Synthesis and Cytotoxicity Studies of Novel NHC*-Gold(I) Complexes Derived from Lepidiline A

Danielle Curran 1, Oyinlola Dada 1, Helge Müller-Bunz 1, Matthias Rothemund 2, Goar Sánchez-Sanz 1,3, Rainer Schobert 2, Xiangming Zhu 1 and Matthias Tacke 1,*

1 School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; danielle.curran@ucdconnect.ie (D.C); oyinlola.dada@ucdconnect.ie (O.D.);
2 Organic Chemistry Laboratory, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany; bt303719@uni-bayreuth.de (M.R.); rainer.schobert@uni-bayreuth.de (R.S.);
3 Irish Centre of High-End Computing, Grand Canal Quay, Dublin 2, Ireland
* Correspondence: matthias.tacke@ucd.ie; Tel.: +353-1-7168428; Fax: +353-1-7162044

Received: 3 August 2018; Accepted: 13 August 2018; Published: 14 August 2018

Abstract: Ten novel N-heterocyclic carbene gold(I) complexes derived from lepidiline A (1,3-dibenzyl-4,5-dimethylimidazolium chloride) are reported here with full characterisation and biological testing. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (NHC*-AuCl) (1) was modified by substituting the chloride for the following: cyanide (2), dithiocarbamates (3–5), p-mercaptobenzoate derivatives (12–14) and N-acetyl-L-cysteine derivatives (15–17). All complexes were synthesised in good yields of 57–78%. Complexes 2, 12, 13, and 14 were further characterised by X-ray crystallography. Initial evaluation of the biological activity was conducted on all ten complexes against the multidrug resistant MCF-7*topo breast cancer, HCT-116 wt, and p53 knockout mutant HCT-116−/− colon carcinoma cell lines. Across the three cell lines tested, mainly single-digit micromolar IC50 values were observed. Nanomolar activity was exhibited on the MCF-7*topo cell line with 3 displaying an IC50 of 0.28 µM ± 0.03 µM. Complexes incorporating a Au–S bond resulted in higher cytotoxic activity when compared to complexes 1 and 2. Theoretical calculations, carried out at the MN15/6-311++G(2df,p) computational level, show that NHC* is the more favourable ligand for Au(I)-Cl when compared to PPh3.

Keywords: lepidiline A; N-heterocyclic carbene; gold anticancer drug; TrxR inhibition; MTT cytotoxicity assay; DFT calculations

1. Introduction

Metal-based drugs are an important tool in the development of new therapeutic drugs. Auranofin, the successful gold(I)-based drug, exhibits both high potency antiarthritic and antitumour properties [1,2]. Auranofin analogues have since been investigated for their interesting coordination to both a phosphine and a thioglycoside. In many cases, N-heterocyclic carbenes (NHCs) have been utilized as an alternative to the phosphine ligand [3–5]. NHCs have proved to be suitable ligands for stabilizing the highly active gold(I) species, due to their good electron donating ability and their highly stable carbene from π-backbonding [6,7]. As a result, several metal NHC complexes have reported strong anticancer activity [8–10].

Lepidiline A (Figure 1), a naturally occurring imidazolium compound extracted from the root of Lepidium meyenii, has presented many biological properties, including cytotoxicity [11]. Lepidiline A exhibits activity against the human ovarian cancer cell line FDIGROV, with an ED50 of 7.39 µg/mL [11]. Furthermore, this biologically active imidazolium compound acts as a promising structural motif for
NHC derivatives [12], and more effective applications of lepidilin A may lie in the development of metal-based complexes with lepidilin A as the coordinating ligand.

Gold(I) complexes are an important class of anticancer drugs, due to their unique mechanism of action. It has been shown that gold(I) complexes can elicit tumour cell death through targeting members of the intracellular redox-homeostasis system, such as the mitochondria associated thioredoxin reductase (TrxR), whose inhibition leads to reactive oxygen species formation [13–15]. A selenocysteine–cysteine bridge at the C-terminal of the TrxR enzyme acts as the target for gold(I) [9,16]. Gold(I) has a high affinity for thiols, due to their soft nature, resulting in strong Au–S bonds. However, gold(I) also binds strongly to blood thiols such as serum albumin or glutathione, reducing the amount of drug arriving at cancer cells [17]. Therefore, there is a desire to design a gold(I)-NHC complex that has a suitably strong Au–S bond incorporated to lessen the chance of blood thiol conjugation.

The effectiveness of these gold(I)-NHC complexes are still restricted by cell selectivity. Introducing targeting biomolecules to the complex could ensure the drug is delivered directly to the cancer cells, thus minimizing the death of normal cells and increasing the drug’s efficacy [18]. Modifying the coordinating ligand of the NHC-gold(I) complex to include a carboxylic acid would allow increased functionality, such as esters or amides.

![Figure 1. Structure of lepidilin A (1,3-dibenzyl-4,5-dimethylimidazolum chloride) (a) and NHC*-Au(I)-Cl (1) (b).](image)

Herein we present a structural assessment of NHC-Au(I) complexes, based on (1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (NHC*-AuCl), (1) Figure 1. The synthesis, characterisation, and biological testing of ten new NHC*-gold(I) complexes is reported. The effect of altering the coordinating ligands of the NHC*-gold(I) on the cytotoxicity is investigated via MTT-based proliferation assays. The cytotoxicity studies of these novel compounds have been conducted in vitro against three different tumour cell lines: MCF-7 (multidrug-resistant breast cancer), HCT-116 WT, and the p53 knockout mutant HCT-116 WT−/− (colon cancer). These cytotoxicity studies, compared to that of 1, can provide information on the ideal structures of future gold(I) chemotherapeutic complexes. Additionally, a computational study of 1 can highlight the advantages of employing an NHC ligand, as opposed to a phosphine.

2. Results and Discussion

2.1. Synthesis and Characterisation

The synthetic route for the ten NHC*-gold(I) complexes described in this paper are shown in Schemes 1–4. NHC*-Au(I)-Cl (1) was synthesised according to a procedure previously published [3]. The preparation of 1, p-mercaptobenzoate derivatives 7 and 8, and N-acetyl-L-cysteine (NAC) derivatives 10 and 11 (Scheme 3), were confirmed with 1H and 13C-NMR spectra. Novel complexes 2–5 and 12–17 were characterised with elemental analysis, high resolution mass spectrometry, IR spectroscopy, and melting point. See Supplementary Material for 1H and 13C spectra of complexes 2–5 and 12–17.
Complex 2 was formed in a 66% yield from the anion exchange of chloride to cyanide (Scheme 1). The precursor 1 was reacted with potassium cyanide in dry dichloromethane at reflux for 48 h to produce complex 2. The reaction does not form the desired product when conducted in a biphasic solvent system with ethyl acetate and water. Upon reaction in the presence of water, the carbene is protonated to form the corresponding imidazolium dicyanoaurate(I), confirmed by a signal at $\delta = 8.66$ ppm, representing the protonated carbene.

