Supplementary file

Article

Nitesh Khadka1,2, Guoqing Zhang1,3,* and Sudeep Thakuri4

1Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; niteshkhadka48@gmail.com
2University of Chinese Academy of Sciences, Beijing, 100864, China
3CAS Center for Excellence in Tibetan Plateau Earth Sciences, CAS, Beijing 100101, China
4Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal; sthakuri@cdes.edu.np
* Correspondence: G. Zhang; guoqing.zhang@itpcas.ac.cn

Table S1. The decadal dynamics of newly emerged and disappeared glacial lakes in Nepal.

<table>
<thead>
<tr>
<th>Period</th>
<th>Emerged lakes</th>
<th>Disappeared lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Area (km²)</td>
</tr>
<tr>
<td>1977–1987</td>
<td>526</td>
<td>10.06</td>
</tr>
<tr>
<td>1997–2007</td>
<td>345</td>
<td>4.81</td>
</tr>
<tr>
<td>2007–2017</td>
<td>293</td>
<td>4.66</td>
</tr>
<tr>
<td>Overall change</td>
<td>511</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Table S2. Total number of newly emerged glacial lakes in different basins by type in between 1987 and 2017. The values in the parentheses indicate the total area (km²) of the respective glacial lakes.

<table>
<thead>
<tr>
<th>Lake types</th>
<th>Koshi</th>
<th>Gandaki</th>
<th>Karnali</th>
<th>Mahakali</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supraglacial</td>
<td>75(1.18)</td>
<td>56(0.61)</td>
<td>12(0.1)</td>
<td>9(0.07)</td>
<td>151(1.97)</td>
</tr>
<tr>
<td>Pro-glacial</td>
<td>66(2.11)</td>
<td>46(1.37)</td>
<td>67(2.17)</td>
<td>-</td>
<td>179(5.65)</td>
</tr>
<tr>
<td>Unconnected</td>
<td>52(0.79)</td>
<td>17(0.42)</td>
<td>54(0.67)</td>
<td>1(0.01)</td>
<td>124(1.89)</td>
</tr>
<tr>
<td>Non-glacier-fed</td>
<td>33(0.39)</td>
<td>6(0.05)</td>
<td>17(0.15)</td>
<td>-</td>
<td>57(0.6)</td>
</tr>
<tr>
<td>Grand Total</td>
<td>225(4.47)</td>
<td>125(2.45)</td>
<td>150(3.10)</td>
<td>10(0.08)</td>
<td>511(10.1)</td>
</tr>
</tbody>
</table>
Table S3. Total number of disappeared glacial lakes in different basins by type between 1987 and 2017. The values in the parentheses indicate the total area (km2) of respective glacial lakes.

<table>
<thead>
<tr>
<th>Lake types</th>
<th>Koshi</th>
<th>Gandaki</th>
<th>Karnali</th>
<th>Mahakali</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supraglacial</td>
<td>9 (0.14)</td>
<td>-</td>
<td>17 (0.2)</td>
<td>2 (0.027)</td>
<td>28 (0.37)</td>
</tr>
<tr>
<td>Pro-glacial</td>
<td>-</td>
<td>-</td>
<td>4 (0.08)</td>
<td></td>
<td>4 (0.076)</td>
</tr>
<tr>
<td>Unconnected</td>
<td>7 (0.05)</td>
<td>3 (0.027)</td>
<td>18 (0.18)</td>
<td></td>
<td>28 (0.26)</td>
</tr>
<tr>
<td>Non-glacier-fed</td>
<td>12 (0.08)</td>
<td>2 (0.014)</td>
<td>28 (0.31)</td>
<td></td>
<td>42 (0.4)</td>
</tr>
<tr>
<td>Grand Total</td>
<td>28 (0.28)</td>
<td>5 (0.041)</td>
<td>67 (0.77)</td>
<td>2 (0.027)</td>
<td>102 (1.1)</td>
</tr>
</tbody>
</table>

Figure S1. Evolution map of Kawache glacial lake at the lowest elevation (~2456 m) in the Kaski district of Nepal obtained from the Landsat TM imagery from 2003, 2006, 2007 and OLI imagery from 2013 and 2017.