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Abstract: Melanin, the compound primarily responsible in humans for hair, eye and skin
pigmentation, is produced by melanocytes through a complicated process called melanogenesis that
is catalyzed by tyrosinase and other tyrosinase-related proteins. The abnormal loss of melanin causes
dermatological problems such as vitiligo. Hence the regulation of melanogenesis and tyrosinase
activity is very important for treating hypopigmentary disorders. Many melanogenesis stimulators
have been discovered during the past decade. This article reviews recent advances in research on
extracts and active ingredients of plants, synthesized compounds with stimulating effect on melanin
synthesis and tyrosinase activity, as well as their influence on the expression of related proteins and
possible signaling pathways for the design and development of novel anti-vitiligo agents.

Keywords: melanogenesis; tyrosinase activity; vitiligo; plant extracts; natural products;
synthesized derivatives; analogues

1. Introduction

Vitiligo is an acquired chronic depigmentation disorder of the skin resulting from selective
destruction of melanocytes. Celsus was the first to use the term vitiligo in his Latin medical classic
De Medicina during the second century B.C [1,2]. It is clinically characterised by the development of
white macules (Figure 1) [3] due to the loss of functioning melanocytes in the skin or hair, or both [4].
The prevalence of the disease is often referred to as 0.05–1% of the world’s population and it is
the most frequent cause of depigmentation worldwide [5]. Although essentially asymptomatic,
the psychosocial impact of vitiligo can be devastating, and affected persons are often desperate
for an effective therapy. Many possible causes of vitiligo, including immunologic, genetic, stress,
neural mechanism, and biochemical factors [6] had been proposed, but the etiopathogenesis of the
disease is still enigmatic. However, it is believed that the disease is mainly a result of destruction of
melanocytes and obstruction of the melanin synthesis pathway [7,8].

Melanin, derived from dopaquinone, serves a number of valuable physiological functions with
the most important being photoprotection of the human skin from ultraviolet (UV) radiation [9].
Melanogenesis takes place in special organelles—the melanosomes in the melanocytes—and can
be triggered by a variety of paracrine cytokines including α-melanocyte-stimulating hormone
(α-MSH) [10], stem cell factor (SCF) [11], endothelin-1 (ET-1) [12], nitric oxide (NO) [13],
adrenocorticotropic hormone (ACTH) [14], prostaglandins [15], thymidine dinucleotide [16] and
histamine [17]. These factors all induce melanogenesis through diverse signaling pathways by
activating the expression and activation of pigment-related proteins such as microphthalmia-associated
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transcription factor (MITF), tyrosinase (TYR), tyrosine-related protein-1 (TRP-1) and tyrosine-related
protein-2 (TRP-2).Molecules 2017, 22, 1303 2 of 27 

 

 
Figure 1. Vitiligo with typical lesions of the face and trunk [3]. 

Figure 2 [18,19] illustrates the most common signaling pathways involved in the synthesis of 
melanin. All signaling pathways involve MITF, a master regulator of melanogenesis, which 
upregulates the melanogenesis enzymes TYR, TRP-1 and TRP-2 via binding to the M-box motif in 
their promoter regions [20]. In addition, MITF regulates melanocyte function including melanocyte 
differentiation, pigmentation, proliferation and cell survival [21]. 

 
Figure 2. Regulation of melanogenesis through different signaling pathways [18,19]. 

Among them, TYR, TRP-1 and TRP-2 (otherwise called dopachrome tautomerase or DCT) are 
mainly involved in the transformation of tyrosine into melanin pigments [22]. Melanosomes produce 
two types of melanin: eumelanin, a brown–black or dark insoluble polymer; and pheomelanin, a red-
yellow soluble polymer, formed by the conjugation of cysteine or glutathione [23,24] (Scheme 1). 
Although three enzymes (TYR, TRP-1 and TRP-2) are involved in the melanogenesis pathway, only 
TYR is exclusively necessary for melanogenesis. 

Figure 1. Vitiligo with typical lesions of the face and trunk [3].

Figure 2 [18,19] illustrates the most common signaling pathways involved in the synthesis of
melanin. All signaling pathways involve MITF, a master regulator of melanogenesis, which upregulates
the melanogenesis enzymes TYR, TRP-1 and TRP-2 via binding to the M-box motif in their promoter
regions [20]. In addition, MITF regulates melanocyte function including melanocyte differentiation,
pigmentation, proliferation and cell survival [21].
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Figure 2. Regulation of melanogenesis through different signaling pathways [18,19].

Among them, TYR, TRP-1 and TRP-2 (otherwise called dopachrome tautomerase or DCT) are
mainly involved in the transformation of tyrosine into melanin pigments [22]. Melanosomes produce
two types of melanin: eumelanin, a brown–black or dark insoluble polymer; and pheomelanin,
a red-yellow soluble polymer, formed by the conjugation of cysteine or glutathione [23,24] (Scheme 1).
Although three enzymes (TYR, TRP-1 and TRP-2) are involved in the melanogenesis pathway, only
TYR is exclusively necessary for melanogenesis.
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Scheme 1. Melanogenesis catalyzed by tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1) and 
tyrosinase-related protein 2 (TRP-2). 

TYR (EC 1.14.18.1) is a multifunctional membrane-bound type-3 copper protein, which is located 
in the membrane of the melanosome [25]. TYR is produced only by melanocyte cells. Following its 
synthesis and consequent processing in the endoplasmic reticulum and Golgi, it is trafficked to 
melanosomes, wherein the melanin pigment is synthesized. From the structural point of view, two 
copper ions, each surrounded by three histidines, are responsible for the catalytic activity of TYR [26]. 
Three different states of the active site have been reported in the pigment formation: oxy-, met- and 
deoxy-forms. More specifically, at the active site, copper atoms participate directly in hydroxylation 
of monophenols to diphenols (cresolase activity) and in the oxidation of o-diphenols to o-quinones 
(catechol oxidase activity) that enhance melanogenesis [27,28]. 

