Case report

Early prediction of response to cetuximab and radiotherapy by FDG-PET/CT for the treatment of a locoregionally advanced squamous cell carcinoma of the hypopharynx

Mindaugas Grybauskas a,*, Jean-François Daisne b, Eduardas Aleknavičius c,d, Arvydas Burneckis a

a Department of Radiation Oncology, National Cancer Institute, Vilnius, Lithuania
b Department of Radiation Oncology, Clinique et Maternité Sainte-Elisabeth, Namur, Belgium
c Radiotherapy and Drug Therapy Centre, National Cancer Institute, Vilnius, Lithuania
d Faculty of Medicine, Vilnius University, Vilnius, Lithuania

A R T I C L E I N F O

Article history:
Received 16 May 2014
Accepted 15 September 2014
Available online 29 September 2014

Keywords:
Cetuximab
Head and neck cancer
Predictive marker
FDG-PET/CT
Radiotherapy

A B S T R A C T

Cetuximab (CTX) is used for the concurrent treatment with radiotherapy (RT) in squamous cell carcinoma of head and neck (HNSCC). There are no reliable clinical predictive markers of effectiveness of CTX at yet. We describe the clinical case of patient who received a CTX/RT to cure locoregionally advanced hypopharyngeal SCC. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography and computed tomography ([18F]FDG-PET/CT) was performed before the treatment and repeated 10 days after CTX induction dose. A repeated [18F]FDG-PET/CT scan showed dramatic decrease of metabolic parameters. Patient had a complete response after treatment and is still alive and cured after 5 years.

© 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

1. Introduction

Head-and-neck cancer refers to a group of the malignant tumors arising at a variety of sites in the upper aerodigestive tract, the most commonly in the oral cavity, the oropharynx, the hypopharynx and the larynx. The squamous cell carcinoma (SCC) is the predominant histological type (about 90%) and the sixth leading neoplasm by incidence worldwide with more than 650,000 new cases diagnosed per year [1]. At the time of diagnosis most patients have the locally advanced disease and lymph node metastases [2]. Despite advances in therapy during past decade,
prognosis and long-term survival of patients with locoregionally advanced head and neck squamous cell carcinoma (LAHNSCC) are poor.

Combined chemoradiotherapy, including monoclonal antibodies, represents state-of-the-art treatment for LAHNSCC. Cetuximab (CTX) is a monoclonal antibody targeted to epidermal growth factor receptor (EGFR). It has been approved for use in combination with radiation during treatment of primary locoregionally advanced (stage III to IVB) HNSCC or as monotherapy for the treatment of recurrent or metastatic HNSCC after the failure of platinum-based chemotherapy, and also in combination with platinum/5-fluorouracil for the treatment of the recurrent or metastatic disease. Treatment with this anti-EGFR antibody is expensive and absolute difference in median overall survival at 3 years in LAHNSCC patients is 19.7 months (29.3 months in RT only group vs. 49 months in RT/CTX group). This corresponds to 10% absolute benefit in median overall survival in the RT/CTX group [3]. The majority of patients with LAHNSCC do not take advantage either because they have been cured by RT alone or are unresponsive on the long term. Hence, it is desirable to early predict the efficacy of the treatment with CTX/RT to better select good responders.

2. Case report

A 66-year-old man with dysphagia, pain in the left jaw and ear, and hoarseness lasting since January 2009 was admitted to the out-patient clinic in March 2009. Ulcerative proliferative lesion in the left pyriform sinus, aryepiglottic folds, left arytenoid and cricoid region with immobility of the left vocal cord was diagnosed by fiberoptic endoscopic examination. Histological examination of the lesion biopsy showed the poorly differentiated SCC. One enlarged lymph node was detected in the level II on the left side of the neck during clinical examination. No distant metastasis was detected.

A hypopharyngeal SCC of the left side was diagnosed, clinically cT3N1M0, stage IVa according to the Union for International Cancer Control (UICC) 6th edition. Concomitant chemoradiotherapy was foreseen for the treatment, but hepatitis C with the advanced cirrhosis was diagnosed before the commencement of RT. Therefore, treatment with CTX was proposed instead of platinum-based chemotherapy.