![Scheme 1](image)

Scheme 1. General reaction scheme for the synthesis of NHC*-Au-CN (2).

The $^1$H-NMR spectrum of 2 shows a slight shift of the CH$_2$ protons of the benzyl groups, from $\delta = 5.44$ ppm to 5.37 ppm, when compared to the $^1$H-NMR of 1. The quaternary carbon of the cyanide ligand appears in the $^{13}$C-NMR spectra at $\delta = 152.6$ ppm. An absorption band at 2144 cm$^{-1}$ in the IR spectra of 2 represents the C≡N stretch.

Complexes 3–5 were prepared by reacting complex 1 with the corresponding sodium carbamate salt (Scheme 2). This was performed under biphasic conditions by stirring at room temperature in ethyl acetate and water for 48 h, with relatively good yields of 61–69%. Complexes 3–5 were also synthesised in dichloromethane at reflux for 24 h, this, however, gave lower yields.

![Scheme 2](image)

Scheme 2. General reaction scheme for the synthesis of NHC*-Au(I) dithiocarbamate complexes 3–5.

Similar to 2, the CH$_2$ signal in the $^1$H-NMR of complexes 3–5 is shifted to $\delta = 5.57$–5.55 ppm upon coordination to the dithiocarbamates. The addition of a new $^1$H-NMR singlet at $\delta = 3.51$ ppm corresponding to the two methyl groups of the dimethylthiocarbamate moiety (3) confirms its coordination to the NHC*-Au(I). Similarly, the CH$_2$ and CH$_3$ peaks of the diethylthiocarbamate complex 4 appear at $\delta = 3.96$ ppm and 1.31 ppm, respectively. The pyrrolidine CH$_2$ peaks of 5 appear at $\delta = 3.85$ and 1.97 ppm, with a triplet and pentet distinguishing these two peaks.

Previous metal-dialkyldithiocarbamate complexes reported the IR stretch of the carbon sulphur bond from 820–1050 cm$^{-1}$ [19,20]. The IR spectra of 3, 4, and 5 show a medium band at 971, 910, and 949 cm$^{-1}$, respectively, corresponding to the C=S stretch. A nickel(II) dimethylthiocarbamate complex exhibited a carbon–sulphur bond stretch at 975 cm$^{-1}$ [19,21], which correlates well with the dimethylthiocarbamate complex 3. IR spectra of 3, 4, and 5 show bands at 1447, 1411, and 1406 cm$^{-1}$, respectively, which correspond to the carbon–nitrogen stretching of the carbamate. Interestingly,
these IR values account for an intermediate bond in the 1450–1550 cm\(^{-1}\) range \([20]\). This indicates a resonance structure is present where the carbon–nitrogen bond exhibits more double bond character than the carbon–sulphur bonds. Furthermore, the presence of only one band for the C=S bond implies the molecule is symmetrical, and therefore, in the resonant structure shown in Figure 2 \([19]\).

![Figure 2. The dominant resonance form of a dithiocarbamate complex.](image)

The synthetic route to ester formation is highlighted below in Scheme 3. The esters 7, 8, 10, and 11 were made with Fischer esterification, by refluxing 4-mercaptobenzoic acid (NAC) (9) (both commercially available) in methanol and ethanol with a catalytic amount of sulphuric acid, to make their corresponding methyl and ethyl esters. Compounds 6–11 were conjugated with complex 1, under basic conditions, to obtain complexes 12–17, in relatively good yields of 57–78\% \(\text{Scheme 4}\).

![Scheme 3. General reaction scheme for the synthesis of esters 7, 8, 10, and 11.](image)

Compounds 6 and 9 were initially conjugated to 1 to make the corresponding NHC*-Au-S-linker molecules 12 and 15. Esterification of the acid ends of 12 and 15 was unsuccessful. Attempts were made to synthesise complexes 13, 14, 16, 17 by reacting 12 and 15 with methanol or ethanol; however, this also proved to be unsuccessful. Due to the lack of success via the linear synthesis, we moved to convergent synthesis, which was successful.

The most diagnostic feature in the \(^1\text{H}\)-NMR spectra of complexes 12–17 is the disappearance of the \(\text{SH}\) signal of the thiols once coordinated to the gold. This appears in the \(\delta = 3.64–2.48\) ppm range for the \(p\)-mercaptobenzoate compounds (12–14), and \(\delta = 1.33–1.31\) ppm range for the NAC compounds (15–17). In the NAC series, the acetyl protons on the nitrogen atom of compounds 10 and 11 are observed at \(\delta = 2.07\) and \(2.09\) ppm, respectively. However, once linked to the NHC*-Au(I) centre, there is an observed upfield chemical shift of the acetyl protons to \(\delta = 1.95\) and \(1.94\) ppm in compounds 16 and 17, respectively. For complexes 13 and 16 there is a slight upfield shift of the CH\(_3\) singlet of the methyl compounds upon coordination to the gold; however, in the ethyl compounds, a downfield shift is noted.
2.2. Structural Discussion

X-ray crystallography data was obtained for four of the complexes synthesised. The crystal of complex 2 was developed from the slow diffusion of pentane into a saturated dichloromethane solution at −18 °C. Complex 2 crystallised in the monoclinic space group P2₁/m (#11) (Figure 3). The crystals of 12 and 13 were formed in a saturated solution of ethyl acetate with the slow infusion of pentane (Figures 4 and 5). Both crystallised in the triclinic space group P1 (#2), in the absence of any solvent molecules. Crystal 14 was formed in a saturated solution of dichloromethane with slow infusion of diethyl ether (Figure 6). Complex 14 crystallized in the monoclinic space group C2/c (#15), also in the absence of any solvent molecules. The X-ray crystal data and structure refinement of complexes 2, 12, 13, and 14 are found in Table 1, with the selected bond lengths and bond angles compiled in Tables 2 and 3.

