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Abstract: Greenhouse gases Observing SATellite-2 (GOSAT-2) will be launched in fiscal year 2018.
GOSAT-2 will be equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon
Observation (TANSO)-Fourier Transform Spectrometer 2 (FTS-2) and the TANSO-Cloud and Aerosol
Imager 2 (CAI-2). CAI-2 is a push-broom imaging sensor that has forward- and backward-looking
bands to observe the optical properties of aerosols and clouds and to monitor the status of urban
air pollution and transboundary air pollution over oceans, such as PM2.5 (particles less than
2.5 micrometers in diameter). CAI-2 has important applications for cloud discrimination in each
direction. The Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1), which
applies sequential threshold tests to features is used for GOSAT CAI L2 cloud flag processing.
If CLAUDIA1 is used with CAI-2, it is necessary to optimize the thresholds in accordance with
CAI-2. However, CLAUDIA3 with support vector machines (SVM), a supervised pattern recognition
method, was developed, and then we applied CLAUDIA3 for GOSAT-2 CAI-2 L2 cloud discrimination
processing. Thus, CLAUDIA3 can automatically find the optimized boundary between clear and
cloudy areas. Improvements in CLAUDIA3 using CAI (CLAUDIA3-CAI) continue to be made.
In this study, we examined the impact of various support vectors (SV) on GOSAT-2 CAI-2 L2 cloud
discrimination by analyzing (1) the impact of the choice of different time periods for the training data
and (2) the impact of different generation procedures for SV on the cloud discrimination efficiency.
To generate SV for CLAUDIA3-CAI from MODIS data, there are two times at which features are
extracted, corresponding to CAI bands. One procedure is equivalent to generating SV using CAI
data. Another procedure generates SV for MODIS cloud discrimination at the beginning, and then
extracts decision function, thresholds, and SV corresponding to CAI bands. Our results indicated
the following. (1) For the period from November to May, it is more effective to use SV generated
from training data from February while for the period from June to October it is more effective to
use training data from August; (2) In the preparation of SV, features obtained using MODIS bands
are more effective than those obtained using the corresponding GOSAT CAI bands to automatically
extract cloud training samples.
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1. Introduction

There are few ground observation sites located in limited areas, though it is necessary to estimate
and monitor greenhouse gas fluxes to cope with global warming caused by the greenhouse effect.
However, satellites make observations at many points on the Earth; for example, Greenhouse gases
Observing SATellite (GOSAT) records data at 56,000 points every 3 days. Thus, future satellite missions
to monitor greenhouse gases are planned. GOSAT-2, the successor to GOSAT, will be launched in the
fiscal year, 2018, to measure the global atmospheric CO2 (carbon dioxide), CH4 (methane), and CO
(carbon monoxide) concentrations. GOSAT-2 will be equipped with two sensors: the Thermal and
Near-infrared Sensor for Carbon Observation (TANSO)-Fourier Transform Spectrometer 2 (FTS-2) and
the TANSO-Cloud and Aerosol Imager 2 (CAI-2) (Table 1).

Table 1. Specifications of Greenhouse gases Observing SATellite (GOSAT) Cloud and Aerosol Imager
(CAI) and GOSAT-2 CAI-2.

Specifications of GOSAT CAI

Band Spectral Coverage (µm) Spatial Resolution (m) Swath (km)

1 0.370–0.390 500 1000
2 0.664–0.684 500 1000
3 0.860–0.880 500 1000
4 1.555–1.645 1500 750

Specifications of GOSAT-2 CAI-2

Band Spectral Coverage (µm) Spatial Resolution (m) Viewing Angle (◦) Swath (km)

1 0.333–0.353

460 +20 (Forward)

