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Abstract: The impact of vertical electrical field on the electron related linear and 3rd order nonlinear
optical properties are evaluated numerically for pyramidal GeSn quantum dots with different sizes.
The electric field induced electron confining potential profile’s modification is found to alter the
transition energies and the transition dipole moment, particularly for larger dot sizes. These variations
strongly influence the intersubband photoabsorption coefficients and changes in the refractive index
with an increasing tendency of the 3rd order nonlinear component with increasing both quantum dot
(QD) size and applied electric field. The results show that intersubband optical properties of GeSn
quantum dots can be successively tuned by external polarization.

Keywords: GeSn; quantum dot; electric field; intersubband nonlinear optics; absorption coefficients;
refractive index changes

1. Introduction

Self-assembled quantum dots have received an increasing interest during the past decades owing
to their potentiality for novel optoelectronic devices [1,2]. Indeed, the strong carriers’ confinement in
these nanostructures has encouraged exploring the light emission and detection in the IR [3–6] and THz
regime [7–9] using intersubband optical transitions. A particular interest has been devoted to the study
of linear and nonlinear QD intersubband optical properties [7,9–17] for their importance in integrated
quantum photonic technologies [18]. Despite the achieved progress, efficient light source integrable
with Silicon technology has, so far, represented a challenge for Si-photonic integrated circuits [19].
Recent achievement in direct band gap GeSn material has accentuated its suitability towards comparable
properties to III-V materials while being compatible with complementary metal-oxide semiconductor
(CMOS) technology [20–25]. Accordingly, several reports have already demonstrated the aptness
of this material for optoelectronic applications, such as light emitters [25–28] and detectors [29–31].
Furthermore, growing experimental and theoretical research activities have been developed to explore
GeSn based low dimensional structures such as quantum dots [32–39]. Indeed, different synthesis
roots have been reported including, colloidal QD [33], thermal diffusion [32] and self-organization [34].
Furthermore, high Tin content GeSn QD with direct band gap transition energy has recently been
reported [40]. Despite the experimental and theoretical achievement, GeSn QD are still immature and
a lot of works have still to be done. Recently, we have reported on the evolution of the intersubband
photoabsorption coefficients (AC) and Refractive index changes (RIC) as a function of GeSn dots
size and incident radiation intensity [16]. The present work treats the effect of vertical electric field
on intersubband related optical properties of pyramidal GeSn QD with different sizes for CMOS
compatible nonlinear optical devices.
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2. Theoretical Consideration

The self-assembled GeSn QD has been considered to have a pyramidal shape with 1nm thick
wetting layer (WL) embedded in Ge matrix which is one of the frequently observed shapes for
semiconducting self-assembled QD [41] as illustrated by Figure 1a. Throughout this work, we set the
tin composition at 30% and a QD height to base side length’s (L) ratio of 1/3 (Figure 1b,c).
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Figure 1. Schematic sketch of the pyramidal shaped self-assembled GeSn QD with 1 nm thick wetting
layer (WL): (a) 3D projection of the pyramidal QD with wetting layer, (b) cross-sectional view (ZX)
showing the QD height and the direction of the external electric field, (c) plane view (XY).

To evaluate the QD s- and p- like electrons’ energy levels and associated wave functions in Γ-valley,
single band 3D-Schrodinger equation (Equation (1)) is solved in Cartesian coordinates within the
effective mass approximation by finite elements method offered by COMSOL multiphysics software
(version 5.0, COMSOL Inc., Stockholm, Sweden) [42] for the strained pyramidal GeSn QD under
vertical applied electric field (Figure 1).
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I is the incident in-plane polarized light intensity, σ denotes the electron density (one electron
per QD) [12]. Γ = 10 ps−1 is the relaxation rate and nr the GeSn material’s refractive index deduced
by linear interpolation [16]. ω f i is the p-to-s transition frequency and M f i =

〈
∅ f

∣∣∣ex
∣∣∣∅i

〉
denotes the

corresponding dipole moment for in-plane X polarized incident radiation. The subscript f and i refer
to the final and initial states (QD p- and s electron states in this study). The p states are doubly
degenerated (identified as px and py). A selection rule making the allowed transition to arise only from
px state can be done by considering the incident radiation to be polarized along X direction [7,16,44].