TYR is also catalyzing the process of neuromelanin production in which the oxidation of dopamine 
produces dopaquinones. However, excessive production of dopaquinones results in neuronal damage 
and cell death [29]. This suggests that tyrosinase might play a significant role in neuromelanin 
formation in the human brain and responsible for the neurodegeneration associated with Parkinson’s 
disease and Huntington’s disease [30,31]. Tyrosinase has also been linked to the browning of 
vegetables and fruits during postharvest and handing process, leading to quick degradation [32,33]. 
The application of tyrosinase was further extended in the molting process of insects [34].The 
abnormal accumulation of melanogenesis products may cause cancer (melanoma), age spots, freckle 
and other dermatological problems [35,36]. The melanogenesis stimulators as skin-pigmenting agents 
are very important to the occurrence of vitiligo. Thus developing new melanogenesis activators with 
drug-like properties is very much needed. Here, we focus on the recent discovery of melanogenesis 
stimulators from all sources, including plant extracts, natural products and laboratory synthetic 
methods. Moreover, we believe that this perspective will comprise a cumulative source for developing 
therapeutic agents for inducing repigmentationin vitiligo-affected skin. 

Scheme 1. Melanogenesis catalyzed by tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1) and
tyrosinase-related protein 2 (TRP-2).

TYR (EC 1.14.18.1) is a multifunctional membrane-bound type-3 copper protein, which is located
in the membrane of the melanosome [25]. TYR is produced only by melanocyte cells. Following its
synthesis and consequent processing in the endoplasmic reticulum and Golgi, it is trafficked to
melanosomes, wherein the melanin pigment is synthesized. From the structural point of view,
two copper ions, each surrounded by three histidines, are responsible for the catalytic activity of
TYR [26]. Three different states of the active site have been reported in the pigment formation:
oxy-, met- and deoxy-forms. More specifically, at the active site, copper atoms participate directly in
hydroxylation of monophenols to diphenols (cresolase activity) and in the oxidation of o-diphenols to
o-quinones (catechol oxidase activity) that enhance melanogenesis [27,28].

TYR is also catalyzing the process of neuromelanin production in which the oxidation of dopamine
produces dopaquinones. However, excessive production of dopaquinones results in neuronal damage
and cell death [29]. This suggests that tyrosinase might play a significant role in neuromelanin
formation in the human brain and responsible for the neurodegeneration associated with Parkinson’s
disease and Huntington’s disease [30,31]. Tyrosinase has also been linked to the browning of
vegetables and fruits during postharvest and handing process, leading to quick degradation [32,33].
The application of tyrosinase was further extended in the molting process of insects [34].The abnormal
accumulation of melanogenesis products may cause cancer (melanoma), age spots, freckle and other
dermatological problems [35,36]. The melanogenesis stimulators as skin-pigmenting agents are
very important to the occurrence of vitiligo. Thus developing new melanogenesis activators with
drug-like properties is very much needed. Here, we focus on the recent discovery of melanogenesis
stimulators from all sources, including plant extracts, natural products and laboratory synthetic
methods. Moreover, we believe that this perspective will comprise a cumulative source for developing
therapeutic agents for inducing repigmentationin vitiligo-affected skin.
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2. Melanogenesis Stimulators from Different Sources

Many efforts have been made in the discovery and development of melanogenesis stimulators in
the last ten years, as it is a very active field of research for academic centres and medical institutions.
Some of these stimulators have synthetic origin, but others have been derived from small molecules
of natural origin. Worth mentioning is the fact that the plant kingdom has been shown recently to
provide a source of chemical structures with promising biological activities. The number of small
molecule melanogenesis stimulators is continuously increasing, with most of them being in the early
discovery phase. The current stimulators from different sources can be classified into the following
two categories:

1. Plant extracts/crude drug extracts (mixtures);
2. Active natural products/synthesized derivatives (single compounds).

2.1. Plant Extracts/Crude Drug Extracts (Mixtures)

Traditional herbs and plants are widely used for the skin hypopigmentation in view of their lesser
side effects and wealth of sources. The search for new pharmaceuticals for the treatment of vitiligo has
increased over the last few years and plant-derived products (e.g., chemical extracts from medicinal
plants, herbs, and spices) are becoming increasingly accepted and adopted by the medical industry for
this purpose (Table 1).

2.1.1. Daphne gnidium

The ethyl-acetate extract of Daphne gnidium was recently proved to significantly stimulate
production of intracellular and extracellular melanin [37]. Likewise, the tyrosinase activity in B16-F0
cells treated with extraction increased in a time-dependent manner. Later, the effect of chloroform
extract of the plant on melanogenesisin murine B16-F0 melanoma was studied as well by the same
group [38], and a concentration-dependent stimulation effect on tyrosinase and melanogenesis
was observed. It was inferred that the chloroform extract was able to induce differentiation of
B16-F0 melanoma cells preventing them from proliferating to the differentiated state. Induction of
melanogenesis is considered as a well-known marker of differentiated melanoma cells.

2.1.2. Moricandia arvensis

Skandrani et al. [39] evaluated the activity of a chloroform extract of Moricandia arvensis on
melanogenesis and tyrosinase activity. The results indicated that the chloroform extract significantly
promoted production of intra- and extracellular melanin when compared to untreated cells, as well as
tyrosinase activity in B16-F0 cells, in a time-dependent manner.

