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Abstract: The influence of the thickness of the Niy gFep, (Permalloy, Py) layers on the structural and
magnetic properties of magnetron sputtered Py/Ti multilayers was studied. The thickness of the
Py layers was varied in the interval of 8 to 30 A. X-ray reflectivity scans evidence the existence of
a well-defined layered structure in all the samples considered, but also the presence of a complex
intermixed interface. The shape of both the temperature dependence of magnetization and the
hysteresis loops of the multilayered structures depends strongly on Py thickness. Magnetic and
reflectivity measurements were comparatively analyzed in order to better understand the structure of
the samples, and specifically, their interfaces. In particular, the presence of small superparamagnetic
Py at the interfaces of the samples, especially evident in the samples with the thinnest Py layers,
seems confirmed by the magnetic measurements, agreeing well with the reflectivity results.
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1. Introduction

In recent years, the synthesis of magnetic materials in the form of thin films and nanoparticles has
been investigated for various applications due to their unique magnetic properties [1-3]. Magnetically
soft films of Permalloy (Py) were the topic of special attention of researchers for many years, first of
all, due to their wide use in micro- and nanoelectronics [4,5]. Currently, these films are the main
functional material of a wide variety of devices for hard disk drives, magnetic recording devices,
electronic navigation systems, position detection, object motion, and magnetic biosensors [6-8],
as well as new promising spintronic devices (e.g., film storage devices information with high density
based on magnetic vortices [9,10]). In electronic devices, Permalloy films are typically used in
multilayer film structures such as, for example, spin valves [5,8] or multilayer structures with a
giant magnetoimpedance effect [11,12]. It should be also mentioned that a lot of experience has been
accumulated in the use of Ti layers in microelectronics [13].

Previous studies of the structural and magnetic properties of Py/Ti multilayers indicate the
presence of mutual diffusion between the layers [14]. The change in magnetic properties can be
interpreted in terms of a magnetically “dead” layer. In that work, it was found that at room temperature
the “dead” layer thickness at each interface was close to (7 = 1) A if symmetric interlayer mixing is
assumed. Nevertheless, there should be a continuous change with the increase of the Ti content in the
three-component phase of FeNiTi. Moreover, films prepared by the ion-plasma sputtering method
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may have an island structure at the initial stages of formation [15]. Thus, if the thickness of the Py
layer is less than a certain value, the layers of Py/Ti multilayers can have a granular structure, i.e., they
can consist on Py nanogranules embedded in a non-magnetic Ti matrix or a three-component FeNiTi
phase. Similar granular structures were observed, for example, in Py/Al,Os multilayers [16]. Knowing
what is really happening at the interface between the layers of Py and Ti is important both from the
point of view of GMI sensors for biodetection [8] and as a way of creating special ferromagnetic films
for integrated radio-frequency passive components in radio-frequency/complementary metal-oxide
semiconductor technology [17], or tuning the dynamics of magnetization in magnetic multilayers [18].

X-ray reflectivity is a powerful technique to probe the structure of multilayered samples, as it can
access, nondestructively, the details of buried interfaces [19]. Hence, X-ray reflectivity, in addition to
x-ray diffraction and adequate magnetic measurements, could help to enlighten how the interfaces are
in this system.

In this paper, we study and correlate structural and magnetic properties of Py/Ti nanoscale
multilayers with different thicknesses of the magnetic component aiming to evaluate the
interface contributions.

2. Materials and Methods

Py/Ti nanostructured multilayers were deposited by magnetron sputtering at room temperature
onto Si substrates using a Fe 20%-Ni 80% alloy target. The background pressure was 3 x 1077 mbar.
The deposition was performed in an Ar atmosphere with 3.8 x 10~2 mbar working residual pressure.
The deposition rates were approximately 1 A/s for Py and 0.7 A /s for Ti layers. The thickness of
the Py layers (tpy) varied in intervals from 8 A to 30 A, whereas the thickness of Ti spacers was
30 A for all the samples. Each multilayered structure consisted of 16 magnetic layers separated by
non-magnetic spacers. Hereafter, the samples will be referred to from their Py thickness, in A (Py8, Py15,
Py24, and Py30). A magnetic field of 250 Oe was applied during sample preparation parallel to the
substrate surface in order to induce a uniaxial magnetic anisotropy. X-ray reflectivity measurements
were taken in a conventional 8-0 reflectometer equipped with a Gobel mirror, a knife edge filter,
and CuK, radiation.