920

2 0.433–0.453
3 0.664–0.684
4 0.859–0.879

5 1.585–1.675 920

6 0.370–0.390

460 −20 (Backward)
7 0.540–0.560
8 0.664–0.684
9 0.859–0.879

10 1.585–1.675 920

The greenhouse gases column-averaged dry air mole fractions will be retrieved using the FTS-2.
The CAI-2 will be used to observe the optical properties of aerosols and clouds, to monitor the status
of urban air pollution and transboundary air pollution over oceans, and for cloud discrimination
in the instantaneous field of view (IFOV) of the FTS-2 [1,2]. The Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud mask algorithm [3] is widely known as a highly accurate cloud
discrimination algorithm for satellite images. The algorithm uses 22 bands in 36 MODIS spectral
bands [4]. GOSAT CAI, however, uses only four bands from near ultraviolet (NUV) to short-wavelength
infrared (SWIR). A cloud discrimination algorithm that maximally utilizes the small number of bands
is needed for GOSAT CAI L2 cloud flag processing. Accordingly, the cloud and aerosol unbiased
decision intellectual algorithm (CLAUDIA1) [5] with CAI was developed for cloud discrimination
using GOSAT [6]. To improve the accuracy of estimates of atmospheric greenhouse gas concentrations,
we need to refine the existing cloud discrimination algorithm, because the presence of clouds in the
IFOV of the FTS-2 leads to incorrect estimates [7]. Therefore, a new cloud discrimination algorithm
(CLAUDIA3) using support vector machines (SVM) [8] was developed [9], and then we applied
CLAUDIA3 for GOSAT-2 CAI-2 L2 cloud discrimination processing. Verification and improvement of
the processing method have been carried out and are still in progress, and these methods are evaluated
in this study. Although the amount of observational data increases along with changes, such as the
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increased number of bands in GOSAT-2 TANSO-CAI-2, a ground system for the steady operational
processing of GOSAT-2 data cannot be realized if the floor space significantly exceeds that of GOSAT.
To deal with this problem, we previously evaluated the application of the graphics processing unit
(GPU). These results indicated that the importance of the central processing unit (CPU) + GPU hybrid
parallel processing for GOSAT-2 CAI-2 L2 cloud discrimination will increase in the future, as the
data transfer speed between the host and the device memory becomes faster [10]. The observed
time difference between the FTS-2 and CAI-2 may be greater than that between the FTS and CAI,
because the CAI-2 is a push-broom imaging sensor with forward- and backward-looking bands. Thus,
we proposed a method using CAI-2 cloud discrimination for screening cloud-contaminated FTS-2
data. The results indicated that it is necessary to add margins to the IFOV of the FTS-2 in a cloud
discrimination image, depending on cloud movement by wind, to account for the time difference
between CAI-2 and FTS-2 observations [11]. GOSAT and GOSAT-2 observations are made in sun-glint
regions over the ocean, where specular reflection occurs and reflectance is high. In general, cloud
discrimination in sun-glint regions is difficult, but either forward- or backward-looking bands of
the CAI-2 can avoid sun-glint regions. We examined the difference between forward and backward
cloud discrimination by applying CLAUDIA1 to Terra Multi-angle imaging Spectroradiometer (MISR)
data. Over the ocean, cloud discrimination results that include no-sun-glint regions should be used
for the retrieval of greenhouse gas column abundances. Over land, cloud discrimination results can
be obtained with either band. Furthermore, the reason GOSAT-2 adopted to not use FTS-2 cloud
discrimination, such as the A-Band Oxygen cloud screening algorithm (ABO2) [12], but instead use
CAI-2 cloud discrimination has been described [13].

The CLAUDIA3 procedure with CAI (CLAUDIA3-CAI) can be roughly divided into the
following steps.

1. Perform supervised learning using SVM in a high-dimensional feature space of the training
samples extracted from training images to determine the decision function, thresholds,
and support vectors (SV).

2. Perform cloud discrimination for input images, using the decision function, thresholds, and SV.

In this study, we performed two analyses to clarify the impact of the use of different SV on
GOSAT-2 CAI-2 L2 cloud discrimination.

1. We examined the impact of the choice of the collection period for the training data.
2. We examined the impact of different SV generation procedures.

The present article is organized as follows: Section 2 describes the study areas, data, and analysis
procedures used in the present study. Two comparative analyses of the training data and SV generation
procedures are described in Section 3. The results are discussed in Section 4. Future work is presented
in Section 5.

2. Tools and Methodology

2.1. Study Area and Data

We used Terra MODIS L1B calibrated radiances 1 km (MOD021KM) products in February and
August 2012 as training data. We used GOSAT CAI L1B products, which can be downloaded from
GOSAT User Interface Gateway (GUIG, https://data.gosat.nies.go.jp), for various land cover types,
from 2012 to 2014, as input data (Table 2, Figure 1) and GOSAT CAI L3 global reflectance distribution
products to generate surface albedo data and to examine seasonal change of surface reflectance.
Currently GUIG has been changed to GOSAT Data Archive Service (GDAS, https://data2.gosat.nies.
go.jp/index_en.html).

https://data.gosat.nies.go.jp
https://data2.gosat.nies.go.jp/index_en.html
https://data2.gosat.nies.go.jp/index_en.html
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Table 2. GOSAT CAI L1B products evaluated in this study. Land-cover was derived from the MODIS
land cover type product (MCD12).

