \) be denoted by \(\mu(\xi) \). If there is no such \(n \), then one may define \(\mu(\xi) \) as \(\infty \). In this case, the transcendental number \(\xi \in \mathbb{R} \) is called

- \(S \)-Laurent series if \(1 \leq \Gamma(\infty) < \infty \) and \(\mu(\xi) = \infty \),
- \(T \)-Laurent series if \(\Gamma(\xi) = \infty \) and \(\mu(\infty) = \infty \),
- \(U \)-Laurent series if \(\Gamma(\xi) = \infty \) and \(\mu(\infty) < \infty \).
Moreover, the U-class may be divided into subclasses. If \(\mu(\xi) = m(m > 0) \) then \(\xi \) is called a \(U_m \)-Laurent series. Leveque [11] was the first to show that for all \(m \), \(U_m \) is non-empty in the classical theory but the honour goes to Oryan [14] if the ground field is \(K \).

According to the above classification, the series defined in (1) can not be a \(U \)-Laurent series. This fact may be proved by the help of the Theorem 1.

Theorem 2: The \(\xi \) Laurent series defined by (1) doesn’t belong to the class \(U \) so that it belongs to the class \(S \) or to the class \(T \).

Preliminary

We will use the following lemmas in proof of the theorem.

Lemma 1: Let

\[
P(y) = \sum_{\nu=0}^{d} a_{\nu} y^{\nu}
\]

\((a_{\nu} \in F[x], a_d \neq 0 (d \geq 1) \), \(a = \frac{d}{\partial x}, \partial a_{\nu} \).

Then there are some elements \(A_0, A_1, ..., A_d \in F[x] \), not all zero satisfying, \(\partial A_j \leq ad(q^d - d + 1) \) for \(0 \leq j \leq d \) and

\[
\sum_{j=0}^{d} A_j y^{q_j} = p(y) \sum_{j=0, q^j \geq d}^{d} A_j \sum_{k=0}^{q^j-d} b_k a_d^{-k-1} y^{q^j-d-k} =: P(y)Q(y)
\]

where \(b_0 := 1 \) and \(b_k \), for \(k \geq 1 \) is the sum of product of exactly \(k \) terms from \(a_0, a_1, ..., a_d \), multiplied by \(\pm \).

Proof: See [12], lemma 4, page 416

Lemma 2: Let \(\xi \in K \) and \(|\xi| = q^{\lambda} \). Under the hypotheses of Lemma 1 we have

\[
|Q(\xi)| \leq q^{d(q^d-d+1)+(q^d-d)\max(a, \lambda)}.
\]

Proof: See [12], lemma 5, page 417
PROOF OF THE THEOREMS

Proof of the Theorem 1:

Consider the polynomial defined by (4). With \(\theta(p) = d \), \(a_d \neq 0 \). Let \(d \geq 1 \).
By Lemma 1 there are some elements the \(A_0, A_1, \ldots, A_d \in F[x] \) not all zero
such that
\[
\sum_{j=0}^{d} A_j y^{q^j} = P(y) \sum_{j=0}^{d} A_j \sum_{k=0}^{q^j-d} b_k a_d^{-k-1} y^{q^j-d-k} =: P(y)Q(y) \tag{13}
\]
\[
\partial(A_j) \leq ad(q^d - d + 1) \leq adq^d \quad (0 \leq j \leq d) . \tag{14}
\]

In (13) we put \(\xi \) instead of \(y \):
\[
P(\xi)Q(\xi) = \sum_{j=0}^{d} A_j \xi^{q^j} = \sum_{j=0}^{d} A_j \sum_{k=0}^{\infty} (-1)^{q^j+k} F_{q^j}^{-q^j} . \tag{15}
\]

Furthermore let \(D_k = \sum_{k=i+j}^{\infty} (-1)^{i+j} \frac{F_{q^j}^{-q^j} F_k}{F_j q^j} \)
Separate in (12) sum as \(T_1 + T_2 \), where
\[
T_1 = F_{\beta} \sum_{k=0}^{\beta} \frac{D_k}{F_k}, \quad T_2 = F_{\beta} \sum_{k=\beta+1}^{\infty} \frac{D_k}{F_k} \tag{16}
\]
where \(\beta \), which is not a negative integer will be chosen later.

