Rare Earth Elements and Other Critical Metals in Deep Seabed Mineral Deposits: Composition and Implications for Resource Potential

Sang-Joon Pak *, Inah Seo, Kyeong-Yong Lee and Kiseong Hyeong

Korea Institute of Ocean Science & Technology; inahseo@kiost.ac.kr (I.S); kylee@kiost.ac.kr (K-Y. L.); kshyeong@kiost.ac.kr (K.H.)
* Correspondence: electrum@kiost.ac.kr; Tel.: +82-51-664-3467

Received: 27 November 2018; Accepted: 17 December 2018; Published: 21 December 2018

Figure S1. Discrimination diagrams using the relationship between (A) CeSN/CeSN* ratio vs. Nd concentration and (B) CeSN/CeSN* ratio vs. YSN/HoSN ratio in individual layers of nodule and crust samples, where CeSN* = 0.5 × LaSN + 0.5 × PrSN and SN = shale (PAAS) normalised. Fields for hydrogenetic, diageneric and hydrothermal layers are defined according to [1].
<table>
<thead>
<tr>
<th>Deposit or District</th>
<th>Location</th>
<th>Grade (% TREO)</th>
<th>Tonnage (Mt)</th>
<th>Contained TREO (Kt)</th>
<th>Deposit Type</th>
<th>Resource Classification</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ak-Tyuz</td>
<td>Kyrgyzstan</td>
<td>1</td>
<td>15</td>
<td>150</td>
<td>alkaline rock</td>
<td>U</td>
<td>[2]</td>
</tr>
<tr>
<td>Araxa</td>
<td>Brazil</td>
<td>4.2</td>
<td>28</td>
<td>1193</td>
<td>carbonatite/laterite</td>
<td>MR</td>
<td>[3]</td>
</tr>
<tr>
<td>Bald Mountain</td>
<td>USA</td>
<td>0.08</td>
<td>18</td>
<td>14</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Barrytown</td>
<td>New Zealand</td>
<td>0.00055</td>
<td>73</td>
<td>0.4</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Bayan Obo</td>
<td>China</td>
<td>6.0</td>
<td>800</td>
<td>48,000</td>
<td>carbonatite</td>
<td>U</td>
<td>[5]</td>
</tr>
<tr>
<td>Biggejavri</td>
<td>Norway</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>others</td>
<td>U</td>
<td>[7]</td>
</tr>
<tr>
<td>Bokan Mountain</td>
<td>USA</td>
<td>0.7</td>
<td>5.2</td>
<td>34</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[8]</td>
</tr>
<tr>
<td>Brockman</td>
<td>Australia</td>
<td>0.2</td>
<td>41</td>
<td>87</td>
<td>alkaline rock</td>
<td>PR</td>
<td>[9]</td>
</tr>
<tr>
<td>Catalao I</td>
<td>Brazil</td>
<td>5.5</td>
<td>119</td>
<td>6,545</td>
<td>pegmatite/vein</td>
<td>U</td>
<td>[10]</td>
</tr>
<tr>
<td>Chatrapur</td>
<td>India</td>
<td>0.3</td>
<td>224</td>
<td>779</td>
<td>placer</td>
<td>PR</td>
<td>[4]</td>
</tr>
<tr>
<td>Chavara</td>
<td>India</td>
<td>0.09</td>
<td>115</td>
<td>101</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Cumberland</td>
<td>USA</td>
<td>0.011</td>
<td>241</td>
<td>27</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Cummins Range</td>
<td>Australia</td>
<td>1.7</td>
<td>4.2</td>
<td>72</td>
<td>carbonatite</td>