Magnetic measurements were performed using an EverCool MPMS-XL SQUID magnetometer
(Quantum Design, San Diego, CA, USA) for the in-plane geometry. The hysteresis loops were obtained
at different temperatures with an applied field of up to 50 kOe. Field-cooled (FC) and zero-field-cooled
(ZFC) magnetization curves [20] were registered (in an applied field of 100 Oe upon heating from
5 to 350 K). The diamagnetic contribution from the silicon substrates have been corrected in all the
hysteresis loops shown below using pure silicon substrate calibration.

3. Results

3.1. X-ray Reflectivity

We have conducted X-ray specular reflectivity on all the samples, which gives access to the
artificial structure of the samples. The experimental scans are included as open circles in Figure 1.
In this geometry, the details in the plane are averaged as the momentum transfer scans only the
direction perpendicular to the sample surface (qy).

We have simulated and fitted the aforementioned q, scans using the GenX software that
implements genetic algorithms [21]. Each layer is defined by its thickness, density, and roughness,
so in complex samples, such as those studied here, a considerable number of parameters come into
play in the simulations. For this reason, it is important to keep the model as simple as possible. Except
for the first bilayer deposited on the substrate and the upper Py layer (partially oxidized), that are
modeled separately, the main block of 14 bilayers is modeled as a repetition of a single Py /Ti bilayer,
whose parameters reflect the main characteristics (averaged in the block) of the sample. The densities
of the layers were always kept close to the nominal values, sometimes slightly smaller as the Ar present
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in the sputtering chamber during the growth induces the presence of voids that reduce the density
below the bulk value, especially when the growth is made at room temperature. The roughness of
the layers was also quite small, only a few Angstroms, indicating the formation of a well-defined
multilayered structure.

The reflectivity profile is made up from the sum of several series of peaks with different spacings
coming from the different periodicities in the sample. Interestingly, the positions of the major (Bragg)
peaks are determined by the main artificial periodicity of the multilayer (A = tpy + tr;), which is always
obtained in the fits with great accuracy. The relative intensity of the Bragg peaks, in turn, are mainly
determined by the relative thickness of Py and Ti layers [19]. In the first modeling of the structures, the
total periodicity (A) was found to be very close to the nominal value, indicating that the calibration
of the growth rates was accurate, but the fitted values of tr; and tpy were, in all cases, far from the
nominal values. This indicates that the interface of the two layers is probably more complex, including
an intermixed region that is ascribed to one on the layers in this simplified model (see Table 1).

Table 1. Summary of relevant parameters of the X-ray reflectivity simulations for all the samples
studied: nominal, fitted values, and difference between them (5). All the quantities are in A.

Modulation (A) Py Layers Ti Layers Alloy
SAMPLE
Nom. Fitted &6A  Nom. Fitted 6Py Nom. Fitted &Ti Fitted
Py8 38 40.3 2.3 8 0.1 -7.9 30 145 —-155 128
Py15 45 49.5 4.5 15 106 —44 30 190 —-11.0 10.0
Py24 54 54.1 0.1 24 150 -9.0 30 127 =173 132
Py30 60 578 22 30 246 54 30 137 —163 9.8