2.1.3. Ecliptae herba, Polygoni multiflori radixpraeparata and Rehmanniae radix praeparata

Polygoni multiflori radix praeparata (PMRP), Ecliptae herba (EH) and Rehmanniae radix praeparata
(RRP) are the most frequently-used herbs by traditional Chinese medicine practitioners for the
treatment of vitiligo. EH aqueous extract was found to exhibit a synergistic effect on melanocytes by
up-regulating tyrosinaseactivity, enhancing melanin synthesis and promoting melanocyte migration
as well as elevating MITF protein expression [40]. RRP showed a significant stimulating effect
on melanogenesis and MITF protein expression, but no stimulatory effect on tyrosinase activity.
In addition, treatment with PMRP and EH promoted the migration of human melanocytes in a type IV
collagen-coated transwell migration assay. Theseresults suggest that EH and RRP contain substances
with direct enhancing effects on melanogenesis and migration, possibly via their effects on MITF
protein expression.
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2.1.4. Cassia alata and Cassia occidentalis

Babitha et al. [41] reported the effect of Cassia alata leaf extract on the differentiation, proliferation
and migration of melanoblast cells in melb-a melanoblast cells. Result indicated that melanin content
increased in a dose-dependent manner. In addition, it induced tyrosinase activity and altered melb-a
cell morphology. A transwell migration assay shows that the extract can directly stimulate the
migration of melanoblast cells. Similar to the above findings, pod extracts of Cassia occidentalis, which
is another plant of Cassia L., was found to be effective in inducing differentiation and migration
ofmouse melanoblast cell line by Babitha and co-workers [42]. Methanolic extract redissolved in
DMSO at 12.5 µg/mL was found to cause 3.5 to 3.8-fold melanin induction in melb-a melanoblast
cells. Stimulation of tyrosinase activity, dendritogenesis and migration of treated cells were observed
as well.

2.1.5. Pyrostegia venusta

The flowers of Pyrostegia venusta are used in Brazil in the treatment ofwhite patches on the body
(such as vitiligo) as a popular folk medicine. It wasdemonstrated that both extracts, leaves and flowers
of Pyrostegia venusta increased the melanin content in a concentration dependent manner after 4 days
of incubation on melanoma cells [43]. Leaves extract promoted enhancement of melanogenesis with a
maximum effect of 33.3 ± 3% (3 µg/mL), and the flower extract increased it by 23.4 ± 3% (0.1 µg/mL).
However, neither extract was able to cause any change in the tyrosinase activity.

To investigate the effect of this extract in animal models of vitiligo, the hyperpigmentant activities
of HE in C56BL/6 mice was also studied later by Moreira et al. [44]. The results showed that extract
administered either by gavage (300 mg/kg) ortopically (10%) increased epidermal melanin level
(116.5 ± 13% and 100 ± 16.9%, respectively), diminished dermal depigmentation (36.0 ± 6.7% and
38.2 ± 6.2%, respectively), as well as tissue TNF-α levels (68.2 ± 11.6% and 99.2 ± 12.1%, respectively)
and cell infiltration (basal levels and 94.3 ± 9.17%, respectively). Only topical treatment with extract
altered melanin-specific markers in hair follicles in mice.

2.1.6. Vernonia anthelmintica

The fruit extract of Vernonia anthelmintica is one of the most popular Uyghur medicines used
for vitiligo and initially recorded as Kaliziriin ‘Yao YongZongKu’ around 300 years ago. The extract
was claimed to increase tyrosinase activity and melanin content in a dosage-dependent manner,
and the expression of tyrosinase time-dependently in both B16-F10 cells and normal human primary
melanocytes as well [45]. Besides, it induced MITF protein expression up-regulation and promoted
the level of phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) markedly at 0–6 h,
which illustrated that the extract exerted its improving effect on melanogenesis mainly by p38-MAPK
activation and MITF induction of tyrosinase.

Tuerxuntayi et al. [46] of our group reported that Kaliziri increased the tyrosinase activity and
melanin content in a dose-dependent manner at concentrations of 5–40 µg/mL, and treatment with
20 µg/mL Kaliziri extract (KZE) enhanced the expression of tyrosinase in B16 melanoma cells in a
time-dependent manner.

Based on the above research, chlorogenic acid (CGA) [47] and ten compounds (including two
novel compounds 1 and 2) [48] were isolated from the Kaliziri by our group as well (Figure 3). It was
speculated that CGA has two side-roles in melanogenesis of B16 melanoma cells as it exhibited
different effects on melanogenesis and tyrosinase as the incubation time was extended. CGA is likely a
substrate of melanin, but its metabolic products may suppress melanogenesis in B16 melanoma cells
by inhibiting tyrosinase activity.
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Table 1. Summary of stimulation effect on tyrosinase, melanogenesis and other factors in cultured cells and pigmentation responsein animal of different plants.

Botanical Name Extraction Parts Solvents Items Up-Regulated Types of Cultured Cells
Related

Signaling
Pathway

Animal
Experiments Ref.

Daphne gnidium Leaf Ethyl acetate Melanin, Tyrosinase activity B16-F0 Ns a Ns [37]

Daphne gnidium Leaf Chloroform Melanin, Tyrosinase activity B16-F0 Ns Ns [38]

Moricandia arvensis Leaf Chloroform Melanin, Tyrosinase activity B16-F0 Ns Ns [39]

Polygonum multiflorum Root Water MITF, Melanocyte migration Human melanocytes Ns Ns [40]

Eclipta Prostrate Whole herb Water Melanin, Tyrosinase activity, MITF,
Melanocyte migration Human melanocytes Ns Ns [40]

Rehmannia Glutinosa Root Water Melanin, MITF Human melanocytes Ns Ns [40]

Cassia alata Leaf Nm b Melanin, Tyrosinase activity,
Dendritogenesis, Migration Melb-a melanoblast Ns Ns [41]

Cassia occidentalis Leaf Methanol Melanin, Tyrosinase activity,
Dendritogenesis, Migration Melb-a melanoblast Ns Ns [42]

Pyrostegia venusta Leaf, Flower Ethanol:Water
(70:30, v/v) Melanin B16-F10 Ns Ns [43]

Pyrostegia venusta Leaf Ethanol:Water
(70:30, v/v) Epidermal melanin, Dermal pigmentation - Ns C56BL/6 mice [44]

Vernonia anthelmintica Fruit Ethanol:Water
(60:40, v/v)

Melanin, Tyrosinase activity, Tyrosinase
expression, p38 MAPK phosphorylation,

MITF expression
B16-F10, Human melanocytes p38 MAPK Ns [45]

Vernonia anthelmintica Seed Ethanol:Water
(80:20, v/v) TYR, TRP-1, TRP-2 and MITF expression B16 murinemelanoma Ns Ns [46]

Melissa officinalis Whole herb Nm Melanin Human keratinocytes Ns Ns [49]

Melia azedarach Nm Ethanol:Water
(70:30, v/v) Melanin, TRP-1 expression B16-F10 Ns NS [50]

Capparis spinosa Nm Nm Melanin, Tyrosinase expression B16 murinemelanoma Ns Ns [51]

Erica multiflora Nm Nm Melanin, Tyrosinase expression B16 murine melanoma Ns Ns [51]

Citrus paradisi, Citrus grandis,
Fructus aurantii immaturus,

Fructus aurantii
Rind Ethyl acetate Melanin, Tyrosinase expression B16 murine melanoma Ns Ns [52]

a Ns means not studied; b Nm means not mentioned.