Location (CAI Path_Frame) Data Period Land Cover

Australia (4_35) 3 April 2012–3 March 2014 Open shrublands
Japan (5_25) 1 April 2012–1 March 2014 Mixed forests

Borneo (7_31) 3 April 2012–3 March 2014 Evergreen broadleaf forest
Thailand 1 (9_28) 2 April 2012–2 March 2014 Cropland/natural vegetation
Thailand 2 (9_29) 2 April 2012–2 March 2014 Cropland/natural vegetation
Mongolia (22_26) 3 April 2012–3 March 2014 Grasslands
Algeria (22_26) 3 April 2012–3 March 2014 Barren or sparsely vegetated
Canada (32_22) 1 April 2012–1 March 2014 Evergreen needleleaf forest
Alaska (43_19) 1 April 2012–1 March 2014 Open shrublands
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Figure 1. Study areas. Black rectangles indicate the locations of CAI frames.

Study areas were selected using the MODIS land cover type product (MCD12). Japan scenes
include Tokyo, which is the most populous megacity [14]. The spatial resolution of the CAI L1B
products (pixel size at the nadir) was 500 m and the image size was 2048 × 1355 pixels (approximately
1000 × 680 km). CAI L1B products included the Shuttle Radar Topography Mission’s (SRTM)
15 arc-seconds land/sea mask. For areas at latitudes of higher than ±60◦, however, the mask of the
USGS Global Land 1-KM AVHRR Project was used. Surface albedo data at 1/8 arc-degree resolution
were generated from CAI L3 global reflectance distribution products.

2.2. SV Preparation Procedure

The SV preparation procedures included the steps shown in Figure 2.

1. Extract clear training samples:

Typical non-cloud-contaminated pixels were extracted as “clear training samples” by visual
inspection from MOD021KM products for various land cover types.

2. Automatically extract cloud training samples:

“Cloud training samples” were automatically extracted under the assumption that pixels that
were at sufficient distances from the clear training samples, based on Mahalanobis distances,
were cloud-contaminated pixels.

3. Decide decision function, thresholds, and SV:

Supervised learning was performed using SVM, in a high-dimensional feature space for the
extracted training samples, to determine the decision function, thresholds, and SV.

4. Perform cloud discrimination

Cloud discrimination for input CAI L1B images was performed using the decision function,
thresholds, and SV.
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Figure 2. Analytical procedure to examine the impact of different SV generation procedures using
MODIS data.

2.3. Analytical Procedure

We initially compared the CLAUDIA3-CAI results obtained using Terra MODIS data in February
and August as training data. Next, we compared the CLAUDIA3-CAI results obtained using two types
of SV, which were generated from the MODIS data following different procedures (Figure 2).



Remote Sens. 2017, 9, 1236 6 of 13

To generate SV for CLAUDIA3-CAI from MODIS data, there are two times at which features
are extracted corresponding to CAI bands, i.e., at Step 2 (Procedure 1) or Step 3 (Procedure 2) in
Figure 2. Procedure 1 is equivalent to generating SV using CAI data. Procedure 2 generates SV for
MODIS cloud discrimination at the beginning, and then extracts decision functions, thresholds, and SV
corresponding to CAI bands.

Finally, we compared the CLAUDIA3-CAI results obtained using MODIS and CAI data as
training data.

Table 3 shows the features using MODIS bands and CAI bands [9,12].

Table 3. Features using MODIS bands and CAI bands. Rwavelength and Twavelength denote the top of
atmosphere (TOA) reflectance and brightness temperature, respectively, at a wavelength. The definitions
of NDSI, NDVI, and Split window are (R0.66 − R1.64)/(R0.66 + R1.64), (R0.87 − R0.66)/(R0.87 + R0.66),
and T11.0 − T12.0, respectively.