1) First, we prove that \(|T_1| \geq 1\). That is, we prove \(T_1 \) is a polynomial
but not equal zero. By the definition of \(F_k \), obviously \(T_1 \) is polynomial.
Furthermore,
\[
T_1 \equiv D_\beta(\mod[\beta - l]) \\
\equiv (-1)^{\beta-l} A_i[\beta] \ldots[\beta - l+1]^{l-1} \\
\equiv (-1)^{\beta-l} A_i F_i \neq 0(\mod[\beta - l])
\]

for \(\beta \) sufficiently large. Therefore, for all sufficiently \(\beta \) \(T_1 \) is not identically
zero. So \(T_1 \) is non-zero polynomial. So it shown that \(|T_1| \geq 1\). (where
\(\deg T_1 > 0 \implies |T_1| \geq 1 = q^{\deg T_1} > q^0 = 1 \)

2) we will show \(|T_2| < 1\). Let \(T_2^* \) be any term of \(T_2 \). Note that ,

105
\[\text{deg } D_{\beta} = \text{deg } F_{\beta} + \text{deg } A_j - \text{deg } F_{\beta-j}^{q^j} + \text{deg } r^q \]

where \(r^q \neq 0 \).

\[\text{deg } T_2^* = \text{deg } F_{\beta} + \text{deg } F_{\beta+1} + \text{deg } D_{\beta} - \text{deg } F_{\beta-j}^{q^j} + \text{deg } A_j \]

\[= r \text{deg } F_{\beta} - \text{deg } F_{\beta+1} - \text{deg } F_{\beta-j}^{q^j} + a^* \]

\[= r^\beta - (\beta + 1)q^{\beta+1} - (\beta - j)q^\beta + a^* \]

Therefore \(\beta + d < (\beta + 1)d \). Because \(\beta - j \geq \beta - d \rightarrow - (\beta - j) \geq - (\beta - d) \) we have

\[r^\beta q^\beta - (\beta + 1)q^{\beta+1} - (\beta - d)q^\beta < 0. \]

Because \(0 \leq j \leq d \), \(\beta - j \geq \beta - d \rightarrow - (\beta - j) \geq - (\beta - d) \) we have

\[r^\beta q^\beta - (\beta + 1)q^{\beta+1} - (\beta - d)q^\beta \rightarrow - \infty. \]

Therefore we may chose \(\beta \) so large that every term of \(T_2 \) is negative.

That is \(|T_2| = q^{\text{deg } T_2} < q^0 = 1 \rightarrow |T_2| < 1. \)

3) We will prove the claim of the theorem. By the definition of \(T_1 \) and \(T_2 \), we can write

\[T_1 + T_2 = F_{\beta} P(\xi) Q(\xi). \]

Hence we obtain

\[|T_1 + T_2| = |F_{\beta}| |P(\xi)||Q(\xi)|. \quad (17) \]

Since \(|T_1| \geq 1 \) and \(|T_2| < 1 \), we get

\[|T_1 + T_2| = \max (|T_1|, |T_2|) = |T_1|. \quad (18) \]

By (17) and (18), we obtain

\[|P(\xi)||Q(\xi)| = |T_1||F_{\beta}|^{-1}. \quad (19) \]

