Supplementary Materials

Biosynthesized Highly Stable Au/C Nanodots: Ideal Probes for Selective and Sensitive Detection of Hg$^{2+}$ Ions

Sada Venkateswarlu 1,†, Saravanan Govindaraju 2,4,†, Roopkumar Sangubotla 3, Jongsung Kim 3, Min-Ho Lee 4, *, Kyusik Yun 2, *

1 Department of Nanochemistry, Gachon University, Gyeonggi-do 13120, Republic of Korea; venkisada67@gmail.com (S.V.)

2 Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea; biovijaysaran@gmail.com (S.G.); ykyusik@gachon.ac.kr (K.Y)

3 Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-Si, Gyeonggi-do, 13120, Republic of Korea. gachonroop@gmail.com (R.S); jongkim@gachon.ac.kr (J.K)

4 School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; mhlee7@cau.ac.kr (M.H.L.)

† The authors are equally contributed

* Correspondence: mhlee7@cau.ac.kr (M.H.L.), ykyusik@gachon.ac.kr (K.Y)
Figure S1 FT-IR spectra of red onion leaves extract obtained from (i) Daegu and (ii) Incheon, South Korea.
Figure S2 UV-Vis absorption spectra of red onion leaves extract obtained from (i) Daegu and (ii) Incheon, South Korea.
Figure S3 UV-Vis absorption spectra of GCNDs prepared using red onion leaves extract obtained from (i) Daegu and (ii) Incheon, South Korea.
Figure S4 Hg\(^{2+}\) ion sensing by GCNDs prepared using red onion leaves extract obtained from a) Daegu and b) Incheon, South Korea.