**Scheme 4.** General reaction scheme for the synthesis of NHC*-Au-S-linker (12–17).

**Figure 3.** X-ray diffraction structure of NHC*-Au-CN (2); thermal ellipsoids are drawn on the 50% probability level.
The Au–C(8) bond lengths of 2.031(8) Å for 2, 2.012(3) Å for 12, 2.008(2) Å for 13 and 2.008(3) Å for 14 suggest that the gold is strongly bound to the carbene in all four complexes. Additionally, the Au–S bond distance of 2.2856(7) Å in 12, 2.2851(6) Å in 13 and 2.3012(8) Å in 14 is within the range of reported Au–S bond lengths [22,23]. The C(30)–N(3) bond of 2 of 1.113 Å is indicative of the triple bond of the cyanide ligand [24]. The X-ray structures of all four compounds show an almost linear bond angle of 179.6(4)° for 2, 177.48(8)° for 12, 175.20(6)° for 13, and 173.45(9)° for 14 for the C(8)–Au–C(30) and C(8)–Au–S angles, respectively. Bond angles of 108.40(10)° for 12, 109.44(8)° for 13, and 108.83(12)° for 14 are observed for the Au–S–C(30) angle. These values are in good agreement with similar compounds reported earlier by the Tacke group [25,26].
Table 1. Crystal data and structure refinement for complexes 2, 12, 13, and 14.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C_{38}H_{35}AuN_{3}</td>
<td>C_{38}H_{36}N_{2}SAu</td>
<td>C_{37}H_{35}O_{2}SAu</td>
<td>C_{38}H_{35}N_{2}O_{2}Au</td>
</tr>
<tr>
<td>Formula Weight (g·mol⁻¹)</td>
<td>623.49</td>
<td>750.54</td>
<td>764.66</td>
<td>778.69</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1/c (#11)</td>
<td>Pm (#2)</td>
<td>Pm (#2)</td>
<td>C2/c (#15)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a (Å) 12.8150(7)</td>
<td>b (Å) 9.3234(3)</td>
<td>c (Å) 12.12378(8)</td>
<td>a (Å) 26.1234(3)</td>
</tr>
<tr>
<td></td>
<td>b (Å) 10.4210(3)</td>
<td>c (Å) 7.663(3)</td>
<td>c (Å) 16.0388(5)</td>
<td>b (Å) 23.9038(3)</td>
</tr>
<tr>
<td></td>
<td>c (Å) 15.6802(8)</td>
<td>γ (°) 112.268(6)</td>
<td>γ (°) 75.663(3)</td>
<td>c (Å) 103.1637(6)</td>
</tr>
<tr>
<td></td>
<td>α (°) 90</td>
<td>θ (°) 90</td>
<td>θ (°) 90</td>
<td>θ (°) 90</td>
</tr>
<tr>
<td></td>
<td>β (°) 83.264(3)</td>
<td>β (°) 75.663(3)</td>
<td>β (°) 75.663(3)</td>
<td>β (°) 75.663(3)</td>
</tr>
<tr>
<td></td>
<td>γ (°) 98.8340(6)</td>
<td>γ (°) 103.1637(6)</td>
<td>γ (°) 103.1637(6)</td>
<td>γ (°) 103.1637(6)</td>
</tr>
<tr>
<td></td>
<td>23 (°) 2.90 to 29.59</td>
<td>23 (°) 11.641</td>
<td>23 (°) 11.641</td>
<td>23 (°) 11.641</td>
</tr>
<tr>
<td></td>
<td>1004.94(12)</td>
<td>5.018</td>
<td>9.964</td>
<td>9.723</td>
</tr>
<tr>
<td></td>
<td>1497.46(8)</td>
<td>9.723</td>
<td>9.723</td>
<td>9.723</td>
</tr>
<tr>
<td></td>
<td>1204.94(12)</td>
<td>1204.94(12)</td>
<td>1204.94(12)</td>
<td>1204.94(12)</td>
</tr>
<tr>
<td></td>
<td>1528.942(19)</td>
<td>1528.942(19)</td>
<td>1528.942(19)</td>
<td>1528.942(19)</td>
</tr>
<tr>
<td></td>
<td>6274.45(12)</td>
<td>6274.45(12)</td>
<td>6274.45(12)</td>
<td>6274.45(12)</td>
</tr>
<tr>
<td></td>
<td>1.718</td>
<td>1.665</td>
<td>1.661</td>
<td>1.649</td>
</tr>
<tr>
<td></td>
<td>11.641</td>
<td>5.018</td>
<td>9.964</td>
<td>9.723</td>
</tr>
<tr>
<td></td>
<td>608</td>
<td>740</td>
<td>756</td>
<td>3088</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.105</td>
<td>0.105</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>2.90 to 29.59</td>
<td>2.90 to 29.59</td>
<td>2.90 to 29.59</td>
<td>2.90 to 29.59</td>
</tr>
<tr>
<td></td>
<td>1497.46(8)</td>
<td>9.723</td>
<td>9.723</td>
<td>9.723</td>
</tr>
<tr>
<td></td>
<td>1528.942(19)</td>
<td>1528.942(19)</td>
<td>1528.942(19)</td>
<td>1528.942(19)</td>
</tr>
<tr>
<td></td>
<td>6274.45(12)</td>
<td>6274.45(12)</td>
<td>6274.45(12)</td>
<td>6274.45(12)</td>
</tr>
<tr>
<td></td>
<td>1.718</td>
<td>1.665</td>
<td>1.661</td>
<td>1.649</td>
</tr>
<tr>
<td></td>
<td>11.641</td>
<td>5.018</td>
<td>9.964</td>
<td>9.723</td>
</tr>
<tr>
<td></td>
<td>608</td>
<td>740</td>
<td>756</td>
<td>3088</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>0.105</td>
<td>0.105</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>2.90 to 29.59</td>
<td>2.90 to 29.59</td>
<td>2.90 to 29.59</td>
<td>2.90 to 29.59</td>
</tr>
</tbody>
</table>

Figures 6. X-ray diffraction structure of 14; thermal ellipsoids are drawn on the 50% probability level.
Table 2. Selected bond angles for 2, 12, 13, and 14.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au–C(8)</td>
<td>177.48(8)</td>
<td>175.20(6)</td>
<td>173.45(9)</td>
<td></td>
</tr>
<tr>
<td>Au–C(30)</td>
<td>179.6(4)</td>
<td>108.40(10)</td>
<td>109.44(8)</td>
<td>108.83(12)</td>
</tr>
<tr>
<td>Au–S(1)</td>
<td>177.0(8)</td>
<td>122.8(3)</td>
<td>122.9(2)</td>
<td>123.4(3)</td>
</tr>
<tr>
<td>C(30)–N(3)</td>
<td>120.8(3)</td>
<td>125.2(2)</td>
<td>124.2(4)</td>
<td>116.4(3)</td>
</tr>
<tr>
<td>C(36)–O(1)</td>
<td>115.4(2)</td>
<td>117.0(3)</td>
<td>117.0(3)</td>
<td>117.0(3)</td>
</tr>
<tr>
<td>C(36)–O(2)</td>
<td>177.0(8)</td>
<td>177.0(8)</td>
<td>177.0(8)</td>
<td>177.0(8)</td>
</tr>
<tr>
<td>O(2)–C(37)</td>
<td>122.8(3)</td>
<td>122.9(2)</td>
<td>123.4(3)</td>
<td>123.4(3)</td>
</tr>
<tr>
<td>Bond lengths (Å).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3. Biological Evaluation