Molecules 2017, 22, 1303 7 of 28Molecules 2017, 22, 1303 7 of 27 

 

 
Figure 3. Structures of compounds isolated from Vernonia anthelmintica [47,48]. 

2.1.7. Melissa officinalis 

Pérez-Sánchez et al. [49] reported that extract of Melissa officinalis may act as a melanogenic 
activator since it could promote endogenous melanin production in melanogenesis in a human 
keratinocytes model. Thirteen major phenolic compounds (including rosmarinic acid, RA) were 
identified by HPLC-DAD-ESI-IT-MS/MS. Unfortunately, the effects of these ingredients on 
melanogenesis were not evaluated. 

2.1.8. Melia azedarach 

70% ethanol extract of Melia azedarach was demonstrated to rapidly increase melanin content in 
a concentration-dependent manner within 4 h [50]. Additionally, although the extract did not affect 
intracellular tyrosinase activity, protein levels of tyrosinase and TRP-2 at 2 and 4 h after treatment, it 
could improve TRP-1 protein expression at both time points. 

2.1.9. Capparis spinosa and Erica multiflora 

Matsuyama and co-workers [51] also reported that extract of Capparis spinosa and Erica multiflora 
enhanced the synthesized melanin content in B16 cells without cytotoxity. Western blotting showed 
that tyrosinase expression was clearly increased in cells treated with the extracts as well. 

2.1.10. Citrus paradisi, Citrus grandis, Fructus aurantii immaturus and Fructus aurantii 

Melanin content and tyrosinase expression in mouse B16 melanoma cells were assayed after 
treatment with four citrus plant extracts and their hydrolysates by Chiang et al. [52]. The results 
illustrated that hydrolysis increased the naringenin content in citrus extracts and that citrus 
preparations stimulated cellular melanogenesis and tyrosinase expression. 

2.1.11. Bee Venom 

Jeon et al. [53] discovered that bee venom (BV) increased the number of human melanocytes 
dose and time dependently through PKA, ERK, and PI3K/Akt activation. The level of cAMP was also 
increased by BV treatment. Moreover, BV induced melanogenesis through increased tyrosinase 
expression and induced melanocyte dendricity and migration through PLA2 activation. 
  

Figure 3. Structures of compounds isolated from Vernonia anthelmintica [47,48].

Two new compounds, named benzoyl-vernovan (1) and 2-(4′-hydroxyphenyl)-6-methyl-4H-
pyran-4-one (2), together with eight known compounds [2,2′-bis-(3,4-dihydroxy-phenyl]-7,7′-dihydroxy
-2,3,2′,3′-tetrahydro-[3,3′]-bichromenyl-4,4′-dione (3), 3′,4′,6-trihydroxyaurone (4), butin(5), butein (6),
isocarthamin (7), luteolin (8), isorhamnetin (9) and2,4-trans-7,4′-dihydroxy-4-methoxyflavan (10) were
isolated from the KZE (Figure 3). Among them, compounds 5 and 9 were proved to increase melanin
content by 2.2% and 30.9% higher than positive control 8-MOP.

2.1.7. Melissa officinalis

Pérez-Sánchez et al. [49] reported that extract of Melissa officinalis may act as a melanogenic
activator since it could promote endogenous melanin production in melanogenesis in a human
keratinocytes model. Thirteen major phenolic compounds (including rosmarinic acid, RA)
were identified by HPLC-DAD-ESI-IT-MS/MS. Unfortunately, the effects of these ingredients on
melanogenesis were not evaluated.

2.1.8. Melia azedarach

70% ethanol extract of Melia azedarach was demonstrated to rapidly increase melanin content in
a concentration-dependent manner within 4 h [50]. Additionally, although the extract did not affect
intracellular tyrosinase activity, protein levels of tyrosinase and TRP-2 at 2 and 4 h after treatment, it
could improve TRP-1 protein expression at both time points.

2.1.9. Capparis spinosa and Erica multiflora

Matsuyama and co-workers [51] also reported that extract of Capparis spinosa and Erica multiflora
enhanced the synthesized melanin content in B16 cells without cytotoxity. Western blotting showed
that tyrosinase expression was clearly increased in cells treated with the extracts as well.

2.1.10. Citrus paradisi, Citrus grandis, Fructus aurantii immaturus and Fructus aurantii

Melanin content and tyrosinase expression in mouse B16 melanoma cells were assayed after
treatment with four citrus plant extracts and their hydrolysates by Chiang et al. [52]. The results
illustrated that hydrolysis increased the naringenin content in citrus extracts and that citrus
preparations stimulated cellular melanogenesis and tyrosinase expression.
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2.1.11. Bee Venom

Jeon et al. [53] discovered that bee venom (BV) increased the number of human melanocytes
dose and time dependently through PKA, ERK, and PI3K/Akt activation. The level of cAMP was
also increased by BV treatment. Moreover, BV induced melanogenesis through increased tyrosinase
expression and induced melanocyte dendricity and migration through PLA2 activation.

2.2. Active Natural Products/Synthesized Derivatives (Single Compounds)

2.2.1. Flavonoids

Flavanones

In 2006, Ohguchi et al. [54] first examined the effect of naringenin (a naturallyoccurring citrus
flavanone) on melanogenesis in mouse B16 melanoma cells. The study indicated that naringenin
induced melanogenesis, and that the major melanogenic signaling factors, such as tyrosinase, Tyrp-1,
Dct, and MITF, were upregulated by the compound.

