SOME FIXED POINT THEOREMS IN HILBERT SPACES

Valeriu Popa

Department of Mathematics
University of Bacau
5500 Bacau ROMANIA

Abstract. Some general fixed points theorems in Hilbert spaces are proved which generalize the results from [1].

AMS Subject classification (1991): 24 H 25
Key words and phrases: fixed point, Hilbert spaces.

1. INTRODUCTION

Let R_+ be denote the set of all non-negative reals. Let H the set of all real function $g(t_1, ..., t_5): R^5_+ \rightarrow R_+$ satisfying the following conditions:

(H1): g is non-decreasing in variables t_4 and t_5,
(H2): $g(u,0,0,u,u) < u$, $\forall u > 0$,
(H3): there exists $h \in (0, 1)$ such that for every $u, v \in R_+$ with
(Ha): $u \leq g(v,u,u+u,0)$, or
(Hb): $u \leq g(v,u,v,0,u+v)$,
we have $u \leq h.v$.

Ex. 1. $g(t_1, ..., t_5) = q.\max\{t_1, t_2, t_3, t_4 + t_5\}$ where $q \in (0, 1)$ and $h = q$.

(H1). Obviously.
(H2). $g(u,0,0,u,u) = q.u < 0$, $\forall u > 0$.

(Ha). Let $u, v \geq 0$ be such that $u \leq g(v,u,u,v,0)$ then $u \leq q.\max\{v, u, \frac{1}{2}(u+v), 0\}$ which implies $u \leq q.v = h.v$.
(Hb). If $u \leq g(v,u,v,0,u+v)$, similarly, we have $u \leq h.v$.

Ex. 2. $g(t_1, ..., t_5) = [at_1^k + bt_2^k + ct_3^k + d(t_4t_5)^{\frac{k}{2}}]^{\frac{1}{k}}$ where $k \geq 1; \ a > 0; \ b, c, d \geq 0$ and $a + b + c + d < 1$.

(H1). Obviously.
(H2). $g(u,0,0,u,u) = [au^k + du^k]^{\frac{1}{k}} = (a + d)^{\frac{1}{k}}.u < u$, $\forall u > 0$.
(H₃). Let \(u, v \in R_+ \) be such that \(u \leq g(v, v, u, u + v, 0) \), then we have
\[
u = h_1, v \quad \text{with} \quad h_1 = \left(\frac{a + b}{1 - c} \right)^{\frac{1}{k}} < 1.
\]

If \(u \leq g(v, u, v, 0, u + v) \), similarly, we have \(u \leq h_2, v \) with \(h_2 = \left(\frac{a + c}{1 - b} \right)^{\frac{1}{k}} < 1. \)

Thus \(g \) satisfies condition (H₃) with \(h = \max \{h_1, h_2\} \).

Ex. 3. \(g(t_1, \ldots, t_3) = [a t_1^2 + b t_2^2 + c t_3^2 + d t_4 t_5]^{\frac{1}{2}} \)

where \(a > 0, \ b, c, d \geq 0 \) and \(a + b + c + d < 1. \)

(H₁). Obviously.

(H₂). \(g(u, 0, 0, u, u) = [a u^2 + d u^2]^{\frac{1}{2}} \leq (a + d)^{\frac{1}{2}} u < u, \ \forall u > 0. \)

(H₃). Let \(u, v \in R_+ \) be such that \(u \leq g(v, v, u, u + v, 0) \), then we have
\[
u = h_1, v \quad \text{with} \quad h_1 = \left(\frac{a + c + a v^2}{1 - b + v^2 (1 - b - c)} \right)^{\frac{1}{k}} < 1.
\]

If \(u \leq g(v, u, v, 0, u + v) \), similarly, we have \(u \leq h_2, v \) where \(h_2 \in (0, 1) \).

Thus \(g \) satisfies condition (H₃) with \(h = \max \{h_1, h_2\} \).

Remark 1. There exists the functions \(g : R^3_+ \rightarrow R_+ \) which satisfies conditions
(H₁) - (H₃) and is decreasing in variable \(t_2 \) and \(t_3 \).

Ex. 4. \(g(t_1, \ldots, t_3) = [a t_1^2 + \frac{b t_4 t_5}{t_2^2 + t_3^2 + 1}]^{\frac{1}{2}} \)

where \(a > 0, \ b \geq 0 \) and \(a + b < 1. \)

(H₁). Obviously.

