Synthesis of N, N-Dimethyl-3-phenoxyquinoxalin-2-amine

Craig A. Obafemi*1, Wolfgang Pfleiderer2

1Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
2Fachbereich Chemie, Konstanz University D-78457 Konstanz/ Germany
E-mail: adeyemi01@yahoo.com (craigoba@oauife.edu.ng)
*Author to whom correspondence should be addressed

Received: 7 February 2005 / Accepted: 2 February 2006 / Published: 1 December 2006

Keywords: Substitution reaction, 2,3-dichloroquinoxaline, phenol.

The two chloro groups in 2,3-dichloroquinoxaline 1 can be displaced by nucleophiles, a process that may take place in a stepwise manner [1]. 1 was reacted with phenol 2 in dimethylformamide (DMF) to give N,N-dimethyl-3-phenoxyquinoxalin-2-amine 3.

![Chemical structure of 1, 2, and 3](image)

A mixture of 2,3-dichloroquinoxaline 1 (5.0 g, 25 mmol), phenol (1.2 g, 13 mmol) and Na2CO3 (0.7 g, 7 mmol) in DMF (40 mL) was heated to reflux for 10 h. with magnetic stirring. The reaction mixture was cooled and poured into water (200 mL) to give a solid product. Flash vacuum column chromatography (silica gel, petroleum ether (b.p. 100°)/EtOH 100:1) gave pure N,N-dimethyl-3-phenoxyquinoxalin-2-amine 3 (2.1 g, 62%, based on phenol).

Melting point: 85 – 86°C.

IR (νmax, KBr, cm⁻¹): 2940, 2880 (C-H), 1578 (C=C), 1516, 1196.

1H-NMR (400 MHz, CDCl3, δ (ppm)): 7.72 (d, 1H, J = 8.47 Hz, Ar-H), 7.52 (d, 1H, J = 9.25 Hz, Ar-H), 7.47 – 7.34 (m, 3H, Ar-H), 7.31 – 7.21 (m, 4H, Ar-H), 3.31 (s, 6H, 2 x CH3).

13C-NMR (100 MHz, CDCl3, δ (ppm)): 152.9, 149.6, 147.7, 139.5, 135.4, 129.5, 127.3, 126.6, 125.7, 125.0, 124.9, 121.6, 40.6.

Acknowledgment
We thank the Alexander von Humboldt Foundation for a post-doctoral fellowship (CAO).
Reference

© 2006 MDPI. All rights reserved.