Huang et al. [55] reported that exposure of melanoma cells to naringenin (Figure 4) resulted in
morphological changes accompanied by the induction of melanocyte differentiation-related markers,
such as melanin synthesis, tyrosinase activity, and the expression of tyrosinase and MITF. They also
observed an increase in the intracellular accumulation of β-catenin as well as the phosphorylation of
glycogen synthase kinase-3β (GSK3β) protein after treatment with naringenin.
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Moreover, the activity of phosphatidyl-inositol 3-kinase (PI3K) was up-regulated by naringenin
since the phosphorylated level of downstream Akt protein was enhanced. It was concluded that
naringenin-induced melanogenesis through the Wnt-β-catenin-signalling pathway based on these
results (Figure 5).

In their further study [56], it was found that the acid-hydrolyzed extracts of Citrus sinensis,
C. reticulata, and C. aurantium enhanced melanin production. Hesperetin, which was the most abundant
flavonoids in citrus hydrolyzed extracts and has a similar structure as naringenin, exhibited the best
potency on melanin synthesis and induced tyrosinase and MITF expression. Moreover, it stimulated
the activation of mitogen-activated protein kinases (MAPKs), phosphorylation of cAMP-responsive
element binding protein (CREB) and glycogen synthase kinase-3β (GSK3β), and subsequently induced
the accumulation of β-catenin.
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Isosakuranetin (Figure 6), an important component of propolis, Baccharis dracunculifolia, Terminalia
fagifolia, Citrus sinensis [58–60], was proved to stimulates melanogenesis in B16 melanoma cells via
up-regulation of MITF. Furthermore, it induced inhibition of ERK1/2 and PI3K/AKT signaling
pathways activate MITF and subsequent expression of TYR, TRP1, and TRP2 [61].
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Chalcones

Chalcone, which are one of the major classes of natural products with widespread distribution
in fruits, vegetables, spices, tea and soy-based foodstuffs, display very versatile physiological
activity [62–65]. Until now, most chalcones and their derivatives have been described as potent
inhibitors of tyrosinase [66,67].

Few flavonoids have been reported as activators of tyrosinase. A new series of 4-(phenyl-urenyl)
chalcones 14–23 and 4′-(phenylurenyl/thiourenyl)chalcone derivatives 24–35 were synthesized and
their effects on the tyrosinase were evaluated. The results showed that 14–23 inhibited the PPO
enzyme activity. Conversely, 24–35 exhibited activator effect on tyrosinase [68]. Nixha et al. [69]
introduced a series of carbazole chalcone analogues and determined their activity on tyrosinase. From
series, analogues 36–39 could enhance the activity of the enzyme. Unfortunately, these two series of
compounds all showed poor activity (Figure 7).
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Inspired by above results, it was speculated that similar groups on the para-position of the chalcone
A ring may cause a great improvement on activating effect on tyrosinase, but an inhibitor effect when
it was introduced to B ring at the same position. Therefore, Niu et al. [70] first prepared sixteen
chalcone derivatives containing benzothiazole and amide moieties and evaluated their activator effect
on tyrosinase. Compared with the reference drug 8-MOP, compounds 40, 41, 42, 43 and 44 displayed
promising activity on tyrosinase with EC50 from 30.6–9.6 µM (Figure 8).

After that, substituted 1,2,3-triazoles were separately introduced into the A (compounds 45–59)
and B (compounds 60–74) rings of the chalcone skeleton using click chemistry by our group [71].
The results showed that most of prepared compounds 45–59 have potent activating effect on tyrosinase,
especially for 47, 52–54 and 58–59. Among them, compounds 54 and 58 demonstrated the best activity
with EC50 =1.71 and 5.60 µM respectively, even better than the positive control (Figure 9).
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were synthesized in view of three different components of chalcone (A, B ring and α-,β-unsaturated 
carbonyl) [73]. The biological evaluation revealed that most compounds (except polyhydroxy-
chalcones) possess activator effects on tyrosinase, especially for 93–97 (Figure 11). Finally, compound 
93 was found to increase melanin contents and tyrosinase activity 1.75- and 1.3-fold in B16 cells, 
respectively and the SAR of these tyrosinase activator was summed up for the first time as well. 
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On the contrary, compounds 62, 64–65, 68–69, and 74 induced enzymatic inhibition on tyrosinase,
which was consistent with our previous speculation.

In 2016, Niu and co-workers [72] also reported the design and synthesis of novel chalcone
derivatives 75–92 bearing isoxazole moieties as activators on tyrosinase and melanogenesis in murine
B16 cells. Among the synthesized molecules, compounds 76, 78, and 83 exhibited the most potent
activating effect on tyrosinase, with EC50 = 1.3, 2.5 and 3.0 µM, respectively. In B16 cells, it was
interesting that derivatives substituted with halogens were generally more potent. Compounds 76
(463%) and 92 (438%) with 3 and 4-fold potency compared with 8-MOP (Figure 10), were recognized
as the most promising candidate hits for further pharmacological study of anti-vitiligo.
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To find the pharmacophore of chalcone on tyrosinase, twenty-one chalcones and nine
analogues were synthesized in view of three different components of chalcone (A, B ring and
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α-,β-unsaturated carbonyl) [73]. The biological evaluation revealed that most compounds (except
polyhydroxy-chalcones) possess activator effects on tyrosinase, especially for 93–97 (Figure 11).
Finally, compound 93 was found to increase melanin contents and tyrosinase activity 1.75- and 1.3-fold
in B16 cells, respectively and the SAR of these tyrosinase activator was summed up for the first time
as well.Molecules 2017, 22, 1303 12 of 27 
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Flavonoid Glycosides

Two novel quercetin glucosides, were isolated from Helminthostachys zeylanica root 50% ethanol
extract. Of the two quercetin-glucosides (Figure 12), compound 98 exhibited a high melanogenic
acceleratory effect, 2.7 times higher than control at 10 µM concentration in murine B16 melanoma cells,
with no cytotoxic effect [74].
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In 2014, their group also derivatized a series of quercetin glycosides and evaluated them
as melanogenesis acceleration compounds [75] (Figure 13), SAR was carried out to correlate the
importance of many substituents with the observed activity. From the series, compound 100, 101 and
102 showed more potent intracellular melanogenesis acceleration activities than theophyline used as
positive control in a dose-dependent manner with no cytotoxic effect.
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Figure 13. Structures of the synthesized quercetin glycosides.