The in vitro anticancer activity of 2–5 and 12–17 was tested via MTT-based proliferation assays against the human colon carcinoma cell line HCT-116$^{wt}$, the p53 knockout mutant HCT-116$^{-/-}$, and the multidrug-resistant (mdr) human breast cancer cell line MCF-7$^{topo}$ (Table 4). All complexes reached low single-digit micromolar IC$_{50}$ values against the tested cell lines after 72 h of treatment. These two complexes exhibit only moderate toxicities with IC$_{50}$ values up to 20 µM. While the IC$_{50}$ values of the dithiocarbamate complexes 3–5 and the p-mercaptobenzoate complexes 12–14 vary depending on the nitrogen substitution, and the respective esterification, the complexes carrying NAC, 15–17, show single-digit IC$_{50}$ values in the low micromolar range for all tested cell lines, with almost similar cytotoxic activities throughout. Esterification of NAC with methanol or ethanol slightly increased the antitumor activity against all three cell lines. Amongst the three types of thiolated complexes, the dithiocarbamate complexes 3–5 showed the highest activity against the mdr MCF-7$^{topo}$ breast cancer cells, with complex 3 being the most active complex in total, with IC$_{50}$ values of 1.5 ± 0.1 µM against the HCT-116$^{wt}$ or 0.28 ± 0.03 µM against the MCF-7$^{topo}$ cells. To test the complexes for their dependency on fully functional p53, one activator of the apoptotic cascade, the complexes were tested for their toxicity against a HCT-116 p53 knockout mutant. Surprisingly, only a few of the tested complexes showed similar or higher IC$_{50}$ values against the knockout mutant than against the wildtype cells. Complexes 4, 5, 12, and 13 exert a higher toxicity against the HCT-116$^{-/-}$ than against the wildtype HCT-116$^{wt}$. Overall, the herein presented complexes exhibit high to moderate antitumoral activity against colon carcinoma cells and a mdr breast cancer cell line. Dithiocarbamate complex 3 shows the overall highest activity in all tested cell lines.
This is indicative of a stronger bond between the gold and the carbene due to the higher $\sigma$-donating ability of the nucleophilic NHC* ligand.

The enthalpy of formation has been obtained at the MN15/6-311++G(2df,p)/LANL2TZ(f) level for both NHC*-AuCl and Ph3P-AuCl compounds (Figure 7). The results show that NHC*-AuCl presents a more negative enthalpy ($-315.0$ kJ/mol) than Ph3P-AuCl ($-274.3$ kJ/mol), which indicates that the formation of NHC*-AuCl is more favourable. Natural bond orbital (NBO) analysis shows that the AuCl unit in NHC*-AuCl is slightly less negative ($-0.32e^-$) than in Ph3P-AuCl ($-0.35e^-$), and displays slightly shorter Au-Cl distances in NHC*-AuCl (2.291 Å) than in Ph3P-AuCl (2.299 Å). This is indicative of a stronger bond between the gold and the carbene due to the higher $\sigma$-donating effect of the nucleophilic NHC* ligand.

### Table 4. IC$_{50}$ values (µM) of compounds 2, 3, and 12–17 against MCF-7-topo, HCT-116wt, and HCT-116 p53$^{-/-}$ cells after 72 h of incubation.

<table>
<thead>
<tr>
<th></th>
<th>HCT-116wt</th>
<th>HCT-116 p53$^{-/-}$</th>
<th>MCF-7-topo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14.8 ± 1.9</td>
<td>-</td>
<td>10.8 ± 0.9</td>
</tr>
<tr>
<td>3</td>
<td>1.5 ± 0.1</td>
<td>-</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>4</td>
<td>8.0 ± 0.1</td>
<td>3.8 ± 0.4</td>
<td>0.36 ± 0.03</td>
</tr>
<tr>
<td>5</td>
<td>6.2 ± 0.3</td>
<td>2.0 ± 0.6</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>12</td>
<td>5.5 ± 0.1</td>
<td>2.7 ± 0.2</td>
<td>5.4 ± 0.5</td>
</tr>
<tr>
<td>13</td>
<td>18.1 ± 6.5</td>
<td>9.5 ± 0.6</td>
<td>21.3 ± 3.4</td>
</tr>
<tr>
<td>14</td>
<td>6.8 ± 0.2</td>
<td>7.9 ± 0.2</td>
<td>13.2 ± 3.7</td>
</tr>
<tr>
<td>15</td>
<td>4.5 ± 1.2</td>
<td>6.6 ± 0.3</td>
<td>7.1 ± 0.3</td>
</tr>
<tr>
<td>16</td>
<td>2.8 ± 0.1</td>
<td>4.5 ± 0.6</td>
<td>6.3 ± 0.5</td>
</tr>
<tr>
<td>17</td>
<td>2.9 ± 0.1</td>
<td>3.7 ± 0.2</td>
<td>5.4 ± 0.5</td>
</tr>
</tbody>
</table>

### 2.4. Computational Results

The enthalpy of formation has been obtained at the MN15/6-311++G(2df,p)/LANL2TZ(f) level for both NHC*-AuCl and Ph3P-AuCl compounds (Figure 7). The results show that NHC*-AuCl presents a more negative enthalpy ($-315.0$ kJ/mol) than Ph3P-AuCl ($-274.3$ kJ/mol), which indicates that the formation of NHC*-AuCl is more favourable. Natural bond orbital (NBO) analysis shows that the AuCl unit in NHC*-AuCl is slightly less negative ($-0.32e^-$) than in Ph3P-AuCl ($-0.35e^-$), and displays slightly shorter Au-Cl distances in NHC*-AuCl (2.291 Å) than in Ph3P-AuCl (2.299 Å). This is indicative of a stronger bond between the gold and the carbene due to the higher $\sigma$-donating effect of the nucleophilic NHC* ligand.

![Figure 7. Molecular orbital corresponding to the $\sigma$-C–Au and $\sigma$-P–Au bonds of NHC*-AuCl and Ph3P-AuCl respectively.](image)

Also, for NHC*-AuCl, two backbonding donations from the gold into the $\pi^*$ C–N antibonding orbitals are observed, $E(2) = 15.9$ and $16.1$ kJ/mol; while in Ph3P-AuCl, three backbonding donations are observed from the Au atom into the $\pi^*$ P–C antibonding orbitals with $E(2) = 16.2$, $16.0$, and $14.9$ kJ/mol. The additional backbonding in the Ph3P-AuCl molecule reduces its bond strength, resulting in a weaker donating ligand. Conclusively, these results give credence to NHCs being the more favourable ligand than phosphines.
3. Materials and Methods

3.1. General Conditions

All chemicals were purchased and used as received, unless otherwise stated. Solvents were dried according to the standard procedures, when necessary. \(^1\)H and \(^13\)C spectra were recorded on either a 300 or 400 MHz Varian spectrometer at room temperature (rt). Both chloroform (CDCl\(_3\)) and dimethyl sulfoxide (DMSO) were used as deuterated solvents. The residual solvent peak or tetramethylsilane (TMS) were used as the internal standard. All chemical shifts are reported as \(\delta\) values in parts per million (ppm). Infrared spectra were recorded on a Bruker ALPHA PLATINUM ATR spectrometer (Mallorca, MA, USA). High resolution accurate mass data were obtained on a Waters/Micromass LCT TOF spectrometer (Milford, MA, USA), under electrospray ionisation technique. Melting points were measured on a Stuart™ (Stone, UK) melting point apparatus SMP10. Elemental analysis was conducted on an Exeter Analytical CE-440 elemental analyser (Coventry, UK). X-ray crystallography data was collected on a Rigaku Oxford Diffraction (Chalgrove, UK) SuperNova A diffractometer. Absorbance measurements were done with a TECAN (Männedorf, Switzerland) Infinite F200 plate reader.

