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Abstract: Ascorbic acid (vitamin C) has been gaining attention as a potential treatment for human
malignancies. Various experimental studies have shown the ability of pharmacological doses of
vitamin C alone or in combinations with clinically used drugs to exert beneficial effects in various
models of human cancers. Cytotoxicity of high doses of vitamin C in cancer cells appears to
be related to excessive reactive oxygen species generation and the resulting suppression of the
energy production via glycolysis. A hallmark of cancer cells is a strongly upregulated aerobic
glycolysis, which elevates its relative importance as a source of ATP (Adenosine 5′-triphosphate).
Aerobic glycolysis is maintained by a highly increased uptake of glucose, which is made possible by
the upregulated expression of its transporters, such as GLUT-1, GLUT-3, and GLUT-4. These proteins
can also transport the oxidized form of vitamin C, dehydroascorbate, permitting its preferential
uptake by cancer cells with the subsequent depletion of critical cellular reducers as a result of
ascorbate formation. Ascorbate also has a potential to affect other aspects of cancer cell metabolism
due to its ability to promote reduction of iron(III) to iron(II) in numerous cellular metalloenzymes.
Among iron-dependent dioxygenases, important targets for stimulation by vitamin C in cancer
include prolyl hydroxylases targeting the hypoxia-inducible factors HIF-1/HIF-2 and histone and
DNA demethylases. Altered metabolism of cancer cells by vitamin C can be beneficial by itself and
promote activity of specific drugs.
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1. Introduction

The potential use of intravenous ascorbic acid (AA) as a complementary agent in cancer treatment
has been studied since the 1970s [1–3]. Vitamin C has been explored as a component of combination
therapy, either because of its synergy with primary treatment and chemosensitization activity [4,5]
or, surprisingly, cancer cell death suppression agent [6,7]. Although at physiological levels vitamin C
acts as an antioxidant, its therapeutic effectiveness at pharmacological doses in some cases appears
to be linked to pro-oxidant effects ultimately promoting cancer cell death [8]. Furthermore, recent
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studies identified AA as a potent epigenetic regulator, thus making it a potential complementary
agent in the application of the emerging therapy targeting cancer epigenome [9–12]. Use of AA in
cancer management is supported by vitamin C deficiency observed in many cancer patients [13–16],
including those suffering from the most aggressive forms of the disease where deficiency is even more
severe [17].

Cultured cells are the main biological models for most biochemical and other molecular studies
aimed at understanding of normal and malignancy-associated metabolism, growth, and regulatory
networks. One well-recognized disadvantage of the typical cell culture is its limited ability to
recapitulate a multicellular context of tissues. Another concern is the supply of the physiologically
relevant concentrations of nonessential nutrients in growth media, which can significantly alter
physiology of cells. One of such nutrients is vitamin C. Most standard cell culture formulations
do not include vitamin C and its only source for cells in culture is the addition of serum (fetal
bovine or other). Since serum is typically added at 10% and AA undergoes irreversible oxidation
during storage, the concentrations of vitamin C even in freshly fed cells are in low micromolar range
versus low millimolar levels in vivo [18,19]. Vitamin C can be rapidly delivered into cells by the
addition of its oxidized form, dehydroascorbic acid (DHA), to the low-glucose medium with or
without serum followed by a change to a regular medium. A more gradual cellular accumulation of
vitamin C occurs when cell culture medium is supplemented with AA or its more stable derivative,
ascorbate-phosphate. Restoration of physiological levels of ascorbate can dramatically change how
cells respond to redox-active DNA-damaging agents [20].