<td>MR</td>
<td>[11]</td>
</tr>
<tr>
<td>Daluxiang (Dalucao)</td>
<td>China</td>
<td>5.0</td>
<td>15</td>
<td>760</td>
<td>carbonatite</td>
<td>U</td>
<td>[12]</td>
</tr>
<tr>
<td>Deep-Sea sediment</td>
<td>Korea</td>
<td>0.13</td>
<td>16,500</td>
<td>21,450</td>
<td>sediment</td>
<td>U</td>
<td>this study</td>
</tr>
<tr>
<td>Diamond Creek</td>
<td>USA</td>
<td>1.2</td>
<td>5.8</td>
<td>71</td>
<td>pegmatite/vein</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Dong Pao</td>
<td>Vietnam</td>
<td>1.4</td>
<td>500</td>
<td>7000</td>
<td>carbonatite/laterite</td>
<td>U</td>
<td>[13]</td>
</tr>
<tr>
<td>Dubbo</td>
<td>Australia</td>
<td>0.9–0.7</td>
<td>73–36</td>
<td>651–268</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[11]</td>
</tr>
<tr>
<td>Eco Ridge (Elliott Lake)</td>
<td>Canada</td>
<td>0.14</td>
<td>47</td>
<td>67</td>
<td>placer</td>
<td>MR</td>
<td>[14]</td>
</tr>
<tr>
<td>Gallinas Mountains.</td>
<td>USA</td>
<td>3.0</td>
<td>0.05</td>
<td>1.4</td>
<td>others</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Gold Fork-Little Valley</td>
<td>USA</td>
<td>0.0098</td>
<td>296</td>
<td>29</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Green Cove Springs</td>
<td>USA</td>
<td>0.0045</td>
<td>110</td>
<td>5.0</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Hall Mountain</td>
<td>USA</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05</td>
<td>pegmatite/vein</td>
<td>U</td>
<td>[15]</td>
</tr>
<tr>
<td>Hicks Dome</td>
<td>USA</td>
<td>0.4</td>
<td>15</td>
<td>62</td>
<td>carbonatite</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Høgtuva</td>
<td>Norway</td>
<td>0.15</td>
<td>0.4</td>
<td>0.525</td>
<td>others</td>
<td>U</td>
<td>[7]</td>
</tr>
<tr>
<td>Horse Creek</td>
<td>USA</td>
<td>0.026</td>
<td>19</td>
<td>4.94</td>
<td>placer</td>
<td>U</td>
<td>[16]</td>
</tr>
<tr>
<td>Iron Hill</td>
<td>USA</td>
<td>0.4</td>
<td>619–2424</td>
<td>2600–9696</td>
<td>carbonatite</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Jianghua area</td>
<td>China</td>
<td>0.4</td>
<td>3.4</td>
<td>12</td>
<td>ion adsorption</td>
<td>U</td>
<td>[16]</td>
</tr>
<tr>
<td>John Galt</td>
<td>Australia</td>
<td>8.0</td>
<td>0.4</td>
<td>30</td>
<td>pegmatite/vein</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Kangankunde Hill</td>
<td>Malawi</td>
<td>4.2</td>
<td>2.5</td>
<td>107</td>
<td>carbonatite</td>
<td>MR</td>
<td>[11]</td>
</tr>
<tr>
<td>Kasagwe</td>
<td>Burundi</td>
<td>1.5</td>
<td>0.1</td>
<td>1</td>
<td>alkaline rock</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Kizilcaoren</td>
<td>Turkey</td>
<td>2.8</td>
<td>4.7</td>
<td>131</td>
<td>pegmatite/vein</td>
<td>U</td>
<td>[17]</td>
</tr>
</tbody>
</table>
Table S1. Cont.

