Supplementary Materials for

Methoxy-group control of helical pitch in stereoregular poly(2-ethynylmethoxynaphthalene) prepared by Rhodium complex catalyst

Yasuteru Mawatari¹², Yoshiaki Yoshida¹, Kai Huang³, and Masayoshi Tabata⁴⁵

¹ Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
² Research Center for Environmentally Friendly Materials Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
³ Graphene New Materials Technology, JunFeng Business Building A-4F, Chongqing Road, Baoan District, Shenzhen 518101, China
⁴ Center of Environmental Science and Disaster Mitigation for Advanced Research, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
⁵ Faculty of Science and Technology, Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology, Bibi 65-758, Hokkaido Chitose 066-8655, Japan

* Correspondence: mawatari@mmm.muroran-it.ac.jp (Y.M.); tabata@mmm.muroran-it.ac.jp (M.T.); Tel.: +81-143-46-5964 (Y.M.); +81-143-46-5963 (M.T.)
The starting materials, 2-bromo-7-methoxynaphthalene[S1] and 2-bromo-8-methoxynaphthalene[S2] were synthesized according to the reported procedures. The monomers, 7MeO2EN and 8MeO2EN, were synthesized by using the same procedure for 2-ethynlnaphthalene (2EN) described in our previous report [25].

Scheme S1. Synthesis of 7-methoxy-2-ethynlnaphthalene (7MeO2EN) and 8-methoxy-2-ethynlnaphthalene (8MeO2EN).

Supplementary References
Figure S1. 13C NMR spectra of nMeO2EN monomers ($n=6$, 7, and 8).
Figure S2. Room-temperature 13C CPMAS NMR spectra of poly(1), poly(3), and poly(5). SSB represents spinning side band.
Figure S3. Resonance Raman spectrum of Resonance Raman spectra of poly(3) ~ poly(6) in the solid state.