(H₂). \(g(u, 0, 0, u, u) = (a + b)^{\frac{1}{2}} u < u, \ \forall u > 0. \)

(H₃). Let \(u, v \in R_+ \) be such that \(u \leq g(v, v, u, u + v, 0) \), then we have \(u \leq a^{\frac{1}{2}} v = h, v \),

where \(h \in (0, 1) \). If \(u \leq g(v, u, v, o, u + v) \), then \(u \leq hv \) where \(h = a^{\frac{1}{2}} < 1. \)

2. MAIN RESULTS

Theorem 1. Let \(T_1 \) and \(T_2 \) be two mappings from Hilbert space \(X \) into itself such inequality
\[
\|T_1 x - T_2 y\| \leq g(\|x - y\|, \|x - T_1 x\|, \|y - T_2 y\|, \|x - T_2 y\|, \|y - T_1 x\|)
\]
holds for all \(x, y \in X \)

where \(g \in H \), then \(F_{T_1} = F_{T_2} \), where \(F_T = \{x \in X : \ x = T x\}. \)
Proof. Let \(u \in F_{T_2} \) be then
\[
\|u - T_2u\| = \|T_1u - T_2u\| \leq g\left(\|u - u\|, \|u - T_1u\|, \|u - T_2u\|, \|u - T_1u\|\right) = \\
= g(0,0,\|u - T_2u\|,\|u - T_2u\|,0).
\]
By (H_a) we have \(\|u - T_2u\| \leq 0 \) which implies \(u = T_2u \) thus \(u \in F_{T_2} \) and \(F_{T_2} \subseteq F_{T_2} \). Similarly, by (H_b), we have \(F_{T_2} \subseteq F_{T_2} \).

Theorem 2. Let \(T_1 \) and \(T_2 \) be two mappings from Hilbert space \(X \) into itself such that inequality (1) holds for all \(x, y \in X \) where \(g \) satisfies (H_2). If \(T_1 \) and \(T_2 \) have a common fixed point \(z \), then \(z \) is a unique common fixed point for \(T_1 \) and \(T_2 \).

Proof. Suppose that \(T_1 \) and \(T_2 \) have a second common fixed point \(z' \neq z \). Then
\[
\|z - z'\| = \|T_1z - T_2z'\| \leq g\left(\|z - z\|, \|z - T_1z\|, \|z' - T_2z'\|, \|z - T_2z'\|, \|z' - T_1z\|\right) = \\
= g(\|z - z\|,0,0,\|z - z\|,\|z - z\|) < \|z - z'\|,
\]
a contradiction.
In [1] is proved following theorem.

Theorem 3. Let \(X \) be a closed subset of a Hilbert space and \(T_1 \) and \(T_2 \) be mappings of \(X \) into itself satisfying
\[
(2) \quad \|T_1x - T_2y\|^2 \leq a\|x - y\|^2 + b\|y - T_2y\|^2 + c\|x - T_1x\|^2 \frac{1 + \|x - T_1x\|^2}{1 + \|x - y\|^2}
\]
for all \(x, y \) in \(X \), where \(a, b, c \) are non-negative reals with \(a + b + c < 1 \). Then \(T_1 \) and \(T_2 \) have a unique common fixed point in \(X \).

The purpose of this paper is to extend Theorem 3 and others results from [1] for the functions \(g \in H \).

Theorem 4. Let \(X \) be a closed subset of a Hilbert space and \(T_1 \) and \(T_2 \) be mappings of \(X \) into itself satisfying inequality (1) for all \(x, y \) in \(X \), where \(g \in H \). Then \(T_1 \) and \(T_2 \) have a unique common fixed point in \(X \).