<table>
<thead>
<tr>
<th>Deposit or District</th>
<th>Location</th>
<th>Grade (% TREO)</th>
<th>Tonnage (Mt)</th>
<th>Contained TREO (Kt)</th>
<th>Deposit Type</th>
<th>Resource Classification</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kodal</td>
<td>Norway</td>
<td>0.17</td>
<td>70</td>
<td>119</td>
<td>Iron oxide</td>
<td>U</td>
<td>[7]</td>
</tr>
<tr>
<td>Kvanefield</td>
<td>Greenland</td>
<td>1.1</td>
<td>67</td>
<td>733.6</td>
<td>Peraalkaline intrusion</td>
<td>MR</td>
<td>[14]</td>
</tr>
<tr>
<td>Lemhi Pass</td>
<td>USA</td>
<td>0.3</td>
<td>0.5</td>
<td>1.7</td>
<td>metamorphic rock</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Lovozero</td>
<td>Russia</td>
<td>1.1</td>
<td>593.0</td>
<td>6642</td>
<td>alkaline rock</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Lovozero-Partomchorr</td>
<td>Russia</td>
<td>0.2</td>
<td>877</td>
<td>1755</td>
<td>alkaline rock</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Manavalakuruchi</td>
<td>India</td>
<td>1.4</td>
<td>104</td>
<td>1421</td>
<td>placer</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Manganese nodule</td>
<td>Korea</td>
<td>0.12</td>
<td>188</td>
<td>226</td>
<td>manganese nodule</td>
<td>MR</td>
<td>this study</td>
</tr>
<tr>
<td>Maoniuping</td>
<td>China</td>
<td>2.9</td>
<td>50</td>
<td>1451</td>
<td>carbonatite</td>
<td>PR</td>
<td>[12]</td>
</tr>
<tr>
<td>Mau Xe North</td>
<td>Vietnam</td>
<td>1.4</td>
<td>557</td>
<td>7800</td>
<td>carbonatite</td>
<td>U</td>
<td>[13]</td>
</tr>
<tr>
<td>Mineville</td>
<td>USA</td>
<td>0.9</td>
<td>9</td>
<td>80</td>
<td>pegmatite/vein</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Misvaerdalen</td>
<td>Norway</td>
<td>0.07</td>
<td>30</td>
<td>21</td>
<td>alkaline rock</td>
<td>U</td>
<td>[7]</td>
</tr>
<tr>
<td>Mount Weld CLD</td>
<td>Australia</td>
<td>10.8–8.8</td>
<td>9.9–15</td>
<td>1069–1320</td>
<td>carbonatite/laterite</td>
<td>PR</td>
<td>[18]</td>
</tr>
<tr>
<td>Mount Weld Duncan</td>
<td>Australia</td>
<td>4.7</td>
<td>8.2</td>
<td>385</td>
<td>carbonatite/laterite</td>
<td>MR</td>
<td>[18]</td>
</tr>
<tr>
<td>Mountain Pass</td>
<td>USA</td>
<td>8.0</td>
<td>17</td>
<td>1333</td>
<td>carbonatite</td>
<td>PR</td>
<td>[11]</td>
</tr>
<tr>
<td>Mushgai Khudag</td>
<td>Mongolia</td>
<td>1.1</td>
<td>8.7</td>
<td>96</td>
<td>carbonatite</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Music Valley</td>
<td>USA</td>
<td>8.6</td>
<td>0.1</td>
<td>4.3</td>
<td>metamorphic rock</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Narraburra</td>
<td>Australia</td>
<td>0.03</td>
<td>73</td>
<td>22</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[14]</td>
</tr>
<tr>
<td>Nolans Bore</td>
<td>Australia</td>
<td>2.6</td>
<td>56</td>
<td>1456</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[19]</td>
</tr>
<tr>
<td>Norra Karr</td>
<td>Sweden</td>
<td>0.6</td>
<td>3.1</td>
<td>19</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[20]</td>
</tr>
<tr>
<td>North Henry</td>
<td>USA</td>
<td>0.12</td>
<td>3.2</td>
<td>3.8</td>
<td>placer</td>
<td>U</td>
<td>[16]</td>
</tr>
<tr>
<td>Oak Grove</td>
<td>USA</td>
<td>0.09</td>
<td>175</td>
<td>157</td>
<td>placer</td>
<td>U</td>
<td>[16]</td>
</tr>
<tr>
<td>Oka</td>
<td>Canada</td>
<td>0.13</td>
<td>210</td>
<td>267</td>
<td>carbonatite</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Olympic Dam</td>