Features Using MODIS Bands Features Using CAI Bands

NDSI R0.66
R0.66 R0.87
R0.87 R0.87/R0.66

R0.87/R0.66 NDVI
NDVI R0.87/R1.64
T13.9

T13.3 − T11.0
Split window
T11.0 − T8.6
T11.0 − T3.9

R1.38
R0.905/R0.935
R0.87/R1.64
R1.24/R0.55

3. Results

In this section, we summarize the results of three analyses of the impacts of SV. In this study,
the “degree of agreement (D.A.)” was defined as the ratio of the number of pixels for which two
CLAUDIA3-CAI results, obtained using different SV, agreed with respect to the number of pixels
for an input image. “Overlook” was defined as the ratio of the number of pixels which a standard
CLAUDIA3-CAI result judged cloudy, despite another clear result for the number of pixels for which
the standard result was cloudy. “Overestimate” was defined as the ratio of the number of pixels judged
as clear in the standard analysis, despite another result judged as cloudy for the number of pixels for
which the standard result was clear. Because every CAI-2 band had the same swath width, but the
swath width of CAI band 4 was different from that of bands 1–3, we used pixels in the swath range of
CAI band 4. Each was defined by the following equations (the std subscript indicates standard results):

D.A. =
Both cloudy + Both clear

The total number of pixels
(1)

Overlook =
Clear despite cloudystd

Both cloudy + Clear despite cloudystd
(2)

Overestimate =
Cloudy despite clearstd

Both clear + Cloudy despite clearstd
(3)
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3.1. Results for Various Time Periods

To compare the CLAUDIA3-CAI results obtained using Terra MODIS data in February (Feb-SV)
and August (Aug-SV) as training data, we used the comparative results for Feb-SV and Aug-SV. The SV
generation procedure was Procedure 2.

Figure 3 shows monthly averages for the comparative results between Feb-SV and Aug-SV.
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In Figure 3, for Overlook_2 and Overestimate_2, Feb-SV results were used as standard images,
and Overlook_8 and Overestimate_8 used Aug-SV results as standard images. Overlook_2 was greater
than Overlook_8 and Overestimate_8 was greater than Overestimate_2. Feb-SV results had a tendency
to overestimate cloud regions and Aug-SV results had a tendency to overlook cloud regions. This can
be explained by the darker images for Feb-SV than Aug-SV; the solar zenith angle is lower in February
in the Northern hemisphere, which has a larger land area than the Southern hemisphere. In contrast,
Aug-SV is prepared using brighter images and the solar zenith angle is higher in August in the
Northern hemisphere. Therefore, the difference between results obtained using Feb-SV and Aug-SV is
mainly explained by a trade-off relationship between the overestimation of results using Feb-SV and
the underestimated results using Aug-SV.

In Australia, Japan, Borneo, and Algeria, there was no obvious seasonal variation. In Australia and
Algeria, it was more effective to use Feb-SV throughout the year because Overlook_2 is strikingly great.

In Thailand, Overlook_2 was greater than Overestimate_8 from November to May,
and Overestimate_8 was greater than Overlook_2 from June to October. For the period from November
to May, it was more effective to use Feb-SV, while for the period from June to October it was more
effective to use Aug-SV.

In Mongolia and Canada, we cannot generalize which SV was more effective, though there was
seasonal variation.

In Alaska, it is more effective to use Aug-SV throughout the year excepting April because
Overestimate_8 is strikingly great.

Overall, for the period from November to May, it was more effective to use Feb-SV while for the
period from June to October it was more effective to use Aug-SV, when common SV is used in the
global measurement.

3.2. Results Obtained for Various SV Generation Procedures

Table 4 shows the comparative results using the SV generated by Procedures 1 and 2, when using
the SV generated by Procedure 1 as a standard.

Table 4. Average and standard deviation (in parentheses) of degree of agreement (D.A.), Overlook,
and Overestimate for each study area.

Location (CAI Path_Frame) D.A. (%) Overlook (%) Overestimate (%)

Australia (4_35) 99.4 (0.9) 0.3 (0.3) 0.8 (1.3)
Japan (5_25) 97.3 (1.3) 2.8 (2.3) 3.2 (4.1)

Borneo (7_31) 93.1 (4.6) 2.4 (2.5) 10.5 (11.9)
Thailand 1 (9_28) 93.3 (4.5) 6.7 (8.3) 13.0 (18.0)
Thailand 2 (9_29) 95.0 (2.0) 6.8 (7.9) 7.9 (9.8)
Mongolia (10_23) 97.6 (2.1) 1.1 (2.0) 3.7 (3.9)
Algeria (22_26) 99.3 (1.4) 1.1 (3.0) 0.7 (1.5)
Canada (32_22) 96.7 (3.0) 1.3 (3.0) 15.6 (14.8)
Alaska (43_19) 98.8 (0.8) 1.1 (0.9) 4.1 (7.3)

In Australia and Algeria, the difference between Procedures 1 and 2 was less than 1%.