Let \(|\xi| = q^\lambda \). By (1) and since

\[|r^{q_k} F_{k-1}^{-1}| = q^{\deg (r^{q_k} F_{k-1}^{-1})} = q^{\deg r^{q_k} - \deg F_k} = q^{0 - k q^k} = q^{-k q^k}. \]

we get \(|\xi| = q^{-k q^k} = q^{-\lambda q^0} = q^0. \) Therefore \(\lambda = 0 \). Since \(\max (a, \lambda) = \max (a, 0) = a \) and by Lemma 2, we find

\[|Q(\xi)| \leq q^{a (q^d - d + 1) + (q^d - d) \max (a, \lambda)} \]

\[\leq q^{a q^d + a q^d} \]
\[|Q(\xi)| = q^{a(d+1)q^d}. \quad (20) \]

Since \(h = h(P) = q^a \),
\[a = \frac{\log h}{\log q}. \quad (21) \]

By (6) and (21) we find
\[adq^d > \frac{kq^k}{q}. \quad (22) \]

Consider the sequence
\[\{ q^{-1}, q^0, q^1, q^2, \ldots \} \]

There are \(\beta \) non-negative integers such that
\[\beta q^{\beta - 1} \leq \frac{adq^d}{kq^k} < \beta q^\beta. \quad (23) \]

Because, by (22)
\[\frac{1}{q} \leq \frac{adq^d}{kq^k}. \]

From (21) we obtain the following statement for the above \(\beta \)
\[\frac{adq^d}{kq^k} < q^\beta \leq \frac{adq^{d+1}}{kq^k}. \quad (24) \]

Further, by (24)
\[|F_\beta| = q^{d+\beta} = q^\beta q^\beta. \quad (25) \]

By (19),(20),(23),(25) and since \(|T_1| \geq 1\) we get
\[|P(\xi)| = |T_1||F_\beta|^{-1}|Q(\xi)|^{-1} \]
\[\geq |F_\beta|^{-1}|Q(\xi)|^{-1} \]
\[\geq q^{-\frac{1}{k}(adq^{d-k+1})-a(d+1)q^d} \]
\[= q^{-aq^d(\frac{1}{k}-d-1)}. \quad (26) \]

By (26) and since \(h = q^a \) we have
\[|P(\xi)| \geq h^{-aq^d(\frac{1}{k}-d-1)}. \]

This is the claim of the theorem 1.
Proof of the Theorem 2:

Let the degree of the polynomial P in Theorem 1 be $\vartheta(P) = d \leq n$ and let its height be $h(P) = h \leq H$. By (4),

$$|P(\xi)| \geq H^{-aq^d\left(\frac{q^{1-k}}{k} - 1\right)}.$$ \hspace{1cm} (27)

(27) and (6) and by the definition of Mahler’s classification

$$\Gamma_n(H, \xi) \geq H^{-aq^d\left(\frac{q^{1-k}}{k} - 1\right)}$$

for all sufficiently large natural numbers n and H. Hence consequently

$$\log \Gamma_n(H, \xi) \geq \left[-aq^d\left(\frac{q^{1-k}}{k} - 1\right) \right] \log H$$

$$\frac{-\log \Gamma_n(H, \xi)}{\log H} \leq aq^d\left(\frac{q^{1-k}}{k} - 1\right)$$ \hspace{1cm} (28)

$$\Gamma_n(\xi) = \lim_{H \to \infty} \sup \frac{-\log \Gamma_n(H, \xi)}{\log H} \leq aq^d\left(\frac{q^{1-k}}{k} - 1\right).$$ \hspace{1cm} (29)

That is, for every index n

$$\Gamma_n(\xi) < \infty.$$

By the definition of Mahler’s classification, $\mu(\xi) = \infty$. This shows ξ can never belong to the class U so that it belongs to the class S or to the class T.

108
REFERENCES

[16] ÖZDEMİR , A. , Ş. , On the Measure of Transcendence of $\xi = \psi(2) = \sum_{k=0}^{\infty} \frac{(-1)^k x^k}{F_k}$ On the Measure of Transcendence of Certain formal Laurent Series , Marmara University ,The Journal of Science. No : 10 , (1995)