Later, Yamauchi and co-workers [76] also attempted structure-guided synthesis of quercetin
derivatives as melanogenesis activators based on their previous research. Among the prepared
compounds, 3-O-methylquercetin (103) and 3′,4′,7-O-trimethylquercetin (104) increased melanin
content more potently than the positive control with low cytotoxicity (Figure 14). However, the former
increased the expression of tyrosinase and TRP-1 to a greater extent than the latter. Furthermore,
compound 104 stimulated the expression of MITF and p-p38 MAPK as well, while they were not
increased by 103. These results suggested that 103 may enhance the expression of tyrosinase and
TRP-1 by regulating the proteasomal degradation of melanogenic enzymes and/or by activating other
transcriptional factors regulating enzyme expression.
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Ye et al. [77] first screened for tyrosinase activity enhancers among 35 phytocompounds in B16
mouse melanoma cells in 2010. Among them, three compounds (apigenin, icariin, hyperoside) were
more potent than 8-MOP for enhancing tyrosinase activity and significantly increased cellular melanin
contents without affecting cell proliferation (Figure 15). Western blot analysis demonstrated that these
compounds could differentially increase the expression levels of tyrosinase, and TRP-1 and TRP-2.
Together these data suggest that apigenin and icariin exert potent melanogenic activities through, at
least in part, upregulating the protein expression levels of melanogenic enzymes in B16 cells.
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Flavones

Yoon et al. [78] reported the stimulating effects of polymethoxylated flavones (nobiletin, tangeretin,
sinensetin) on the production of melanin in murine B16-F10 melanoma cells (Figure 16). The results
indicated all the tested compounds significantly increased melanin content, especially nobiletin.
Further studies showed that nobiletin induced the expression of major melanogenic proteins such as
tyrosinase, TRP-1 and that effect was probably related to the ERK–MAPK pathway.Molecules 2017, 22, 1303 14 of 27 
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L. have often been used for repigmentation of skin with natural sunlight in India, Egypt and other 
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In 2013, it was found that incubation of the B16-F10 cells with 10 µM 4′-O-methylated flavonoids
(diosmetin, acacetin, kaempferide) (Figure 17), increased the melanin contents of the cells 3- to 7-fold
higher than the control [79] and 20 µM acacetin exhibited the most promising activity with 33-fold
higher activity than the vehicle. On the other hand, the corresponding 4′-OH-type flavonoids (luteolin,
apigenin, kaempferol) possessed an obviously smaller effect. In addition, the upregulation of tyrosinase
expression, preceded by activation of cAMP response element binding protein (CREB) and extracellular
signal-regulated kinases types 1 and 2 (ERK1/2) was observed via melanogenic protein evaluation.
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Isoflavones

Park et al. [80] reported that the Pueraria thunbergiana (PT) extract and its major active ingredient
puerarin (Figure 18) stimulated the melanogenesis via cAMP/MITF-M signaling pathway in vitro,
and prevented the follicular depigmentation and vitiligo by stimulating melanin synthesis.
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2.2.2. Coumarins

For over a thousand years, the plant species Ammi majus L., Psoralen corylifolia L. and Ficus carica
L. have often been used for repigmentation of skin with natural sunlight in India, Egypt and other
oriental countries [81–83]. Similarly, their extracts were popular Uygur medicines used for vitiligo
alone or in combination with XinJiang as well. Coumarins are widely distributed in these plants and
have been isolated from their seeds, leaves and fruits [84–86].

Continuous studies have proved that these compounds show strong photosensitivity, which may
be used for the treatment of vitiligo with subsequent exposure to long-wave ultraviolet radiation.
Although the therapy was accompanied with some undesired side effects [87,88], it is still the most
successful one for the disease today. Unfortunately, few coumarin derivatives possessing anti-vitiligo
activity were reported.

Early in 2005, seven ethanolic extracts from Umbelliferae crude drugs and sixteen coumarins
(105–120) isolated were evaluated for their effects on melanin content using murine B16 melanoma
cells [89]. Among them, the extract of Heracleum lanatumand and four compounds—psoralen (105),
xanthotoxin (106), bergapten (107), isopimpinellin (108) and sphondin (117)—showed a potent
stimulatory effect on melanogenesis. Moreover, the SAR was summarized according to the results
(Figure 19).
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Chodurek et al. [90] reported a new treament for malignant melanoma consisting of a combination
of valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC) (Figure 20). In A375 cells, the results
demonstrated that both compunds could enhance the synthesis of melaninand the formation of
dendrite and star-shaped cells. Moreover, upregulation of tyrosinase activity and gene expression
were observed in response to VPA treatment.
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Recently, Pang et al. [91] of our group prepared coumarin derivatives bearing isoxazole
moieties (121–135) as melanogenic stimulator from suitable 5-(bromomethyl)isoxazoles and
4-methylumbelliferone. Among the synthesized molecules, compounds 124 and 126 exhibited excellent
potency on melanin synthesis with nearly 1.6- and 2.6-fold potency compared with 8-MOP (149%)
respectively, in murine B16 cells (Figure 21).
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Geniposide (Figure 24) isolated from the fruit of Gardenia jasminoides Ellis was used as a Chinese 
traditional medicine for treatment of generalized vitiligo. In 2008, Lan et al. [94] studied the action 
and mechanism of geniposide’s enhancement of melanogenesis in norepinephrine-exposed normal 
human epidermal melanocytes. From the results, it was suggested that geniposide can enhance 
melanogenesis by stem cell factor/c-kit signalling in which the expression of c-kit receptor is 
augmented in norepinephrine-exposed normal human epidermal melanocyte. 
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Figure 21. Structures of the coumarin derivatives bearing isoxazole moieties.