Recognition of vitamin C deficiency in cell culture varies between the fields of study and currently
it is rarely addressed in in vitro studies relevant to cancer biology and therapy. Similar to guinea pigs
and apes, humans have a mutationally inactivated L-gluconolactone oxidase gene (GULO), which codes
for the enzyme that catalyzes the final step in the biosynthesis of vitamin C [21]. Thus, AA must be
provided to these species with food. Importantly, rodent models that possess the ability to synthesize
vitamin C do not fully recapitulate the effects of vitamin C supplementation in humans. [22]. Gulo−/−
knockout mouse strain represents a more faithful biological model for studies of human vitamin C
metabolism and these animals develop normally and healthy with dietary supplementation of AA [23].
Additional models of vitamin C deficiency include guinea pig and the osteogenic disorder Shionogi
strain of rats [22]. Vitamin C deficiency in animals causes multiple pathologies, including partial loss
of neutrophil function, increased oxidative stress during development [24], neuroprotection failure
and neurotransmission disorders, and, eventually, death [25]. Use of animal models with the loss of
Gulo activity offers the opportunities to experimentally test the contribution of vitamin C to growth,
metabolism, and responses of human cancers to therapeutics.

2. Vitamin C

Vitamin C is present in the bloodstream at approximately 50–100 µM concentration in plasma
of healthy subjects [26]. Human blood cells also contain AA, which is delivered through the
activity of different transporters for reduced or oxidized forms of vitamin C: sodium-dependent
vitamin C transporters (SVCT 1 and 2) for AA transport or GLUT1, 3, and 4 for DHA entry [27,28].
Dietary consumption of vitamin C results in lower plasma levels of ascorbate than intravenous
injection, but the excess of AA in the blood is transient due to its efficient excretion in the urine.
In vivo concentrations of vitamin C showed a significant variation among tissues. In Gulo knockout
mice, brain and heart were found to accumulate higher levels of AA than other organs [29].
Once inside the cells, DHA is rapidly reduced to AA that exerts various effects on cell metabolism.
At physiological concentrations, AA is known for its antioxidant properties (by scavenging free
radicals) and its importance in collagen synthesis as a cofactor in the enzymatic hydroxylation of
lysine and proline residues. Reduced vitamin C is estimated to serve as a cofactor for approximately
150 human enzymes [30–32], indicating a much broader impact of AA on cell and tissue physiology.
Ascorbate functions as a metal-reducing cofactor for many enzymes, including copper-containing
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monooxygenases and Fe(II+)/2-oxoglutarate (2OG)-dependent dioxygenases. For example, ascorbate
is involved in the regulation of hypoxia-inducible factors’ (HIF-1α and HIF-2α) stability, via their
prolyl-hydroxylation, and in the epigenetic control of gene expression, via demethylation of histone
lysines and CpG sites in DNA [33].”

Consistent with its role in genome transcription, vitamin C was found to upregulate the expression
of a series of genes that contribute to energy metabolism, immune responses, and cytoskeleton
formation [34].

2.1. Vitamin C in Cancer Treatment

High-dose vitamin C has been studied as a potential cancer treatment since the 1970s [1].
Results from more recent clinical trials showed that intravenous vitamin C was safe in cancer
patients, producing minimal side effects [35]. However, while generally considered as a dietary
supplement, neither the U.S. Food and Drug Administration nor European Medicines Agency has
approved the use of intravenous high-dose vitamin C as a treatment for cancer. Vitamin C has been
shown to diminish the effects of chemotherapy due to its antioxidant properties when applied in
low/physiological concentrations [6,7]. Other data indicate that combining high-dose vitamin C with
anticancer therapies inhibits tumor growth in models of pancreatic [36,37], liver [38], prostate [39],
ovarian cancer [40], sarcoma [41] and malignant mesothelioma [41]. Furthermore, several trials of
high-dose intravenous vitamin C administration in cancer patients have led to increased quality
of life, as well as improvements in physical, mental, and emotional functions, and less frequent
adverse effects including fatigue, nausea, vomiting, pain, and appetite loss [33,42]. However, many
questions regarding the potential interactions between AA and chemotherapy depending on the
dosing regiments remain unaddressed. Clinical studies have shown that in pre-screened patients with
advanced solid tumors intravenous administration of vitamin C was well tolerated even at doses up to
1.5 g/kg of body weight or 70–80 g/m2 [38]. It was also reported that breast cancer patients [39], as
well as metastatic pancreatic cancer patients [40], experienced less severe chemotherapy-induced side
effects after a complementary intravenous AA treatment.

