Supporting information

Direct Asymmetric Reductive Amination for the Synthesis of (S)-Rivastigmine

Guorui Gao 1,*, Shaozhi Du 2,*, Yang Yang 2, Xue Lei 1, Haizhou Huang 2,*, and Mingxin Chang 2,*

1 College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, 88 Wenhuadong Road, Jinan 250014, PR China; gaoguorui2001@163.com
2 Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shanxi 712100, PR China
Phone/fax: (+86)-29-8709-2662; mxchang@nwsuaf.edu.cn
* Correspondence: huanghai30@163.com; mxchang@nwsuaf.edu.cn; Tel.: +86-29-8709-2662

CONTENTS

I The synthetic route of (S)-rivastigmine S2
II General Procedure for Preparation of Monophos-type Ligands S2
III References S3
IV NMR & Chiral HPLC & HRMS Spectra S4
I. The synthetic route of (S)-rivastigmine

(S)-Rivastigmine was prepared according the scheme 1 below

\[
\begin{align*}
\text{K}_{2}CO_{3}, \text{Acetone} & \quad \text{reflux, 4h, 99%} \\
\text{Pd/C, 20 atm H}_{2} & \quad 40^\circ \text{C, 17h, 97%} \\
\text{N}_{2} & \quad \text{CH}_{2}O, \text{NaBH(OAc)}_{3}, \text{DCM, 16h, 91%} \\
& \quad \text{(S)-rivastigmine, 99% ee}
\end{align*}
\]

Scheme 1. the synthetic route of (S)-rivastigmine

II. General Procedure for Preparation of Monophos-type ligands

Ligands L1, L2, L3 were synthesized according to the reported procedures[1-7].

1) A 25 mL Schlenk flask was charged with (R)-(+)-1,1-bi(2-naphthol) (0.57 g, 2 mmol), phosphorus trichloride (2.74 g, 20 mmol, 10 equiv), 1-methyl-2-pyrrolidinone (1.6 \( \mu \) L, 0.02 mmol, 0.008 equiv) under nitrogen. The reaction mixture was heated to 90 \( ^\circ \)C for 15 min, and all volatiles were removed under reduced pressure. CH2Cl2 (2 mL \( \times \) 2) was used to remove the traces of phosphorus trichloride. The resulting oil was vacuumed for 3 h to give the pale solid which was used directly in next step.

2) A 25 mL round-bottom flask was charged with 2 mmol of corresponding amine, 3 mmol of Et3N and 10 ml toluene. The above made chlorophosphite was dissolved in 5 ml toluene and was transferred to the reaction flask. The mixture was stirred for 3 h. The solid was removed by filtration. The filtrate was concentrated and purified by flash column chromatography (EtOAc /Hex) to yield desired ligand (yield: 75-95%).

Ligands L4 were synthesized according to the reported procedures[5].

1)
At room temperature, n-butyllithium (1.32 mL of a 2.5 M solution in hexanes, 3.3 mmol) was added to a a solution of (S)-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (0.62 g, 1.65 mmol) dissolved in anhydrous ether (25 mL). After 2 h, the resulting gray suspension was cooled to 0 ℃ and methyl iodide (0.47 g, 3.3 mmol) was added. The reaction mixture was warmed to room temperature and stirred for further 4 h, after which it was quenched with a saturated aqueous solution of NH₄Cl (25 mL). The aqueous phase was extracted with ethyl acetate (3 × 25 mL) and the combined with the above organic phases which were washed with H₂O (25 mL) and brine (25 mL). The solution was dried over Na₂SO₄, filtered, and concentrated in vacuo. The resulting crude reaction product was purified by chromatography (PE/EA=5:1) to afford L₄-2 as a white powder (72% yield).

2) A 50-mL round bottom was charged with L₄-2 (0.35 g, 1.25 mmol). The reagent was dissolved in a minimum amount of CH₂Cl₂ (2 mL) and ethanol (7.0 mL) and 6 N HCl (7.0 mL) were added successively. The mixture was then heated at reflux for 10 h and the resulting yellow solution was concentrated in vacuo after cooling to room temperature. Water (10 mL) was added and the solution was extracted with CH₂Cl₂ (5 × 12 mL), after which the organic layers were combined and dried over Na₂SO₄. The drying agent was removed via filtration and the filtrate was concentrated in vacuo. The remaining crude product was purified by column chromatography (PE/EA= 5:1) to give L₄-3 as a white powder (80% yield).

3) The following procedure is the same as for the synthesis of L₁-₃.

Ligands L₆ were synthesized according to the reported procedures [1-7].

1) (R)-(+)-1,1-bi(2-naphthol) (0.57g, 2 mmol) 10 % Pd/C (0.12 g, 50 % wet) and 10 mL of ethanol were placed into a 50 mL autoclave and stirred under 50 bar H₂ at 70 ℃ for 16 h. The reaction mixture was cooled to rt, Pd/C was filtered off and washed with ethanol (3x5 mL). The combined filtrates were concentrated in vacuum to give 0.588 g of H₈-BINOL (yield: 100%).

2) The following procedure is the same as for the synthesis of L₁-L₃.

III References


IV NMR & Chiral HPLC & HRMS Spectra

\(^1\)H-NMR of L⁴ (500 MHz, Chloroform-d):

\(^{31}\)P-NMR of L⁴ (500 MHz, Chloroform-d):
$^1$H-NMR of Compound 3 (500 MHz, Chloroform-d):
$^1$H-NMR of Compound 5 (500 MHz, Chloroform-d):
13C-NMR of Compound 5 (125 MHz, Chloroform-d):

Chiral HPLC of compound rac 5 (Chiracel-OD, n-hexane/2-propanol=99.4/0.6, flow rate =0.9 mL/min, UV220 nm):
Chiral HPLC of compound 5 (Chiracel-OD, n-hexane/2-propanol=99.4/0.6, flow rate =0.9 mL/min, UV220 nm):
$^1$H-NMR of Compound 6 (500 MHz, Chloroform-d):

$^1$H-NMR of (S)-Rivastigmine (400 MHz, Chloroform-d):
$^{13}$C-NMR of (S)-Rivastigmine (100 MHz, Chloroform-d):
HRMS of (S)-Rivastigmine:

- RT: 0.21
- AV: 1
- NL: 9.48E8
- T: FTMS + p ESI Full ms [150.00-2000.00]
Chiral HPLC of Rivastigmine (Chiracel-OD, n-hexane/2-propanol/Methanol/Diethylamine =80/15/5/0.1, flow rate =1.0 mL/min, UV220 nm):
Chiral HPLC of (S)-Rivastigmine (Chiracel-OD, n-hexane/2-propanol/Methanol/Diethylamine =80/15/5/0.1, flow rate =1.0 mL/min, UV220 nm):