Supplementary Materials

Facile synthesis of novel CaIn$_2$S$_4$/ZnIn$_2$S$_4$ composites with efficient performance for photocatalytic reduction of Cr(VI) under simulated sunlight irradiation

Siyu Xu1, Jun Dai1,3, Juan Yang1,2,3, Jun You2 and Jingyi Hao2

1 Institute of Chemical Safety, School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, P.R. China; xusiyu2017@163.com; daijun@hpu.edu.cn
2 Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, P.R. China; youjunhpu@163.com; haojingyi2018@163.com
3 The Collaborative Innovation Center of Coal Safety Production of Henan, Henan Polytechnic University, Jiaozuo 454003, P.R. China
* Correspondence: yangjuanhpu@163.com; Tel.: +86-391-398-7881

![Graph showing concentration of Cr(VI) and total Cr ions over time.](image)

Figure S1. Concentrations of Cr(VI) and total Cr ions in the photocatalytic reaction solution over 30% CaIn$_2$S$_4$/ZnIn$_2$S$_4$ catalyst under simulated sunlight irradiation.
Figure S2. XPS survey spectra (a), high-resolution XPS spectra of Zn 2p (b), In 3d (c), Ca 2p (d), and S 2p (e) of 30% CaIn2S4/ZnIn2S4 composite sample before and after the photocatalytic reaction, respectively.