3.2. Synthesis

3.2.1. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Chloride (1)

Prepared according to literature method [3]. \(^1\)H-NMR (300 MHz, CDCl\(_3\), \(\delta\) ppm): 7.30 (t, \(J = 7.4\) Hz, 2H, CH\(_{\text{benzyl}}\)), 7.25–7.16 (m, 10H, CH\(_{\text{benzyl}}\) + CH\(_{\text{phenyl}}\)), 7.06–6.92 (m, 8H, CH\(_{\text{phenyl}}\)), 5.44 (s, 4H, CH\(_2\)). \(^13\)C-NMR (101 MHz, CDCl\(_3\), \(\delta\) ppm): 171.6 (NCN), 135.8, 132.2, 130.9, 129.5, 128.8, 128.7, 128.2, 127.6, 127.4 (CH\(_{\text{imidazol}}\) + CH\(_{\text{phenyl}}\) + CH\(_{\text{benzyl}}\)), 53.2 (CH\(_2\)).

3.2.2. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Cyanide (2)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (65 mg, 0.10 mmol) and potassium cyanide (7.5 mg, 0.12 mmol) were stirred in dichloromethane (15 mL) under reflux for 48 h. The reaction was washed with deionised water (2 \times 10 mL). The organic solution was extracted and dried over anhydrous MgSO\(_4\). This was filtered, and the excess solvent reduced under pressure to 3 mL. Pentane (40 mL) was added to precipitate a white solid. The product was filtered, washed with pentane (15 mL), and dried in vacuo. Yield: 40.8 mg, 66%. \(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta\) ppm): 7.32 (t, \(J = 7.4\) Hz, 2H, CH\(_{\text{benzyl}}\)), 7.25–7.20 (m, 10H, CH\(_{\text{benzyl}}\) + CH\(_{\text{phenyl}}\)), 6.99 (t, \(J = 5.9\) Hz, 8H, CH\(_{\text{phenyl}}\)), 5.37 (s, 4H, CH\(_2\)). \(^13\)C-NMR (101 MHz, CDCl\(_3\), \(\delta\) ppm): 182.9 (NCN), 152.6 (CN), 135.7, 132.6, 130.9, 129.7, 128.9, 128.8, 128.4, 127.6, 127.2 (CH\(_{\text{imidazol}}\) + CH\(_{\text{phenyl}}\) + CH\(_{\text{benzyl}}\)), 53.0 (CH\(_2\)). IR (ATR): 3058 (w), 3030 (w), 2143 (w), 1594 (w), 1488 (m), 1447 (m), 1348 (m), 1026 (m), 758 (m), 696 (s). MS (ESI\(^+\)) \(m/z\): 624.2 [M + H]\(^+\). Melting point range: 264–268 °C. Anal. calcd for C\(_{30}\)H\(_{24}\)AuN\(_3\) (623.51): C, 57.79; H, 3.88; N, 6.74. Found: C, 61.08; H, 4.04; N, 6.90. Although these elemental results are outside the acceptable range to establish purity, they demonstrate the best results yet obtained.

3.2.3. General Procedure for NHC-Au(I) Complexes 3–5

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (65 mg, 0.10 mmol) and the corresponding sodium carbamate salt (0.12 mmol) were stirred in a biphasic solution of ethyl acetate (7 mL) and deionised water (6 mL) at rt for 48 h. The reaction mixture was washed with deionised water (2 \times 10 mL) and an aqueous saturated solution of NaCl (10 mL). The combined organic phase was dried over anhydrous MgSO\(_4\), filtered, and reduced to approximately 3 mL under reduced pressure. Pentane (40 mL) was added to precipitate a solid. The product was filtered, washed with pentane (15 mL), and dried in vacuo.
(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Dimethylthiocarbamate (3)

A white solid was formed. Yield: 50.4 mg, 69%. H-NMR (300 MHz, CDCl₃, δ ppm): 7.32–7.27 (m, 2H, CH), 7.24–7.16 (m, 10H, CH), 7.10–7.04 (m, 4H, CH), 6.95 (d, J = 7.1 Hz, 4H, CH), 5.55 (s, 4H, CH₂), 3.51 (s, 6H, CH₃). C-NMR (101 MHz, CDCl₃, δ ppm): 136.9, 132.4, 131.1, 129.6, 129.1, 128.9, 128.3, 127.1 (C_midazol + C_phenyl + C_benzyl), 53.0 (CH₂), 45.4 (CH₃). MS (ESI⁺) m/z: 718.2 [M + H]⁺. IR (ATR): 3025 (w), 2910 (w), 1603 (w), 1496 (m), 1447 (m), 1248 (m), 1140 (m), 971 (m), 726 (m), 695 (s). Melting point range: 186–187 °C. Anal. calcd for C₃₂H₃₀N₃S₂Au (717.71): C, 53.55; H, 4.21; N, 5.85; S, 8.94. Found: C, 53.50; H, 4.17; N, 5.77; S, 8.64.

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Diethylthiocarbamate (4)

A white solid was formed. Yield: 49.5 mg, 65%. H-NMR (300 MHz, CDCl₃, δ ppm): 7.27 (t, J = 7.3 Hz, 2H, CH), 7.25–7.14 (m, 15H, CH), 7.08–7.04 (m, 3H, CH), 6.93 (d, J = 7.2 Hz, 3H, CH), 5.57 (s, 4H, CH₂-CH₂), 3.96 (q, J = 7.1 Hz, 4H, CH₂-ethyl), 1.31 (t, J = 7.0 Hz, 6H, CH₃). C-NMR (101 MHz, CDCl₃, δ ppm): 205.8 (SCS), 180.1 (NCN), 136.3, 132.1, 130.9, 129.2, 128.6, 128.5, 127.9, 127.8 (CH_midazol + CH_phenyl + CH_benzyl), 53.1 (CH₂-benzyl), 49.3 (CH₂-ethyl), 12.4 (CH₃). MS (ESI⁺) m/z: 746.2 [M + H]⁺. IR (ATR): 3025 (w), 2925 (w), 1603 (w), 1495 (w), 1411 (m), 1133 (m), 981 (m), 910 (m), 733 (s), 694 (s). Melting point range: 187–188 °C. Anal. calcd for C₃₄H₃₄N₃S₂Au (745.75): C, 54.76; H, 4.60; N, 5.63; S, 8.60. Found: C, 54.58; H, 4.52; N, 5.53; S, 8.72.