In another study, our researchers also reported the synthesis of twenty-five furocoumarin
derivatives and evaluated the stimulatory effect of them on melanogenesis in murine B16 cells [92]. In
this series, twenty-three compounds were more potent than the positive control (8-MOP). Compounds
137 (350.5%) and 138 (313.1%) based on the scaffold of 136 were nearly 3-fold stronger than 8-MOP
(Figure 22).
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2.2.3. Terpenoids

Following the report of stimulation of melanogenesis by glycyrrhizin (GR, Figure 23) via increasing
tyrosinase expression at mRNA and protein levels, Lee et al. [93] studied the molecular mechanism
of the process. The results indicated that GR induces melanogenesis by elevating intracellular cAMP
level. In addition, it was able to activate both AP-1 and CRE pathways by increasing intracellular
cAMP level.
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Geniposide (Figure 24) isolated from the fruit of Gardenia jasminoides Ellis was used as a Chinese
traditional medicine for treatment of generalized vitiligo. In 2008, Lan et al. [94] studied the
action and mechanism of geniposide’s enhancement of melanogenesis in norepinephrine-exposed
normal human epidermal melanocytes. From the results, it was suggested that geniposide can
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enhance melanogenesis by stem cell factor/c-kit signalling in which the expression of c-kit receptor is
augmented in norepinephrine-exposed normal human epidermal melanocyte.Molecules 2017, 22, 1303 17 of 27 
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Figure 24. Structure of geniposide isolated from Gardenia jasminoides Ellis fruits.

Villareal and co-workers [95] evaluated the melanogenesis stimulatory effects of leaf extracts of
Erica multiflora and its active component lupenone (Figure 25) as possible therapeutic agents to address
hypopigmentation disorders. The results showed that E. multiflora ethyl-acetate extract and lupenone
enhanced melanogenesis by increasing the tyrosinase enzyme expression via mitogen-activated protein
kinase phosphorylated extracellular signal-regulated kinases 1 and 2 phosphorylation inhibition.
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Figure 25. Structure of lupenone isolated from leaf effects extracts of Erica multiflora.

Three new triterpene glycosides (lonicerosides K, L and M) and eleven known compounds were
isolated from the aerial parts of Weigela subsessilis [96]. Among them, lonicerosides A (140) and L
(139) were proved to stimulate melanogenesis without cytotoxicity in murine B16-F0 melanoma cells
(Figure 26). Furthermore, the expression of tyrosinase and MITF proteins were upregulated by both of
them according to western blot analysis.
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Figure 26. Structure of triterpene glycosides isolated from aerial parts of Weigela subsessilis.

Ren et al. [97] reported the isolaton and structure identification of two new triterpenoids (hispindic
acids A (141) and B (142) and a new phenolic compound hispinine (145), along with nine known
compounds, from the fruiting bodies of Inonotus hispidus. Isolates 141–146 were found to exhibited
stronger activate abilities of melanogenesis and tyrosinase in B16 melanoma cells than those of positive
control (8-MOP) at 50 µmol/L (Figure 27).
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In 2012, Dubois et al. [101] synthesized several aurones 151–155 and discovered that 153 and 154 
behaved as hyperbolic activators of mushroom tyrosinase; Later, aseries of twenty-four aurones with 
different hydroxylation patterns on A, B rings were prepared and evaluated for their abilities on 
tyrosinase from mushroom to bacterial respectively by the same group [102], the results showed that 
156–157, 158–159, 160–161 and 162–163 can improve the activity of mushroom tyrosinase (Figure 30). 
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Inonotus hispidus.

2.2.4. Resveratrols

Early in 2008, Guan and co-workers [98] reported 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside
(THSG) (Figure 28) as tyrosinase activator andmelanogenesisstimulator without cytotoxicity in B16
melanoma cells. In further studies, it was found to induce melanin production via increasing the
mRNA and protein levels of tyrosinase. Western blotanalysis revealed that THSG exerts its stimulatory
effect on melanogenesis by MAP kinase activation and MITF induction of tyrosinase [99].
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Figure 28. Structure of THSG isolated from dried tuber root of Polygonum multiflorum.

Recently, Oode et al. [100] described a facile synthesis of cellobioside (149) and xylobioside
(150) based on naturally occurring melanogenesis-controlling agent dihydroresveratrol glucoside
via Schmidt glycosylation (Figure 29). Both analogues 149 and 150 stimulated melanogenesis with
efficacies comparable to that of 8-MOP, which suggested that diglycosyl modification of the 4′-OH
on the dihydroresveratrol skeleton leads to the activation of melanogenesis, both with and without
hydroxymethyl groups in the sugar moieties.
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2.2.5. Aurones

In 2012, Dubois et al. [101] synthesized several aurones 151–155 and discovered that 153 and
154 behaved as hyperbolic activators of mushroom tyrosinase; Later, aseries of twenty-four aurones
with different hydroxylation patterns on A, B rings were prepared and evaluated for their abilities on
tyrosinase from mushroom to bacterial respectively by the same group [102], the results showed that
156–157, 158–159, 160–161 and 162–163 can improve the activity of mushroom tyrosinase (Figure 30).
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increase of tyrosinasegene expression through positive regulator, MITF,initiated by cubebin-induced 
activation of p38-MAPK, as shown in Figure 35. 

Figure 30. Structure of the synthetic aurones.