4. Discussion

In this section, we discuss the relationship between the seasonal variation in Figure 3 and the
seasonal change of surface reflectance, and discuss the cause of high D.A. in Alaska and low D.A. in
Thailand and Borneo Island.
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4.1. Relationshp between the Seasonal Variation and the Seasonal Change of Surface Reflectance

Figure 4 shows the change of surface reflectance in each band, and Figure 5 shows the global
surface reflectance generated from CAI L3 global reflectance distribution products.Remote Sens. 2017, 9, 1236  9 of 13 
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In Australia, the surface reflectance of Band 2 increased with that of Band 3 from April to August.
It was caused by changing to dry land, corresponding to a reduction of vegetation from April to
August because Australia is in the Southern hemisphere. For this reason, it is considered that there
was tendency to overlook clouds using Aug-SV.

In Japan, surface reflectance of Band 3 was particularly higher than the other bands from May
to October. It was caused by seasonal vegetation change. Meanwhile there was no obvious seasonal
variation in Figure 3. It is difficult to determine the reason because cloud discrimination results depend
on several features.

In Borneo, there was no obvious seasonal variation of surface reflectance.
In Thailand, surface reflectance of Band 3 was particularly higher than the other bands from May

to October as Japan. For the reason, it is considered that there was a tendency to overestimate clouds
from June to October, using Feb-SV, and to overlook clouds from November to May, using Aug-SV.

In Mongolia, the surface reflectance of Bands 2 and 3 from October to April was higher than that
from May to September, while the surface reflectance of Band 4 from October to April was lower than
that from May to September. It was caused by snow. It is considered that snow influenced the seasonal
variation in Figure 3.

In Algeria, the surface reflectance of Bands 2–4 changed in the same way. It is considered that the
lower surface reflectance in October, compared to the other months, influenced high Overlook, using
Feb-SV and Aug-SV in October.

In Canada, the surface reflectance of Band 3 was particularly higher than the other bands, from
May to September. It was caused by seasonal vegetation change. Meanwhile, the surface reflectance of
Bands 2 and 3 from October to March was higher than that from April to September, while the surface
reflectance of Band 4 from December to February was lower than that from March to November. It was
caused by snow.

In Alaska, there was the same trend as Canada. Meanwhile the surface reflectance of Bands 1–3
from March to April was particularly higher than the other months. It might be caused by clouds.
CAI L3 global reflectance distribution products were generated by collecting the image data with
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minimum reflectance from the CAI L1 data for 30 days (10 recurrent cycles) to remove clouds [15].
However, clouds remained when it was cloudy in all 10 images.

4.2. Cause of High D.A. in Alaska and Low D.A. in Thailand and Borneo Island

Figure 6 shows an example of comparative results for Alaska.
Since the CAI is not equipped with any thermal infrared bands, cloud discrimination based on

the temperature at the top of clouds is not feasible. Accordingly, it is difficult to discriminate optically
thin clouds and to discriminate between clouds and ice or snow. Thus, both Procedures 1 and 2
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than those observed in other study areas. Figure 7 shows an example of comparative results for Borneo.
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the SV generated by Procedure 1 as a standard; (c) Enlarged figures of (a) and (b).

Procedure 1 had a tendency to overlook optically thin clouds in comparison with Procedure 2.
Figure 8 shows an example of comparative results for Canada. Procedure 1 had a tendency to

misjudge bright surfaces as clouds to a greater extent than Procedure 2.



Remote Sens. 2017, 9, 1236 12 of 13

Remote Sens. 2017, 9, 1236  12 of 13 

 

 
Figure 8. Comparative results for Canada on 1 October 2012. (a) Input CAI L1B product (R: Band 2, 
G: Band 3, B: Band 1); (b) Comparative results using SV generated by Procedures 1 and 2 when using 
the SV generated by Procedure 1 as a standard; (c) Enlarged figures of (a) and (b). 

5. Conclusions 

In this study, we performed two analyses to clarify the impacts of different SV on GOSAT-2 
CAI-2 L2 cloud discrimination. 

Comparative CLAUDIA3-CAI results, using Terra MODIS data in February (Feb-SV) and 
August (Aug-SV) as training data, indicated that we should use Feb-SV from November to May and 
Aug-SV from June to October, when common SV is used in the global measurements. Whether the 
combination of Feb-SV and Aug-SV, and the interval of 6 months are optimal, are subjects for future 
examinations. 

