Melt-Processable Semicrystalline Polyimides Based on 1,4-Bis(3,4-dicarboxyphenoxy)benzene Dianhydride (HQDPA): Synthesis, Crystallization and Melting Behavior

Hongfei Zhang1,2, Wei Wang1, Guofei Chen1, Anjiang Zhang1, Xingzhong Fang1 *

1 Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Zhenhai District, Ningbo, Zhejiang, 315201, China.; fxzhong@nimte.ac.cn
2 University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China.; zhanghf@nimte.ac.cn
* Correspondence: fxzhong@nimte.ac.cn; Tel.: +86-574-86685185

Supplementary Materials:

![Figure S1. FTIR spectra of polyimides](image)

Figure S1. FTIR spectra of polyimides

![Figure S2. DSC curves of PI-1 after different isothermal treatment.](image)

Figure S2. DSC curves of PI-1 after different isothermal treatment.
Figure S3. WAXD patterns of PI-1 after different isothermal treatment

Figure S4. Hoffman-Weeks plot for PI-1 and PI-2.

Figure S5. Normalized crystalline content as a function of time at various crystallization temperatures. (a) PI-1, (b) PI-2.

Figure S6. Avrami plot of log [-ln (1-Xc(t))] versus log t at various crystallization temperatures. (a) PI-1, (b) PI-2.