Pires et al. found that simultaneous administration of ascorbate with oxaliplatin or irinotecan
inhibited tumor growth in vivo, and the effect was significantly higher compared to that of these
compounds alone [43]. AA was also reported as a potent chemosensitizer to gefitinib-based therapy
in non-small cell lung cancer [44]. Another study of high AA dosage on ovarian cancer cells
observed induction of DNA damage, depletion of cellular ATP, and activation of the corresponding
stress signaling kinases, ATM (ataxia telangiectasia mutated) and AMPK (AMP-activated protein
kinase). The resulting repression of mTOR led to death of cancer cells [45]. Importantly, authors
also showed that the combination of parenteral AA with the conventional chemotherapeutic agents
carboplatin and paclitaxel synergistically inhibited ovarian cancer in mouse models and reduced
chemotherapy-associated toxicity in patients with ovarian cancer. In vitro studies with a different cell
model also detected synergistic effects of AA cotreatment with carboplatin and paclitaxel [46].

Physiological levels of vitamin C efficiently detoxify reactive oxygen species (ROS) and reactive
nitrogen species that are formed during normal metabolism but frequently overproduced under various
forms of stress [41]. Consequently, vitamin C is protective against cell injury and death by pro-oxidant
stressors [39]. It is likely that at least partially, reduction in toxicity of several chemotherapeutic agents
on normal tissue upon co-administration with AA is related to suppression of a collateral oxidative
damage in nontarget cells [47,48].

2.2. HIF and GLUT Links

Most solid tumors contain regions of hypoxia, which appear as a result of limited blood
supply. To survive under stressful hypoxic conditions, tumor cells activate critical adaptation
mechanisms. A clinical consequence of this metabolic remodeling is a heightened aggressiveness of the
disease, which is manifested by resistance to therapy and decreased patient survival. A crucial
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mediator of the hypoxic response is the transcription factors HIF-1 and HIF-2. Together, these
factors upregulate the expression of hundreds of genes that upregulate angiogenesis, glucose uptake,
anaerobic metabolism, and cell motility [49]. Interestingly, intracellular ascorbate suppresses the
transcriptional activity of HIF-1 and HIF-2. This repressive effect was attributed to stimulation of
HIF-1 degradation by ascorbate under normoxic or mildly hypoxic conditions by supporting the
activity of iron-dependent-dioxygenases that hydroxylate critical Pro and Asn residues in the HIF-1α
subunit [24,50,51]. AA at physiological concentrations significantly suppressed HIF-1α levels and
expression of HIF-1 transcriptional targets in cancer cell lines [52]. However, the intracellular ascorbate
content in many aggressive cancers may be suboptimal for the effective HIF-1 control [52–54], which
can potentially be remediated by administration of pharmacological doses of vitamin C. Upregulation
of HIF-1 and the hypoxia-like transcription response by two frequently used hypoxia mimetics cobalt
and nickel has been suppressed by the supplementation with AA [55,56].