<td>Australia</td>
<td>0.4</td>
<td>10,400</td>
<td>43,680</td>
<td>Iron oxide</td>
<td>U</td>
<td>[14]</td>
</tr>
<tr>
<td>Pajariito Mt.</td>
<td>USA</td>
<td>0.18</td>
<td>2.2</td>
<td>4</td>
<td>alkaline rock</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Pea Ridge</td>
<td>USA</td>
<td>12.0</td>
<td>0.6</td>
<td>72</td>
<td>Iron oxide</td>
<td>U</td>
<td>[21]</td>
</tr>
<tr>
<td>Pilanesberg</td>
<td>South Africa</td>
<td>0.7</td>
<td>14</td>
<td>95</td>
<td>carbonatite/laterite</td>
<td>U</td>
<td>[22]</td>
</tr>
<tr>
<td>Pitinga</td>
<td>Brazil</td>
<td>0.15</td>
<td>164</td>
<td>246</td>
<td>alkaline rock</td>
<td>U</td>
<td>[23]</td>
</tr>
<tr>
<td>Pulmoddai</td>
<td>Sri Lanka</td>
<td>0.08</td>
<td>1.6</td>
<td>1.3</td>
<td>placer</td>
<td>U</td>
<td>[16]</td>
</tr>
<tr>
<td>Deposit or District</td>
<td>Location</td>
<td>Grade (% TREO)</td>
<td>Tonnage (Mt)</td>
<td>Contained TREO (Kt)</td>
<td>Deposit Type</td>
<td>Resource Classification</td>
<td>References</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Round Top</td>
<td>USA</td>
<td>0.05</td>
<td>1051</td>
<td>525</td>
<td>others</td>
<td>MR</td>
<td>[24]</td>
</tr>
<tr>
<td>Sæterasen</td>
<td>Norway</td>
<td>0.5</td>
<td>8</td>
<td>42</td>
<td>alkaline rock</td>
<td>U</td>
<td>[7]</td>
</tr>
<tr>
<td>Sarysai</td>
<td>Kyrgyzstan</td>
<td>0.2</td>
<td>7</td>
<td>14</td>
<td>others</td>
<td>U</td>
<td>[25]</td>
</tr>
<tr>
<td>Scrub Oaks</td>
<td>USA</td>
<td>0.4</td>
<td>10</td>
<td>38</td>
<td>Iron oxide</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Seis Lagos</td>
<td>Brazil</td>
<td>1.5</td>
<td>2900</td>
<td>43,500</td>
<td>carbonatite</td>
<td>U</td>
<td>[11]</td>
</tr>
<tr>
<td>Silica Mine</td>
<td>USA</td>
<td>0.0079</td>
<td>27</td>
<td>2.1</td>
<td>placers</td>
<td>U</td>
<td>[4]</td>
</tr>
<tr>
<td>Steenkampskraal</td>
<td>South Africa</td>
<td>11.8</td>
<td>0.2</td>
<td>30</td>
<td>metamorphic rock</td>
<td>MR</td>
<td>[26]</td>
</tr>
<tr>
<td>Strange Lake</td>
<td>Canada</td>
<td>0.09</td>
<td>492</td>
<td>443</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[27,28]</td>
</tr>
<tr>
<td>Tantalus</td>
<td>Madagascar</td>
<td>0.09</td>
<td>628</td>
<td>565</td>
<td>ion adsorption</td>
<td>MR</td>
<td>[29]</td>
</tr>
<tr>
<td>Tapira</td>
<td>Brazil</td>
<td>0.03</td>
<td>150</td>
<td>45</td>
<td>carbonatite</td>
<td>U</td>
<td>[16]</td>
</tr>
<tr>
<td>Thor Lake (Lake Zone)</td>
<td>Canada</td>
<td>1.4</td>
<td>312</td>
<td>4270</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[11]</td>
</tr>
<tr>
<td>Thor Lake (North T)</td>
<td>Canada</td>
<td>0.7</td>
<td>1.1</td>
<td>8</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[11]</td>
</tr>
<tr>
<td>Yangibana</td>
<td>Australia</td>
<td>1.1</td>
<td>12</td>
<td>136</td>
<td>carbonatite/laterite</td>
<td>MR</td>
<td>[9]</td>
</tr>
<tr>
<td>Zandkopsdrift</td>
<td>South Africa</td>
<td>2.2</td>
<td>43</td>
<td>948</td>
<td>carbonatite/laterite</td>
<td>MR</td>
<td>[30]</td>
</tr>
<tr>
<td>Zeus (Kipawa)</td>
<td>Canada</td>
<td>0.4</td>
<td>23</td>
<td>98</td>
<td>alkaline rock</td>
<td>MR</td>
<td>[14]</td>
</tr>
</tbody>
</table>

MR = measured, indicated or inferred resource, PR = proven or probable reserve, U = unclassified resource.
Reference


© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).