As this interfacial region has a tremendous effect on the magnetic properties of the multilayers,
we need to characterize it in more detail. We have modified the original “bilayer” model to include
interfacial layers with a mixture of Py and Ti (as will be explained below, both magnetic measurements
and X-Ray diffraction also suggest that this intermixed layer exists). The modeled structure is therefore
Si/Py/Ti/[Alloy/Py/Alloy/Tilx14/Py/NiFe;Oy4. Oxidation of the upper Py layer was modeled as a
thinner Py layer below an oxide layer of NiFe,Oy4, which seems to be most frequent in this case [22].
The two regions of alloy are kept identical to make the model simpler, but its composition and thickness
are fitted independently on each sample. Table 1 shows the most relevant parameters involved in the
simulations shown in Figure 1.
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Figure 1. Experimental X-ray reflectivity data (open circles) and simulations (line) for all the samples.
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We have successfully simulated all the reflectivity scans with an alloy layer approximately 10 A
thick, very close to the 8 A value that, in a previous study [14], was assigned to a dead interfacial layer.
In general this alloy takes more “thickness” from the Ti than from Py layers.

3.2. X-ray Diffraction

Figure 2 presents the X-ray diffraction (XRD) scans of all the samples studied. For the Py8
sample, the scan shows a broad peak typical of an amorphous phase around the hcp Ti [002] reflection
(26 = 38.43°), indicating that this sample is the most disordered one. As Py thickness increases to 15 A,
peaks for [010] and [011] orientations of hcp Ti appear, showing a clear change in texture in the [010]
direction. As Ti thickness reaches 24 A, two important changes occurs in the XRD scan: a double
peak appears due to a crystalline Py layer, textured in the [111] direction of the cubic phase; and the
existence of cubic FeNiTi; textured in the [110] direction. Its formation has been previously reported
in Py /Ti multilayers [14]. Regarding the Ti layer, the [010] texture disappears in benefit of the [002]
direction and the possible appearance of Ti bcc. The presence of Ti bec as well as the changes in Ti
texture have been previously observed in Fe/Ti multilayers [23].
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Figure 2. X-ray diffraction specular scans for all the samples studied. The asterisks indicate minor
reflections of the Si substrate.

For tpy above 24 A, secondary Laue oscillations are visible on the low-angle side of the main
Bragg peak associated with both crystalline FeNiTi; and Py. The appearance of these peaks around the
Py peak indicates a good reproducibility of its crystalline structure along the multilayer. Observing the
Laue oscillations on the low-angle side and not on the high-angle side indicates that the separation
of crystalline planes has expanded at the interfaces with regard to the center of the layers [24].
Such spacing differences can be explained by the interstitial diffusion of Ti in Py at the interfaces
during the sputtering process [25,26]. This causes the expansion of the lattice at the Py-Ti interface,
where FeNiTi, is created. This effect created by the diffusion of Ti has been previously reported in
similar systems such as Ti/Fe [23] and Ti/Ni [24].

It is important to remember that both specular reflectivity and diffraction are only sensible to the
in-plane averaged properties of the sample. Hence, provided that the vertical profile of density is the
same, the previous analysis cannot distinguish between two scenarios: (a) a solid solution alloy of Py
and Ti or (b) Py particles embedded on a Ti matrix. Therefore, to gain understanding on this point,
magnetic measurements were conducted.

3.3. Magnetic Measurements

Figure 3 displays ZFC and FC magnetization curves of all the samples. As can be observed in
Figure 2a, the thickest samples (Py24 and Py30) exhibit the typical shape for ferromagnetic (FM)



Nanomaterials 2018, 8, 780 50f8

materials (with the magnetization gently decreasing as the temperature increases) but with a certain
splitting of the ZFC and FC curves at low temperature.
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Figure 3. (a) Zero-field-cooled (ZFC) (solid squares) and field-cooled (FC) (empty squares)
magnetization curves of all the samples (under an applied field of 100 Oe); detail of the ZFC-FC
curves for the sample Py15 (b) and Py8 (c).