3. Results and Discussion

The calculation of Γ-s and -p electron energy states and associated envelop wave functions allows
to evaluate the ω f i and M f i required to study the electric field’s impact on intersubband optical
properties as a function of the QD size. The transition energy (εp − εs) is shown Figure 2 as a function
of the QD size (pyramid base side) for F = 100 kV/cm, 0 kV/cm and −100kV/cm. The dot size range
is delimited to L between 25 nm to 40 nm [38] warranting efficient contribution of Γ-electrons to the
intersubband transition energy.
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In absence of electric field (F = 0 kV/cm), the intraband transition decreases from 74 meV (L = 25 nm)
down to 38 meV (L = 40 nm). Applying positive electric field of 100 kV/cm enhances the transition from
6 meV for the smallest QD size up to 10 meV for the largest one. Meanwhile, the energy spacing between
p and s states get rather shrank by approximately 6 meV for an external electric field of −100 kV/cm.
This behavior is a direct impact of the electric field driven modification of the electron confining potential’s
profile. To explain this trend, the electron probability density from s and p states (ZX plane) under an
electric field of 100 kV/cm, 0 kV/cm and −100 kV/cm are shown by Figure 3 where a simplified band
profile has also been provided for details. Indeed, the electric field has been found to induce a vertical
shift of the electron probability density along z-axis. Its maximum gets vertically displaced towards the
dot’s tip for negative electric field and towards its base for positive one [15]. Indeed, for a QD with base
side length of 40 nm and a height of 13.3 nm, the maximum ground state electron probability density is
located at z = 4.5 nm for unbiased QD. Under vertical electric field, the maximum is shifted upward by
approximately 2.5 nm for F = −100 kV/cm and a downward vertical shift by approximately 2 nm for
F = 100 kV/cm. Consequently, in the first case, the potential minimum is created near the dot tip limiting
the allowed space for electron confinement (comparable environment to a QD size reduction) enhancing
the separation energy between s and p states leading to the observed blueshift (Figure 2). On the other
hand, the positive electric field produces a confining potential minimum at the QD base giving rise to
a lowering of the confined energy states and consequent reduction of the p-to-s transition energies.
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Figure 3. Probability density of s-state (a, c and e), px-state (b, d and f) for GeSn QD with L = 40 nm
as well as a simple schematic illustration of the Γ-band electron confining profile (g, h and i) respectively
for F = 100 kV/cm, 0 kV/cm and −100 kV/cm.

Further information can be gained through studying the evolution of the dipole moment as
a function of the dot size and electric field (Figure 4). The transition dipole moment shows an increasing
trend with increasing the unbiased QD size. However, it gets progressively enhanced (decreased) with
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increasing the QD size upon applying 100 kV/cm (−100 kV/cm) electric field. The observed relative
variation traduces a high sensitivity of larger QD sizes to the applied electric field. The obtained results
show that the QD intersubband optical properties can be successively adjusted by electric polarization
allowing tuning not only the intersubband emission energy but also the transition dipole moment
without need for QD size variation.Micromachines 2019, 10, x 5 of 9 
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Accordingly, the impact of the dot size and electric field on the AC, RIC and the corresponding
linear and third order nonlinear components are shown by Figure 5, as a function of the incident
photon energy, for F = 0 kV/cm, 100 kV/cm and −100 kV/cm. The results are given for the smallest and
the largest dot size to illustrate the simultaneous effect of electric field and dot size. For a given applied
electric field value, the observed curves shift following the decreased transition energy with the increase
of the dot size. Similarly, for a given QD size, and compared to the case where no electric field is applied,
the curves get blueshifted for an electric field oriented in the negative Z direction and redshifted in the
opposite case following the electric field induced intersubband transition energies shift.

The resonance peak of the linear AC (Figure 5a–c) considerably quenches with increasing the dot
size while no noticeable change is shown to occur upon the variation of the applied electric field. In the
meantime, the peak’s intensity of the third-order nonlinear AC shows an increasing trend in absolute
value with increasing the applied electric field for larger QD size. Consequently, the resultant total AC
exhibits strong dependence on the applied electric field. When the nonlinear part of the AC becomes
comparable in magnitude to the linear one, the effect of bleaching occurs inducing a splitting of the
total AC into two peaks. This saturation effect observed for the unbiased larger QD size is smoothed
for F = −100 kV/cm and accentuated for F = 100 kV/cm. This behavior is analogous to that perceived
upon increasing the QD size and consequent variation of the absorption threshold energy [16].

Furthermore, the linear RIC (Figure 5 d–f) shows an overall increase with increasing the applied
electric field with a pronounced sensitivity for larger dot size. Meanwhile, a similar and more accentuated
variation is found to occur for the third-order nonlinear RIC affecting the total changes in the refractive
index curve. The observed behavior is mainly due to the simultaneous increase of the dipole moment
and decrease of the intersubband transition energy.
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Our calculations clearly reveal that the intersubband optical nonlinearity can be conveniently
tuned by applying an external electric field for a given QD size and incident light intensity. Accordingly,
the nonlinear effects can be tuned. This investigation has been conducted on GeSn QD with the available
materials parameters remain a subject to experimental validation. Nonetheless, this comprehensive
study could also be useful to understand the impact of the applied electric field on the intersubband
optical properties of similar QD.

4. Conclusions

We have evaluated the effect of applied electric field on the intersubband optical transition, dipole
moment, AC, and RIC for various GeSn QD size. The transition energy and dipole moment are found
to be strongly affected by the electric field-induced confining potential profile changes. Larger size QD
are found to be more sensitive to the effects of applied electric field. The intersubband-related AC and
RIC can be widely tuned by employing external electric field. This comprehensive study could help
future realization of CMOS compatible nonlinear optical devices.
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