Proof. For arbitrary \(x_0 \in X \), define the sequence \(\{x_n\} \) as
\[
x_1 = T_1x_0, \quad x_2 = T_2x_1, \quad \ldots, \quad x_{2n} = T_1x_{2n}, x_{2n+2} = T_2x_{2n+1}, \ldots
\]
Then we have
\[
\|x_{2n+1} - x_n\| = \|T_1x_{2n} - T_2x_{2n-1}\| \leq g\left(\|x_{2n} - x_{2n-1}\|, \|x_{2n} - T_1x_{2n}\|, \|x_{2n-1} - T_2x_{2n-1}\|\right), \\
\|x_{2n} - T_1x_{2n-1}\| \leq g\left(\|x_{2n} - x_{2n-1}\|, \|x_{2n} - x_{2n-1}\|, \|x_{2n-1} - x_{2n}\|\right), \\
\|x_{2n-1} - x_{2n+1}\| \leq g\left(\|x_{2n} - x_{2n-1}\|, \|x_{2n} - x_{2n-1}\|, \|x_{2n-1} - x_{2n}\|\right)
\]
which implies, by condition (H_b), that
\[
\|x_{2n+1} - x_n\| \leq h\|x_{2n-1} - x_{2n}\|.
\]
Similarly, by condition (H_b), we have
\[
\|x_{2n} - x_{2n-1}\| \leq h\|x_{2n-1} - x_{2n-2}\|.
\]
Hence we get
\[
\|x_{n+1} - x_n\| \leq h^n\|x_1 - x_0\| \quad \text{for all} \quad n \in \mathbb{N}.
\]
Hence \(\{x_n\} \) is a Cauchy sequence. Since \(X \) is closed, there exists \(u \in X \) which is the limit of \(x_n \), i.e. \(\lim x_n = u \). Since \(x_{2n+1} = T_1 x_{2n} \) and \(x_{2n+2} = T_2 x_{2n+1} \) are subsequences of \(\{x_n\} \), \(\{T_1 x_{2n}\} \) and \(\{T_2 x_{2n+1}\} \) also converge to the same limit \(u \). We now prove that \(u \) is a common fixed point of \(T_1 \) and \(T_2 \). Consider

\[
\|u - T_2 u\|^2 = \|(u - x_{2n+1}) + (x_{2n+1} - T_2 u)\|^2 \leq \|u - x_{2n+1}\|^2 + 2 \Re \langle u - x_{2n+1}, x_{2n+1} - T_2 u \rangle + \\
+ \|T_2 u - u\| \|x_{2n+1} - T_2 u\|.
\]

Letting \(n \to \infty \), so that \(x_{2n}, x_{2n+1} \to u \) and \(\Re \langle u - x_{2n+1}, x_{2n+1} - T_2 u \rangle \to 0 \) we get

\[
\|u - T_2 u\| \leq g(0,0,\|T_2 u - u\|,\|T_2 u - u\|,0).
\]

By condition (Hb) follows that \(\|u - T_2 u\| \leq 0 \), which implies \(T_2 u = u \). By Theorems 1 and 2 follows that \(u \) is unique common fixed point for \(T_1 \) and \(T_2 \).

Corollary 1. Let \(X \) be a closed subset of a Hilbert space and \(T_1 \) and \(T_2 \) be mappings on \(X \) into itself such that

a) \(\|T_1 x - T_2 y\| \leq k \cdot \max\{\|x - y\|,\|x - T_1 x\|,\|y - T_2 y\|,\|x - T_2 y\| + \|y - T_1 x\|\} \)

where \(k \in (0, 1) \), or

b) \(\|T_1 x - T_2 y\|^k \leq a\|x - y\|^k + b\|x - T_1 x\|^k + c\|y - T_2 y\|^k + d\|x - T_2 y\| \cdot \|y - T_1 x\|^{k/2} \)

where \(k \geq 1 \), \(a > 0 \), \(b, c, d \geq 0 \) and \(a + b + c + d < 1 \), or

c) \(\|T_1 x - T_2 y\|^2 \leq a\|x - y\|^2 + b\|y - T_2 y\|^2 \frac{1 + \|x - T_1 x\|^2}{1 + \|x - y\|^2} + \\
+ c\|x - T_1 x\|^2 \frac{1 + \|y - T_2 y\|^2}{1 + \|x - y\|^2} + d\|x - T_2 y\| \cdot \|y - T_1 x\| \frac{1 + \|x - y\|^2}{1 + \|x - y\|^2} \)

where \(a > 0 \), \(b, c, d \geq 0 \) and \(a + b + c + d < 1 \), holds for all \(x, y \) in \(X \). Then \(T_1 \) and \(T_2 \) have a unique common fixed point in \(X \).

Remark 2. From Corollary 1(c) for \(d = 0 \) follows Theorem 3.

Theorem 5. Let \(X \) be a closed subset of a Hilbert space and \(\{T_n\}_{n \in N} \) a sequence of mapping on \(X \) into itself satisfying inequality

\[(3) \quad \|T_n x - T_{n+1} y\| \leq g(\|x - y\|,\|x - T_n x\|,\|y - T_{n+1} y\|,\|x - T_{n+1} y\|,\|y - T_n x\|) \quad \text{for all} \quad x, y \in X, \quad \text{where} \quad g \in \mathcal{H}. \]

Then the sequence \(\{T_n\}_{n \in N} \) has unique common point in \(X \).