In the case of Py30, a sharp step in the ZFC curve is found at approximately 50 K, likely due to the
formation of closing domains in the magnetic layers. Meanwhile, a peak is found in both ZFC curves of
samples Py15 and Py8 (see Figure 3b,c), a sharp peak at approximately 5 K for the sample Py15, and a
broad peak for the sample Py8 at approximately50 K. Those kinds of peaks in ZFC curves are usually
related to the blocking temperature, Tg, of superparamagnetic (SPM) nanoparticles (NPs). Therefore,
in both samples it seems that there is a SPM phase, likely due to the mixing between Ti and Py at the
interfaces. That SPM phase is likely also found in the thickest samples but its contribution is masked
by the fairly higher contribution of the continuous Py layers. The condition for the superparamagnetic
behavior of spherical NPs presenting uniaxial anisotropy can be expressed as [27]:

K-V =25 kgTg, 1)

where V is the volume of the nanoparticle, K is the anisotropy energy, and kg is the Boltzmann constant.
We can use this expression to estimate the size of the Py SPM NPs, but the problem in that case is
determining the constant anisotropy adequately, which can be fairly different in the case of thin films
or NPs from the bulk value, even more so if there is some kind of alloying (as probably is our case).
However, from the previous equation, it is straightforward to directly relate the T with the size of
the SPM NPs (the smaller the Tg, the smaller the size). Therefore, the SPM NPs of the Py15 would be
smaller than those of the Py8 sample. This agrees fairly well with the reflectivity model: in the case of
the Py8 sample, we have just an alloy layer (with just a negligible continuous Py layer) and we have
bigger NPs. On the other hand, for the Py15 case, there is also a continuous Py layer (evidenced by the
plateau found in the ZFC curve in Figure 3c) and, therefore, the NPs are smaller.
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Figure 4 shows selected hysteresis loops measured at 5 K. In particular, the loops corresponding
to the samples Py8 and Py15 are shown in Figure 4a. As can be observed in both cases, the loops do
not saturate even at fields as high as 20 kOe, which is consistent with the presence of a SPM phase,
as evidenced by the previous results. Meanwhile, in the case of the thicker samples, the hysteresis loop
reaches saturation at very low fields, as could be expected for a continuous FM magnetic layer (as can
be observed, e.g., for the sample Py30 in Figure 3b, where the contribution of SPM NPs is negligible
compared to the ferromagnetism of the continuous Py layer).
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Figure 4. Hysteresis loops obtained at 5 K for the samples Py8 and Py15 (a) and for Py30 (b).

It is also noteworthy the evolution of the saturation magnetization at 5 K, Ms, (in the case of the
Py8 and Py15, the magnetization at 20 kOe) and of the coercive field, Hc, versus the nominal thickness
of the Py layer-tpy (see Figure 5). In particular, Ms decreases as the thickness is reduced but it does not
disappear, as is usually assumed with a dead layer model [14]. In fact, what we observed is not a totally
dead layer but instead a granular alloy of Ti and Py NPs, giving place to the SPM behavior observed in
the thinner samples. On the other hand, the coercive field decreases as the thickness increases. This
can explain what we have found previously: in the thickest samples, we have a continuous and thick
Py layer, behaving as a soft material. For the Py15 sample, in addition to a continuous Py layer, we
also have blocked SPM NPs in the alloy layer, therefore increasing the coercivity. In the Py8 sample,
we have only blocked SPM NPs, and the coercive field is even higher.
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Figure 5. Evolution of the saturation magnetization Mg—full squares—and coercive field H.—empty
squares—(obtained at 5 K) versus Py thickness tpy. The lines are guides to the eye.
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4. Conclusions

Py/Ti multilayers (with thickness of the Py layers between 8 and 30 A) were successfully obtained
by magnetron sputtering. The influence of the thickness of the Py layers on their structural and
magnetic properties was studied, comparing structural (X-ray diffraction and reflectivity) and magnetic
measurements. X-ray reflectivity measurements not only confirm the well-defined layered structure
of the multilayers but also the existence of a complex intermixed interface. Both the temperature
dependence of magnetization and the shape of the hysteresis loops of the multilayered structures
depend strongly on layer thickness, being related to the interfaces. From the comparative analysis of
the magnetic and reflectivity measurements, intermixing at the interfaces can be confirmed, as well as
the appearance at the interfaces of small superparamagnetic Py nanoparticles, more evident in the
thinnest samples.
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