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) Pyrrolidinedithiocarbamate (5)

A white solid was formed. Yield: 46.6 mg, 61%. H-NMR (300 MHz, CDCl₃, δ ppm): 7.29 (d, J = 7.5 Hz, 1H, CH), 7.24–7.14 (m, 10H, CH), 7.12–7.05 (m, 4H, CH), 6.95 (d, J = 7.0 Hz, 4H, CH), 5.56 (s, 4H, CH₂-CH₂), 3.85 (t, 4H, CH₂), 1.97 (p, 4H, CH₂). C-NMR (101 MHz, CDCl₃, δ ppm): 202.8 (SCS), 180.2 (NCN), 136.3, 132.1, 130.9, 129.3, 128.6, 128.5, 128.0, 127.9, 127.8 (CH_midazol + CH_phenyl + CH_benzyl), 54.43 (CH₂), 53.08 (CH₂-benzyl), 26.30 (CH₃). MS (ESI⁺) m/z: 742.2 [M + H]⁺. IR (ATR): 3027 (w), 2961 (w), 1602 (w), 1494 (w), 1406 (m), 1165 (m), 949 (m), 733 (m), 695 (s). Melting point range: 188–189 °C. Anal. calcd for C₃₄H₃₂N₃S₂Au (743.73): C, 54.91; H, 4.34; N, 5.65; S, 8.63. Found: C, 54.48; H, 4.26; N, 5.52; S, 8.85.

3.2.4. General Procedure for 7–8, 10–11

Esters 7–8 and 10–11 were prepared according to modified literature methods [27,28]. The carboxylic acid (6 or 9) was dissolved in either methanol (30 mL) or ethanol (30 mL), with 2 drops of concentrated sulfuric acid added to the solution before refluxing at 90 °C for 24 h. The reaction progress was monitored by TLC (cyclohexane-ethyl acetate; 1:1). The reaction was concentrated under reduced pressure to yield a white solid.

Methyl-p-mercaptobenzoate (7)

The residue was purified with column chromatography (cyclohexane-ethyl acetate; 3:1) to produce a white solid. Yield: 319 mg, 95%. The NMR data were in agreement with those reported in literature [27,28]. H-NMR (400 MHz, CDCl₃, δ ppm): 7.88 (d, J = 8.6 Hz, 2H, CH), 7.27 (d, J = 8.6 Hz, 2H, CH), 3.89 (s, 3H, CH₃), 3.60 (s, 1H, SH). C-NMR (101 MHz, CDCl₃, δ ppm): 166.9 (C=O), 138.3 (CH), 130.2 (CH), 128.1 (CH), 127.1 (CH), 52.0 (CH₃).

Ethyl-p-mercaptobenzoate (8)

The residue was purified with column chromatography (cyclohexane-ethyl acetate; 3:1) to produce a white solid. Yield: 319 mg, 95%. The NMR data were in agreement with those reported in literature [29]. H-NMR (400 MHz, DMSO-d₆, δ ppm): 7.77 (d, J = 8.5 Hz, 2H, CH), 7.40 (d, J = 8.5 Hz, 2H, CH), 4.26 (q, J = 7.1 Hz, 2H, CH₂), 2.48 (s, 2H, SH), 1.28 (t, J = 7.1 Hz, 3H, CH₃). C-NMR (101 MHz, DMSO-d₆, δ ppm): 165.4 (C=O), 141.7 (CH), 130.5 (CH), 129.1 (CH), 126.5 (CH), 61.2 (CH₂), 14.5 (CH₃).
N-Acetyl-L-cysteine Methyl Ester (10)

The crude product was used without further purification as a white solid. Yield: 618 mg, 88%. The NMR data were in agreement with those reported in literature [30]. 1H-NMR (400 MHz, CDCl₃, δ ppm): 4.89 (dt, J = 7.8, 4.1 Hz, 1H, CH), 3.79 (s, 3H, OCH₃), 3.01 (dd, J = 9.0, 4.1, 2.7 Hz, 2H, CH₂), 2.67 (s, 3H, CH₃), 1.33 (t, J = 7.1 Hz, 1H, SH). 13C-NMR (101 MHz, CDCl₃, δ ppm): 170.5 (C=O), 170.0 (C=O), 53.5 (CH), 52.8 (OCH₃), 26.8 (CH₂), 23.1 (CH₃).

N-acetyl-L-cysteine Ethyl Ester (11)

The crude product was used without further purification as a white solid. Yield: 650 mg, 85%. The NMR data were in agreement with those reported in literature [31]. 1H-NMR (400 MHz, DMSO-d₆, δ ppm): 4.91–4.82 (m, 2H, CH), 4.32–4.19 (m, 2H, OCH₃), 3.15–2.94 (m, 3H, CH), 2.09 (s, 3H, CH₃), 2.13 (t, J = 7.1 Hz, 1H, SH). 13C-NMR (101 MHz, DMSO-d₆, δ ppm): 172.1 (C=O), 169.8 (C=O), 61.9 (OCH₃), 54.7 (CH), 51.7 (CH₃), 26.0 (CH₂), 22.8 (CH₃).

3.2.5. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) p-Mercaptobenzoic Acid (12)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (63 mg, 0.20 mmol) and p-mercaptobenzoic acid (31 mg, 0.20 mmol) were dissolved in ethyl acetate (5 mL), and K₂CO₃ (27 mg, 0.20 mmol) was dissolved in water (5 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was re-extracted twice with ethyl acetate (10 mL). The combined organic phase was washed with 8% HCl (2 × 10 mL), before drying over MgSO₄ and filtered. The filtrate was concentrated to approximately 3 mL before the addition of pentane (40 mL). The solution was cooled down to −26 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 55 mg, 70%. 1H-NMR (400 MHz, CDCl₃, δ ppm): 7.63 (d, J = 8.4 Hz, 2H, Hb), 7.47 (d, J = 8.4 Hz, 2H, Ha), 7.34–7.18 (m, 12H, CH), 7.09–6.96 (m, 8H, CH), 5.45 (s, 4H, CH₂-benzyl). 13C-NMR (101 MHz, CDCl₃, δ ppm): 182.3 (NCN), 171.7 (C=O), 153.7, 153.8, 132.0, 131.8, 130.6, 129.4, 129.3, 128.6, 128.6, 128.1, 127.3, 127.2, 123.1 (CH₃imidazol + CHphenyl + CHbenzyl), 52.6 (CH₂). MS (QMS-MS/MS) m/z: 773.15 [M + Na]+. IR (ATR): 3056 (w), 1705 (s), 1580 (w), 1487 (m), 1446 (w), 1025 (m), 764 (m), 729 (s), 694 (s), 628(w), 518 (w). Melting point range: 177–179 °C. Anal. calcd for C₃₆H₂₈N₂O₂SAu (750.70): C, 57.59; H, 3.90; N, 3.73; S, 4.27; Found: C, 57.33; H, 3.72; N, 3.60; S, 4.59.