Metabolic reprogramming of all transformed cells is associated with overexpression of glucose
transporters such as GLUT-1, GLUT-3 or GLUT-4 (glucose transporters 1, 3, and 4, respectively). GLUT
and glycolysis genes are also positively regulated by HIF-1 as a part of the cellular adaptation to the
low-nutrient conditions and high growth conditions. Thus, glucose uptake and glycolytic metabolism
are enhanced in cancer compared to normal cells [57]. Interestingly, transport of an oxidized form of
ascorbate, DHA, is mediated by GLUT transporters [58–61]. In normal cells, GLUTs are unlikely to play
a major role in the uptake of vitamin C due to competition from much higher concentrations of glucose.
The overabundance of GLUT transporters in cancer cells diminishes the inhibitory effects of glucose,
permitting a higher accumulation of cellular vitamin C through uptake of DHA [62]. Regardless of
glucose levels, a high expression of GLUT transporters was associated with the more efficient transport
of vitamin C into the cells. Thus, both SVCT1,2 and GLUT transporters may collaborate in increasing
the intracellular vitamin C concentration in cancer cells. Down-regulation of SVCT levels through a
negative feedback mechanism [63] and a frequent presence of the alternative, inactive transcript of the
widely expressed SVCT2 [64] lessens the significance of this transporter system for vitamin C uptake by
many types of cells in favor of GLUTs. Thus, the heightened ability of GLUT-overexpressing cancer cells
offers the opportunity to selectively overload them with ascorbate. This concept was directly tested in
the study of colon cancer cells overexpressing GLUT-1 due to the presence of activating mutations
in KRAS (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) or BRAF (B-Raf proto-oncogene,
serine/threonine kinase) oncogenes [65]. The authors have found that high doses of vitamin C
selectively killed colon cancer cells harboring mutated BRAF or KRAS through hyperaccumulation
of its oxidized form, DHA, via GLUT-1. High DHA uptake caused a severe oxidative stress as a
result of reduction of DHA to AA and the associated depletion of glutathione. The rise in ROS caused
inactivation of the essential glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate dehydrogenase),
resulting in the energy crisis and cell death. Overall, this seminal study established a mechanistic
rationale for the therapeutic applications of high vitamin C doses for cancers with two frequently
mutated oncogenes.

Tumor toxicity studies performed in a gastric cancer model showed that cells with high GLUT1
(glucose transporter) expression were more sensitive to AA treatment than cells with low GLUT1
expression [66]. This observation is consistent with a contribution of GLUTs to vitamin C transport
into the cells. A higher sensitivity of GLUT1-overexpressing cancer cells may not entirely be due to
a higher cellular accumulation of vitamin C, as a greater glycolysis dependence or a modulation of
enzymatic activities associated with the GLUT1-high phenotype could play a significant role in AA
sensitivity. At high concentrations, AA can act as a pro-oxidant which in part results from its ability
to effectively reduce Fe3+ and Cu2+ leading to elevated hydroxyl radical production in the Fenton
reaction between Fe2+/Cu+ and H2O2 [67]. The reactivity of DHA and its degradation products with
cellular proteins (dehydroascorbylation and glycation) is also potentially damaging and affecting gene
expression [68].
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2.3. Redox-Active Drugs

In most cases, the use of AA was considered as a part of strategy to exploit cancer vulnerabilities.
However, AA may also directly influence the efficacy of a particular therapy through direct interactions
with a redox-active drug. One logical candidate for such interactions is bleomycin. Bleomycin is
a glycopeptide antitumor antibiotic produced by the bacterium S. verticillus, which has been used
for the treatment of several diseases, including Hodgkin’s lymphoma, squamous cell carcinomas,
testicular cancer, as well as in animal models of pulmonary fibrosis [69]. Its anticancer activity
results from the formation of DNA single- and double-strand breaks, leading to tumor cell death [70].
Bleomycin is used in combination with doxorubicin in Hodgkin’s lymphoma. Doxorubicin acts by
intercalating DNA bases and by inhibiting topoisomerase II to prevent its dissociation from DNA and
resealing of enzymatically induced breaks in both strands. The effects of both drugs on the DNA are
complementary [71]. Mechanism of action of bleomycin is associated with chelation of iron and a
pseudoenzyme activity, which in the presence of oxygen produces superoxide and hydroxyl radicals
that in turn cleave DNA [70,72]. Bleomycin activity is limited by Fe2+ accessibility that is influenced
by the redox system. In light of its metal-reducing and antioxidant properties, AA may significantly
contribute to the biological effects of bleomycin. Lymphocytes isolated from the blood of individuals
supplemented with vitamin C (1 g per day for 4 weeks) showed a decreased amount of chromosome
damage after exposure to bleomycin during in vitro [73]. A later study showed that bleomycin
combined with vitamin C or beta-carotene affected endogenous hepatic antioxidant enzymes in rats
(glutathione peroxidase/GPx, glutathione reductase, and glucose-6-phosphate dehydrogenase). Thus,
it was concluded that bleomycin cytotoxicity was mediated through the generation of reactive oxygen
species. However, both vitamins displayed differential effects on the enzyme activity suggesting that
they impacted different processes [74].