The first 18FDG-PET/CT was carried out on April 23, 2009. Standard induction dose of CTX (400 mg/m²) was administered on April 27, 2009, and was followed by radiosensitizing doses on a weekly basis.

RT treatment planning was performed using standard contrast-enhanced CT and 18FDG-PET/CT data. Then RT was administered between May 4, 2009, and June 15, 2009, inclusive. Accelerated fractionation (2 Gy/fx, 6 fx/week) was used. A therapeutic dose of 70 Gy was prescribed to the hypopharyngeal tumor and the lymph node in the level II on the left side of the neck. A prophylactic dose of 50 Gy was prescribed to the lymph nodes in the level III and IV on the left side of the neck and the level II to IV on the right side of the neck.

The second infusion of CTX was administered on May 4, 2009, and intensity modulated radiotherapy (IMRT) was used for delivery of highly conformal RT. 18FDG-PET/CT was repeated on May 7, 2009, following RT of a cumulative dose of 6 Gy.

The first 18FDG-PET/CT revealed pathological 18FDG uptake in the left side of hypopharynx and in one lymph node in level II on the left side of the neck. The second 18FDG-PET/CT on May 7, 2009, showed significant decrease in 18FDG uptake in the tumor and the metastatic lymph node (Fig. 1). The main parameters of both 18FDG-PET/CT scans are summarized in Table 1.

Fig. 1 – 18FDG uptake before (A and B) and after (C and D) administration of 2 doses of CTX. The first 18FDG-PET/CT (axial (A) and coronal (B)) revealed pathological 18FDG uptake in the left side of hypopharynx and one lymph node in level II on the left side of the neck. The second 18FDG-PET/CT (axial (C) and coronal (D)) on 07.05.2009 showed significant decrease in 18FDG uptake in the tumor and the metastatic lymph node. SUV threshold value of 2.5 was used for image acquisition.
Specific toxicity of CTX was observed as the grade III maculopapular skin rash and required the topical application of metronidazole cream and oral intake of doxycycline 100 mg 2 times a day.

A complete response to the treatment was determined by 18FDG-PET/CT scan 3 months later post RT on September 17, 2009. Further monitoring confirmed the complete remission. After nearly five years, the patient remains free of disease progression.

3. Discussion

18FDG-PET is a molecular imaging technique that exploits preferential utilization of aerobic glycolysis by tumor cells. 18FDG-PET has been used in cancer patients since the 1980s and is now a widely used clinical imaging tool in oncology. Significant reduction in 18FDG uptake identified by PET can indicate modulation of EGFR function or other mechanisms involved in the regulation of glucose metabolism in cancer cells. Preclinical studies using breast cancer cell lines showed marked inhibition of glucose uptake and retention over a period of hours following treatment with the anti-EGFR antibody cetuximab [4].

Aerobic glycolysis is a defining feature of cancer and is characterized by increased metabolism of glucose to lactate in the presence of sufficient oxygen [5]. The rate of adenosine triphosphate (ATP) generation becomes greater if respiration occurs through glycolysis. This enables cancer cells to gain competitive advantage for shared energy resources such as glucose etc. Tumors that take up more glucose than surrounding tissues can be noninvasively visualized in cancer patients by 18FDG-PET.

Hypoxia is another key feature of many types of tumors [6]. Hypoxic cells often use enhanced glycolysis to maintain production of energy. 18FDG uptake might indicate a state of hypoxia [7], because it is related to a higher expression of glucose transporter GLUT-4 in hypoxic cells [8], which is responsible for the internalization and entrapment of 18FDG into the cell. However, 18FDG uptake should not be considered as a surrogate marker for hypoxia [9].

Su et al. demonstrated that reduction of hypoxia by CTX was observed only in tumor cells highly sensitive to this treatment [10]. Most of adaptations to tumor hypoxia – including the shifting of metabolism toward glycolysis – are commonly orchestrated by the hypoxia inducible factors (HIFs) [11]. Li et al. observed that CTX decreases the HIF-1α level and concluded that downregulation of HIF-1α is required to maximize therapeutic response of cancer cells to CTX [12]. Lu et al. demonstrated that, following EGFR-targeted therapy, HIF-1 selectively decreased in responsive cell lines only [13].