3.2.6. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-methyl-p-mercaptobenzoate (13)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (253 mg, 0.40 mmol) and methyl-p-mercaptobenzoate (218 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL), and potassium carbonate (222 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was washed with ethyl acetate (2 × 20 mL). The organic phases were combined and washed with 8% HCl (20 mL), an aqueous saturated solution of NaHCO₃ (20 mL) and an aqueous saturated solution of NaCl (20 mL). The organic phase was dried with MgSO₄, filtered, and concentrated to approximately 5 mL before the addition of pentane (40 mL). The solution was cooled down to −20 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 202 mg, 65%. 1H-NMR (400 MHz, CDCl₃, δ ppm): 7.62–7.57 (m, 2H, Hb), 7.51–7.46 (m, 2H, Ha), 7.34–7.28 (m, 2H, CH), 7.27–7.21 (m, 10H, CH), 7.08–7.04 (m, 4H, CH), 7.03–6.98 (m, 4H, CH), 5.46 (s, 4H, CH₂), 3.84 (s, 3H, OCH₃). 13C-NMR (101 MHz, CDCl₃, δ ppm): 182.3 (NCN), 167.9 (C=O), 135.8, 132.0, 131.8, 130.6, 129.3, 128.8, 128.6, 128.1, 127.3, 127.2, 124.1 (CH₃imidazol + CHphenyl + CHbenzyl), 52.6 (CH₂), 51.6 (OCH₃). MS (QMS-MS/MS) m/z: 765.18 [M + H]+. IR (ATR): 3057 (w), 1705 (s), 1584 (s), 1432 (m), 1279 (s), 1270 (s), 1172 (w), 1107 (m), 1085 (m), 1021 (w), 760 (s), 696 (s), 526 (w). Melting point range: 149–152 °C. Anal. calcd for C₃₇H₃₁N₂O₂AuS (764.73): C, 58.11; H, 4.09; N, 3.66; S, 4.19; Found: C, 58.28; H, 4.02; N, 3.41; S, 4.20.
3.2.7. (1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I)-ethyl-p-mercaptobenzoate (14)

(1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (254 mg, 0.40 mmol) and ethyl-p-mercaptobenzoate (291 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL), and potassium carbonate (221 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was re-extracted twice with ethyl acetate (20 mL). The organic phases were combined and washed with 8% HCl (20 mL), an aqueous saturated solution of NaHCO₃ (20 mL), and an aqueous saturated solution of NaCl (20 mL). The organic phase was dried over MgSO₄, filtered, and concentrated to approximately 5 mL before the addition of pentane (40 mL). The solution was cooled down to −20 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 178 mg, 57%. 

IR (ATR): 3056 (w), 1698 (m), 1585 (m), 1445 (m), 1277 (m), 1267 (m), 1105 (m), 1092 (m), 763 (m), 729 (s), 518 (w). 

3.2.8. (1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I)-N-acetyl-l-cysteine methyl ester (15)

(1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (63 mg, 0.10 mmol) and N-acetyl-l-cysteine methyl ester (285 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL), and potassium carbonate (223 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was washed with ethyl acetate (2 × 10 mL). The combined organic phase was washed with 8% HCl (2 × 10 mL), then dried over MgSO₄ and filtered. The filtrate was concentrated to approximately 3 mL before the addition of pentane (40 mL). The solution was cooled down to −20 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 45 mg, 34%. 

IR (ATR): 3056 (w), 1698 (m), 1585 (m), 1447 (m), 1277 (m), 1267 (m), 1105 (m), 1092 (m), 763 (m), 729 (s), 694 (s), 527 (m). Melting point range: 163–166 °C. Anal. calcd for C₅₈H₃₅N₂O₂AuS: C, 58.45; H, 4.01; N, 3.74; S, 4.32.

3.2.9. (1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I)-N-acetyl-l-cysteine (16)

(1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (253 mg, 0.40 mmol) and N-acetyl-l-cysteine (18 mg, 0.11 mmol) were dissolved in ethyl acetate (5 mL), and potassium carbonate (15 mg, 0.11 mmol) was dissolved in water (5 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was washed with ethyl acetate (2 × 10 mL). The combined organic phase was washed with 8% HCl (2 × 10 mL), then dried over MgSO₄ and filtered. The filtrate was concentrated to approximately 3 mL before the addition of pentane (40 mL). The solution was cooled down to −20 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 242 mg, 78%. 

3.2.10. (1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I)-cysteine (17)

(1,3-Dibenzy1-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (253 mg, 0.40 mmol) and L-cysteine (15 mg, 0.11 mmol) were dissolved in ethyl acetate (5 mL), and potassium carbonate (223 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was washed with ethyl acetate (2 × 20 mL). The organic phases were combined and washed with 8% HCl (20 mL), an aqueous saturated solution of NaHCO₃ (20 mL), and an aqueous saturated solution of NaCl (20 mL). The organic phase was dried over MgSO₄, filtered, and concentrated to approximately 5 mL before the addition of pentane (40 mL). The solution was cooled down to −20 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 759.72 mg, 60%. 

IR (ATR): 3057 (w), 3030 (w), 1665 (m), 1495 (m), 1445 (m), 1277 (m), 1267 (m), 1105 (m), 1092 (m), 763 (m), 729 (s), 694 (s), 527 (m). Melting point range: 102–105 °C. Anal. calcd for C₅₈H₃₅N₂O₂AuS: C, 53.75; H, 4.25; N, 5.53; S, 4.22. Found: C, 53.42; H, 4.34; N, 5.13; S, 3.94.
3.2.10. (1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I)-N-acetyl-L-cysteine Ethyl Ester (17)