We compared SV generated by Procedures 1 and 2. Procedure 1 was equivalent to generating 
SV using CAI data. Procedure 2 generated SV for MODIS cloud discrimination at the beginning, 
and then extracted a decision function, thresholds, and SV corresponding to CAI bands. The 
comparative results indicated that the cloud discrimination accuracy was better for Procedure 2 than 
Procedure 1. Cloud training samples were automatically extracted by features using CAI bands at 
Step 2 in Procedure 1. Thus, Procedure 1 might extract clear-sky bright surfaces and cannot extract 
optically thin clouds as cloud training samples. These results provide a basis for decisions about 
training data sampling. It is necessary to add a new category of clear training samples for clear-sky 
bright surfaces that are misjudged as clouds, and it may be useful to intentionally add clouds on 
bright surfaces to cloud training samples. 

Currently, the preparation of training data extracted from CAI data is in progress to evaluate 
differences between the use of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data 
and GOSAT CAI data as training data. If the comparative results indicate that using GOSAT CAI 
data as training data is better, SV for GOSAT-2 must be generated using GOSAT-2 CAI-2 data 
themselves as training data, otherwise, the SV generated by Procedure 2 in this study will be used 
for GOSAT-2 CAI-2 L2 cloud discrimination processing. Furthermore, we will study the application 
of the bands added in CAI-2 for retrieval of aerosol properties to cloud discrimination. 

Acknowledgments: This research was mainly supported by the GOSAT-2 Project at the National Institute for 
Environmental Studies (NIES), Japan (2016). A part of this research is based on results obtained from a project 
commissioned by the New Energy and Industrial Technology Development Organization (NEDO), Japan. The 
authors would like to thank the GOSAT Project and GOSAT-2 Project for helpful comments as well as Ryosuke 
Kudo and Takuya Yamagishi for assistance with visual inspections. 

Author Contributions: Yu Oishi, Haruma Ishida, Takashi Y. Nakajima, Ryosuke Nakamura, and Tsuneo 
Matsunaga conceived and designed the studies; Yu Oishi performed evaluations and analyzed the data; 
Haruma Ishida contributed analysis tools; Yu Oishi wrote the paper.  

Figure 8. Comparative results for Canada on 1 October 2012. (a) Input CAI L1B product (R: Band 2,
G: Band 3, B: Band 1); (b) Comparative results using SV generated by Procedures 1 and 2 when using
the SV generated by Procedure 1 as a standard; (c) Enlarged figures of (a) and (b).

5. Conclusions

In this study, we performed two analyses to clarify the impacts of different SV on GOSAT-2 CAI-2
L2 cloud discrimination.

Comparative CLAUDIA3-CAI results, using Terra MODIS data in February (Feb-SV) and August
(Aug-SV) as training data, indicated that we should use Feb-SV from November to May and Aug-SV
from June to October, when common SV is used in the global measurements. Whether the combination
of Feb-SV and Aug-SV, and the interval of 6 months are optimal, are subjects for future examinations.

We compared SV generated by Procedures 1 and 2. Procedure 1 was equivalent to generating SV
using CAI data. Procedure 2 generated SV for MODIS cloud discrimination at the beginning, and then
extracted a decision function, thresholds, and SV corresponding to CAI bands. The comparative
results indicated that the cloud discrimination accuracy was better for Procedure 2 than Procedure 1.
Cloud training samples were automatically extracted by features using CAI bands at Step 2 in
Procedure 1. Thus, Procedure 1 might extract clear-sky bright surfaces and cannot extract optically
thin clouds as cloud training samples. These results provide a basis for decisions about training data
sampling. It is necessary to add a new category of clear training samples for clear-sky bright surfaces
that are misjudged as clouds, and it may be useful to intentionally add clouds on bright surfaces to
cloud training samples.

Currently, the preparation of training data extracted from CAI data is in progress to evaluate
differences between the use of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data
and GOSAT CAI data as training data. If the comparative results indicate that using GOSAT CAI data
as training data is better, SV for GOSAT-2 must be generated using GOSAT-2 CAI-2 data themselves
as training data, otherwise, the SV generated by Procedure 2 in this study will be used for GOSAT-2
CAI-2 L2 cloud discrimination processing. Furthermore, we will study the application of the bands
added in CAI-2 for retrieval of aerosol properties to cloud discrimination.
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