Sequential imaging during treatment by means of 18FDG-PET reveals glucose uptake patterns that might aid predicting treatment effectiveness [14]. But there is still no clinical data that shows possible predictive value for early evaluation of tumor response to CTX by means of PET-CT. Regarding the predictive value of 18FDG-PET in early prediction of clinical response to anti-EGFR therapy there is one study with panitumumab. A chemotherapy-refractory patient necessitated a quick identification of an effective agent. The authors used the 18FDG-PET scan 48 h after the initial dose of panitumumab to determine pharmacodynamic response to the antibody. In this case report, the initial 46% reduction of SUVmax for target lesions correlated well with partial response after 8 weeks [15]. By analogy, we observed in the present case a 71.7% reduction of SUVmax on 18FDG-PET scan 10 days after CTX loading dose.

4. Conclusions

Prediction of tumor response to the treatment is burning topic in oncology. Despite the initial optimism, it should be noted that results of clinical trials show the limited effectiveness of targeted therapy. Treatment with CTX is very expensive. In order to reduce health costs, it would be appropriate to administer treatment to the patients with HNSCC, which may benefit from this treatment and early predict the likely effectiveness of the therapy. Experimental studies show that there are specific metabolic changes in tumors, in particular the phenomenon of glycolysis, which is associated with hypoxia in tumors and could be controlled through the stimulation of EGFR-dependent and independent mechanisms. Perhaps the most important changes in the metabolism of tumor cells are regulated by HIF-1α. Studies have shown that down-regulation of HIF-1α is necessary to ensure the effectiveness of CTX and is associated with decreased glycolysis and tumor hypoxia. Studies have shown that hypoxia decreases in tumor cell lines that are very sensitive to CTX. Since glycolysis mechanism is closely related to HIF-1α and could be evaluated by changes in TLG measured by 18FDG-PET, we assume that 18FDG-PET examination could be used as a measure to early predict the efficiency of CTX.

In this article we present our experience in evaluating response of LAHNSCC to the treatment with CTX. Response to the treatment was assessed by repeated examination with 18FDG-PET/CT. The reported clinical case indicates that SCC of hypopharynx was very sensitive to CTX and this was reflected by sharp decrease of 18FDG-PET parameters during the first

Table 1 - Parameters of 18FDG-PET scans before and after administration of 2 doses of CTX (SUV threshold value of 2.5).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Before CTX (23.04.2009)</th>
<th>After 2 doses of CTX (07.05.2009)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUVmax⁴</td>
<td>23.97</td>
<td>6.77</td>
<td>71.7</td>
</tr>
<tr>
<td>SUVmean⁵ (SUVbw)</td>
<td>7.429</td>
<td>3.705</td>
<td>50.2</td>
</tr>
<tr>
<td>MTV⁶</td>
<td>26.54</td>
<td>5.67</td>
<td>78.6</td>
</tr>
<tr>
<td>TLG⁷</td>
<td>197.2</td>
<td>21.01</td>
<td>89.3</td>
</tr>
</tbody>
</table>

⁴ SUVmax, maximum standardized uptake value; SUVmean, mean standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis.
days of treatment. This case of SCC treated with CTX and the similar clinical case with panitumumab described by Krystal GW et al. could indicate that early repeated \(^{18}\)FDG-PET examination could predict the efficacy of CTX and, hence, lead to early selection of good responders.

Conflict of interest

The authors state no conflict of interest.

Acknowledgments

This article was encouraged by Dr. Jean-François Daisne during the internship “Application of biological therapy for the treatment of head and neck cancer” in the Clinique et Maternité Sainte-Elisabeth (Namur, Belgium). The Internship was conducted and financed by the European Social Fund through the implementation of the project “Improvement of qualifications of health care specialists contributing to reduced morbidity and mortality from oncological diseases in the Institute of Oncology, Vilnius University,” under the instrument “Improvement of qualifications of health care specialists contributing to reduced morbidity and mortality from main non-infectious diseases on the basis of first priority – quality employment and social inclusion – in the Action Programme for Development of Human Resources.”

REFERENCES

[13] Lu Y, Liang K, Li X, Fan Z. Responses of cancer cells with wild-type or tyrosine kinase domain-mutated epidermal growth factor receptor (EGFR) to EGFR-targeted therapy are linked to downregulation of hypoxia-inducible factor-1α. Mol Cancer 2007;6:63.