(1,3-Dibenzyl-4,5-diphenylimidazol-2-ylidene)gold(I) chloride (254 mg, 0.40 mmol) and N-acetyl-L-cysteine ethyl ester (306 mg, 1.60 mmol) were dissolved in ethyl acetate (20 mL), and potassium carbonate (221 mg, 1.60 mmol) was dissolved in water (20 mL). Both solutions were mixed and stirred vigorously at rt for 24 h. The two phases were separated, and the aqueous phase was washed with ethyl acetate (2 × 20 mL). The organic phases were combined and washed with 8% HCl (20 mL), an aqueous saturated solution of NaHCO₃ (20 mL), and an aqueous saturated solution of NaCl (20 mL). The organic phase was dried over MgSO₄, filtered, and concentrated to approximately 5 mL before the addition of pentane (40 mL). The solution was cooled down to −20 °C to allow the product to precipitate out of the solution before filtering and drying in vacuo. An off-white product was isolated. Yield: 245 mg, 78%. ¹H-NMR (400 MHz, CDCl₃, δ ppm): 7.32–7.26 (m, 2H, CH), 7.24–7.18 (m, 10H, CH), 7.05–6.94 (m, 8H, CH), 5.43 (s, 4H, CH₂-benzyl), 4.69 (dd, J = 8.4, 4.0 Hz, 1H, CH), 4.18–4.07 (m, 2H, CH₂), 3.29–3.19 (m, 2H, CH₂), 1.94 (s, 3H, CH₃-NAC), 1.21 (s, J = 7.1 Hz, 3H, CH₃-methyl). ¹³C-NMR (101 MHz, CDCl₃, δ ppm): 171.3 ( NCN), 170.3 (C=O), 169.9 (C=O), 135.9, 131.9, 130.6, 129.2, 128.7, 128.5, 127.9, 127.4, 127.4 (CH₂-imidazol + CH₂-phenyl + CH₂-benzyl), 61.0 (CH₂-ethyl), 55.1 (CH), 52.9 (CH₂-benzyl), 40.9 (CH₂-NAC), 23.1 (CH₃-NAC), 14.2 (CH₃-ethyl). MS (QMS-MS/MS) m/z: 788.21 [M + H]+. IR (ATR): 3058 – 2924 (w), 1743 (m), 1660 (m), 1496 (m), 1446 (m), 1202 (m), 1178 (m), 1022 (m), 764 (m), 732 (m), 697 (s), 517 (m). Melting point range: 65–68 °C. Anal. calcd for C₃₅H₃₄N₅O₃AuS (787.78): C, 54.83; H, 4.61; N, 5.27; S, 4.15. Found: C, 54.83; H, 4.62; N, 5.33; S, 4.07. The structures were solved by direct methods using SHELXS [33] and refined by full matrix least-squares on F² for all data using SHELXL [33]. Hydrogen atoms were added at calculated positions and refined using a riding model. Their isotropic temperature factors were fixed to 1.2 times the equivalent isotropic displacement parameters of the parent atom.

3.3. Structure Determination

X-ray crystallography data was collected on a Rigaku Oxford Diffraction SuperNova A diffractometer. Complex 12 was measured with Mo-Kα (0.71073 Å), while complexes 2, 13, and 14 were measured with Cu-Kα (1.5418 Å). A complete dataset was collected, assuming that the Friedel pairs are not equivalent. An analytical absorption correction based on the shape of the crystal was performed [32]. The structures were solved by direct methods using SHELXS [33] and refined by full matrix least-squares on F² for all data using SHELXL [33]. Hydrogen atoms were added at calculated positions and refined using a riding model. Their isotropic temperature factors were fixed to 1.2 times (1.5 times for methyl and OH groups) the equivalent isotropic displacement parameters of the parent atom. Anisotropic thermal displacement parameters were used for all non-hydrogen atoms. CCDC 1854008 (2), CCDC 1850909 (12), CCDC 1850910 (13), CCDC 1850908 (14) contain the supplementary crystallographic data for this paper, available free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

3.4. MTT-Based Proliferation Assay

The cytotoxic activity of al gold complexes was determined via MTT-based proliferation assays for the colon carcinoma cell line HCT-116wt, its p53 knockout mutant HCT-116−/−, and the multidrug-resistant MCF-7topo breast cancer cell line. The cells, kept in Dulbecco’s Modified Eagle Medium (1% anti-anti, 10% FBS), were seeded into the wells of a clear 96 well plate (5 × 10⁴ cells/well) and incubated for 24 h at standard cell culture conditions (37 °C, 5% CO₂, 95% humidity). Appropriate pre-dilutions of freshly made stock solutions (10 mM in DMSO) of 2–5, 12–15, and DMSO as negative control, were added into the wells of the pre-incubated cells. After 72 h, the medium was exchanged.
for a MTT solution (0.05% in PBS) and the cells were further incubated for 2 h. Thereupon, the MTT solution was again discarded, and the cells and violet formazan were dissolved in an SDS/DMSO solution (1% SDS, 0.6% AcOH). After another incubation time of 1 h at 37 °C, the absorbance of formazan at 570 nm, and the background at 630 nm, were measured. Means and SDs are calculated from four independent measurements.

3.5. Computational Details

All compounds have been optimized at the MN15 [34] computational level with the 6-311++G(2df,p) basis set [35] applied to the lighter elements inclusive chlorine. The LANL2TZ(f) basis set [36] is used throughout for the gold atoms. Frequency calculations have been performed at the same level in order to confirm that the structures obtained correspond to energetic minima. The effect of water solvation was then accounted for using the SMD approach implemented in the Gaussian16 [37] package including dispersing, repulsing, and cavitation energy terms of the solvent in the optimisation. Orbitals have been calculated using NBO 6.0 [38] and plotted using Jmol software [39].

4. Conclusions

In summary, a novel NHC*-Au(I)-cyanide complex (2), three NHC*-Au(I)-dithiocarbamates (3–5), three NHC*-Au(I)-p-mercaptobenzoates (12–14), and three NHC*-Au(I)-NAC (15–17) complexes, were synthesised and characterised.

Complexes 2–5 and 12–17 were based on the NHC* ligand system, as NHCs have been shown to be stronger σ-donors than phosphines. DFT calculations, carried out at the MN15/6-311++G(2df,p)/LANL2TZ(f) level, show the formation of NHC*-AuCl is more desired than the phosphine alternative, Ph₃P-AuCl. A more negative ΔH and concurrent NBO analysis favours the NHC* ligand. Furthermore, calculated Au–Cl bond distances reveal the bond is shorter in the NHC*-AuCl compound, and therefore, stronger than in the phosphine compound.

Cytotoxicity studies conducted against the human colon carcinoma cell lines HCT-116wt, its p53 knockout mutant HCT-116−/−, and the mdr human breast cancer cell line MCF-7topo, show low micromolar and even nanomolar activity. Complex 3 exhibited the best activity with IC₅₀ values of 1.5 ± 0.1 µM and 0.28 ± 0.03 µM, against HCT-116wt and MCF-7topo cell lines, respectively. Overall, the NHC*-Au(l)-thiolates proved to be more biologically active than complex 1 or 2, which lack the influential Au–S bond.

Furthermore, the series of complexes with the NAC derivative (15–17) were the most successful series of compounds tested. Complexes 15–17 displayed consistently high cytotoxic activity when compared to the other sets, strongly suggesting the benefit of conjugating the NHC*-Au(I) to a biological vector. These encouraging results may be valuable in the development of new anticancer drugs that incorporate amino acid derivatives.

Supplementary Materials: See attached for ¹H and ¹³C-NMR spectra of all novel compounds.


Funding: We thank the University College Dublin College of Science and the School of Chemistry [R16002] for funding this research.

Acknowledgments: We thank Ibon Alkorta for helping with the NBO 6.0 calculations and many useful discussions and to the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.
References


Sample Availability: Samples of the compounds 1–5 and 12–17 are available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).