2.2.6. Polyphenols

It has been reported that the extracts of Salvia officinalis L. increased the melanin production
without necessarily changing the enzymatic activity in B16-F10 cells. Moreover, rosmarinic acid
(Figure 31), the main phenol derivative isolated from the extracts was found to exhibit a dual behavior
on melanogenesis, increasing melanin biosynthesis and tyrosinase activity at low concentrations and
decreasing them at higher levels [103]. Based on these findings, Lee et al. [104] studied the molecular
events of pigmenting effect of rosmarinic acid in B16 melanoma cells. After several experiments, it
was believed that the compound induced melanogenesis through the PKA activation signaling.
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2.2.7. Other Compounds

In 2014, Zhu et al. [105] assessed the role of epigallocatechin-3-gallate (EGCG) (Figure 32) in
vitiligo induced by monobenzone in mice. It was demonstrated that EGCG could delay the time of
depigmentation, reduce the prevalence of depigmentation and decrease the area of depigmentation
by reducing excessive inflammatory responses, especially infiltration of CD8+ T cells and inhibiting
the levels of inflammatory mediators. In addition, gene-expression profile of the model in relation
to EGCG was studied as well. A total of 1264 down-regulated genes and 1332 up-regulated genes
were recorded in the 5% EGCG group compared with the model group using whole genome oligo
microarray assay. Thesere sults suggested that EGCG may significantly decrease the risk of vitiligo.Molecules 2017, 22, 1303 20 of 27 
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The extract of Piper methysticum rhizome (Kava) was identified as the most potent agent
on melanogenesis in B16 cells among different parts of five Piper species [106]. Activity-guided
fractionation of Kava extract led to the isolation of six compounds, with two active kavalactones,
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yangonin (165) and 7,8-epoxyyangonin (168), a glucosyl-steroldaucosterin (169), which all possess a
significant stimulatory effect on melanogenesis (Figure 33).
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Figure 33. Structure of kavalactones and glucosylsterols isolated from the rhizome extract of
Piper methysticum.

Hirata and co-workers had discovered that the natural product (−)-cubebin (Figure 34) isolated
from leaves of Piper nigrum L. wa sproved to have a stimulator effect on melanogenesis and tyrosinase
activity in murine B16 melanoma cells without any significant effects on cell proliferation [107]. The
expression levels of tyrosinase and tyrosinase mRNA were both enhanced after addition of cubebin.
Western blot analysis revealed that melanogenesis induced by cubebin was attributable to the increase
of tyrosinasegene expression through positive regulator, MITF, initiated by cubebin-induced activation
of p38-MAPK, as shown in Figure 35.
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Figure 35. A proposed scheme showing the activation mechanism of cubebin on melanogenesis [107].

In 2008, Faas et al. [108] investigated the ability of PIP and three analogues (THP, CHP and rCHP,
Figure 36) to stimulate pigmentation in a strain of sparsely pigmented mice. The results showed that
treatment with PIP, THP or rCHP and UVR induced a marked pigmentation response in HRA/Skh-II
mice, with clinically better results than UVR alone, which supported the potential use of these
compounds in treating vitiligo.
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3. Conclusions

Melanogenesis stimulators are important as skin-pigmentation agents in several
dermatological problems, such as vitiligo. Over the last ten years, a number of melanogenesis
stimulators have been reported from natural and synthetic sources. Although none of them have
revealed the precise therapeutic target of the vitiligo, many possible mechanisms of these stimulators
in melanogenesis were proposed to help us understand this complicated disease.

Many melanogenic stimulating agents target catalytic activity of TYR. TYR catalyzes the
process of neuromelanin production, in which oxidation of dopamine produces dopaquinones.
However, excessive production of dopaquinones results in neuronal damage and cell death [109].
This links TYR to several neurodegenerative disorders such as Parkinson’s as mentioned above [110].
In addition to that, other approaches to melanogenesis stimulators include an increase and activation
of the expression of melanogenesis-related proteins such as MITF, TYR, TRP-1 and TRP-2, resulting
from the modulation of various signaling pathways.

However, it is a pity that most of these melanogenesis stimulators are still in the drug discovery
phase, and few pharmacologic actions and adverse reactions in vivo are reported as a result of the
difficulty in building the related animal models. According to the current research progress and
problems, it was more efficient to develop new drugs from traditional Chinese medicines, such
as Uighur medicine. Many drugs for vitiligo have already been available on the market for years.
Qubaibabuqi and Kaliziri [46,111,112], which exhibit attractive therapeutic effects clinically with few
side effects, were popular in Xinjiang and its neighboring central Asian countries. Besides, JAK
inhibitors (Figure 37), often used for myelodysplastic disorders, were proven to be efficacious for
vitiligo recently and a large number of clinical trials are currently underway [113,114]. JAK inhibitors
are likely to have broad applicability in dermatology and more lead compounds for vitiligo may be
explored among these inhibitors in view of their clear target.
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In conclusion, we hope that this perspective will be useful to medicinal chemists working
on melanogenesis and related proteins to identify novel melanogenesis stimulators with
drug-like properties.
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Abbreviations

UV Ultra-violet
α-MSH α-Melanocyte-stimulating hormone
SCF Stem cell factor
ET-1 Endothelin-1
NO Nitric oxide
ACTH Adrenocorticotropic hormone
MITF Microphthalmia-associated transcription factor
TYR Tyrosinase
TRP-1 Tyrosinase-related protein 1
TRP-2 Tyrosinase-related protein 2
Dct Dopachrome tautomerase
L-DOPA 3,4-Dihydroxyphenylalanine
DQ Dopaquinone
DHI 5,6-Dihydroxyindole
DHICA 5,6-Dihydroxyindole-2-carboxylic acid
IQ Indole-5,6-quinone
5-S-CD 5-S-cysteinyldopa
2-S-CD 2-S-cysteinyldopa
p38 MAPK p38 Mitogen-activated protein kinase
8-MOP 8-Methoxypsoralen
PMRP Polygoni multiflori radix praeparata
EH Ecliptae herba
RRP Rehmanniae radix praeparata
TNF-α Tumor necrosis factor
CGA Chlorogenic acid
RA Rosmarinic acid
BV Bee venom
GSK3β Glycogen synthase kinase-3β
PI3K Phosphatidylinositol 3-kinase
MAPKs Mitogen-activated protein kinases

EDCI
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride

HOBt 1-Hydroxybenzotriazole
SAR Structure-activity relationship
CREB cAMP response element binding protein
ERK Extracellular signal-regulated kinases
AP-1 Activator protein-1
PKA Protein kinase AA
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