Proof. By Theorem 4, \(T_1 \) and \(T_2 \) have a unique common fixed point. By Theorem 1, \(z \) is unique fixed point for the sequence \(\{T_n\}_{n \in N} \).
Corollary 2. Let X be a closed subset of a Hilbert space and $\{T_n\}_{n \in \mathbb{N}}$ a sequence of mappings on X into itself such that

a) $\|T_n x - T_{n+1} x\| \leq k \max\{\|x - y\|, \|x - T_n x\|, \|y - T_{n+1} x\|\}$

where $k \in (0, 1)$, or

b) $\|T_n x - T_{n+1} y\| \leq a \|x - y\| + b \|x - T_n x\| + c \|y - T_{n+1} y\| + d \|\|x - T_{n+1} y\| - \|y - T_n x\|\|^{1/2}$

where $k \geq 1$, $a > 0$, $b, c, d \geq 0$ and $a + b + c + d < 1$, or

c) $\|T_n x - T_{n+1} y\| \leq a \|x - y\| + b \|y - T_{n+1} y\| \frac{1 + \|x - T_n x\|^2}{1 + \|x - y\|^2} + c \|x - T_n x\| \frac{1 + \|y - T_{n+1} y\|^2}{1 + \|x - y\|^2} + d \|\|x - T_{n+1} y\| - \|y - T_n x\|\|^{1/2}$

where $a > 0$, $b, c, d \geq 0$ and $a + b + c + d < 1$,

holds for all x, y in X. Then the sequence $\{T_n\}_{n \in \mathbb{N}}$ have a unique common fixed point.

Theorem 6. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mappings on X into itself satisfying inequality

$\|T_1^p x - T_2^q y\| \leq g(\|x - y\|, \|x - T_1^p x\|, \|y - T_2^q y\|, \|x - T_2 q y\|, \|y - T_1^p x\|)$

for all $x, y \in X$, where $g \in H$, and p, q are some positive integers. Then T_1 and T_2 have a unique common point in X.

Proof. T_1^p and T_2^q satisfy all conditions of the Theorem 4. Hence they have a unique common fixed point, say u, so that $T_1^p u = u$, $T_2^q u = u$.

Now, $T_1^p u = u$ implies $T_1^p(T_1^p u) = T_1 u$ and $T_1^p(T_2 u) = T_1 u$. Hence $T_1 u$ is a fixed point of T_1^p. Similarly, $T_2 u$ is a fixed point of T_2^q. Now if $u \neq T_2 u$, we have

$\|u - T_2 u\| = \|T_1^p u - T_2^q(T_2 u)\| \leq g(\|u - T_2 u\|, \|u - T_1^p u\|, \|T_2 u - T_2^q(T_2 u)\|, \|u - T_2^q(T_2 u)\|, \|u - T_2^q(T_2 u)\|, \|u - T_2 u\|)$

which is a contradiction. Thus $u = T_2 u$. Similarly we get $u = T_1 u$. If v is another common fixed point of T_1 and T_2 then clearly v is also a common fixed point of T_1^p and T_2^q. By Theorem 4, T_1^p and T_2^q have a unique common fixed point.

Corollary 3. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mappings on X into itself such that

a) $\|T_1^p x - T_2^q y\| \leq k \max\{\|x - y\|, \|x - T_1^p x\|, \|y - T_2^q y\|, \|y - T_1^p x\|\}$

where $k \in (0, 1)$, or
where \(k \geq 1, \ a > 0, \ b, c, d \geq 0 \) and \(a + b + c + d < 1 \), or

\[
\| T_1^{p} x - T_2^{q} y \|^{k} \leq a\| x - y \|^{k} + b\| x - T_1^{p} x \|^{k} + c\| y - T_2^{q} y \|^{k} + d\| x - T_1^{p} x \| \cdot \| y - T_1^{p} x \|^{\frac{k}{2}}
\]

holds for all \(x, y \) in \(X \) and \(p, q \) positive integers. Then \(T_1 \) and \(T_2 \) have a unique common fixed point.

Remark 3. Corollary 3(c) for \(d = 0 \) is Corollary 2 of [1].

REFERENCES