DNA degradation activity of Fe-containing bleomycin is controlled by the availability of reducing
agents [75,76]. At the same time, because cellular reducing factors such as AA can scavenge free
radicals and other oxidative species, it has been assumed that such reducing agents would protect
cells by suppressing the oxidative processes initiated by bleomycin. Buettner et al. demonstrated that
both phenomena depend upon whether bleomycin reaching DNA before (DNA damage effect) or after
(free radicals scavenging) its interaction with reducing agents [77]. The authors demonstrated that in
the presence of DNA, AA initiated bleomycin-induced strand breaks whereas in the absence of DNA,
AA reacted with bleomycin to produce the ascorbyl radical and a redox-inactive bleomycin that was
incapable of nicking DNA. The authors suggested that reducing agents, such as AA, might protect
cells from bleomycin toxicity by rendering bleomycin redox-inactive prior to its DNA binding.

Unfortunately, as it is the case with most cancer drugs, bleomycin has side effects. The most
severe complication of bleomycin-based treatment is pulmonary fibrosis and impaired lung function.
However, those effects might be abrogated by use of deglyco-bleomycin, which is a modified
bleomycin-derived molecule in which the sugar residue D-mannosyl-L-glucose disaccharide has
been removed [78]. Schroeder et al. showed that bleomycin was more potent than deglyco-bleomycin
in the supercoiled plasmid DNA relaxation assay as well as in DU145 prostate cancer cells [79].
Additionally, the uptake assessment experiments (dye-labeled conjugates) found that the disaccharide
moiety was critical for the tumor cell-targeting properties of bleomycin. These in vitro studies raised a
concern that even if deglyco-BLM mediates DNA cleavage with a similar efficiency as bleomycin, it
could exert a lower antitumor activity due to its diminished cellular uptake. However, experiments
performed in three cancer models in rodents, including a human Hodgkin’s lymphoma xenograft and
a syngeneic melanoma model, demonstrated that intraperitoneal administration of deglyco-bleomycin
was as effective as bleomycin in inducing tumor regression. Moreover, whereas the antitumor effect of
bleomycin was accompanied by a loss of body weight and the development of pulmonary toxicity,
deglyco-bleomycin did not affect body weight and did not produce lung injury [78]. Both drugs
induced lung epithelial cell apoptosis after intratracheal administration, but deglyco-bleomycin lost
the ability to induce caspase-1 activation and the production of ROS, transforming growth factor-β1,
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and other profibrotic and inflammatory cytokines in the lungs of mice and in vitro. Deglyco-bleomycin
should be considered for clinical testing as a less toxic alternative to bleomycin in cancer therapy.

3. Conclusions

The addition of high doses of AA alone or in combination with standard cancer drugs significantly
enhances suppression of tumor growth. The efficacy of AA is strongly dependent on the route of
its administration. When ascorbate is administered orally, only moderate increase in its plasma
concentration is achieved. In contrast, when ascorbate is administered intravenously, concentrations in
the millimolar levels are easily achieved although for a short period only. Thus, the intravenous
administration of ascorbate can yield therapeutic plasma levels, while oral treatments are not
effective [80–82]. Vitamin C exerts beneficial effects in cancer treatment through more than one
mechanism, some of which are linked to the metabolism of transformed cells whereas others may
involve direct interactions with specific drugs.
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