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Abstract: This paper describes the design and implementation of a wireless electronic nose 
(WEN) system which can online detect the combustible gases methane and hydrogen 
(CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is 
composed of two wireless sensor nodes—a slave node and a master node. The former 
comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal 
processor (DSP) system for real-time sampling and processing the sensor array data and a 
wireless transceiver unit (WTU) by which the detection results can be transmitted to the 
master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity 
is developed for resistance to environmental influences. A threshold-based least square 
support vector regression (LS-SVR) estimator is implemented on a DSP for classification 
and concentration measurements. Experimental results confirm that LS-SVR produces 
higher accuracy compared with artificial neural networks (ANNs) and a faster convergence 
rate than the standard support vector regression (SVR). The designed WEN system 
effectively achieves gas mixture analysis in a real-time process. 

Keywords: wireless electronic nose; combustible gas detection; Fe2O3 gas sensor; 
humidity insensitivity; DSP; least square support vector regression 
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1. Introduction  

An electronic nose (EN) is an instrument comprising diverse chemical sensors and an appropriate 
pattern recognition algorithm for detecting simple or complex odors [1,2]. As an innovative gas 
detection technology, EN systems combine sensor, electronics, signal processing and computer 
technology and are widely applied in many fields, e.g., medical diagnosis, food surveillance, 
production safety, environmental protection, etc. [3-6]. Most EN instruments employ a PC to control 
the data acquisition card and are described as desktop systems that are suitable for laboratory  
purposes [7,8]. Additionally, gas classification and concentration estimation are performed in two 
different processes [8,9]. More recent WEN systems combine chemical sensors with wireless sensor 
networks and are used to monitor the target gases via a remote system [10] or transmit the sensor array 
measurement data to a PC via wireless sensor nodes [9]. However, a real-time WEN instrument can 
not only acquire and transmit the sensor data by the RF transceiver but also process the data on-line 
through an embedded microcontroller as well as simultaneously transmit the gas species and concentration 
information to a desktop PC for intelligent management and human-computer interaction [10,11].  
In addition, there is an urgent need for the development of high-performance WEN instruments that 
can detect on-line industrial leakage of gases within regulation ranges such as the explosion limits and 
threshold limit values [10]. To our knowledge, such real-time WEN systems for accurately quantifying 
complex combustible gas concentrations have rarely been reported [9-11].  

Most reported EN systems used for industrial monitoring are based on metal oxide semiconductor 
(MOS) gas sensors [12,13]. MOS sensors, such as SnO2 [14], are a class of chemical sensors based on 
resistance changes. With their advantages of low cost, short response times, and high sensitivity to 
combustible gases, liquefied petroleum gas and organic solvent vapors, MOS sensors have become the 
most commercially suitable sensors in EN. However, MOS sensors have some well-known 
disadvantages, e.g., poor selectivity, cross-sensitivity, and the strong dependence on the external 
environment [15]. Inevitably, MOS sensors are sensitive to water vapor, which may be a problem for 
real-time monitoring in an industrial environment under variable humidity conditions [16]. Several 
promising approaches have been presented for improving the selectivity of MOS sensors by varying 
the category and percentage of additives [17,18]. Hardware and software methods have been adopted 
to address the problem of humidity compensation in EN systems [19-21]. For example, the ordered 
mesoporous SnO2 is insensitive towards changes in the relative humidity at low concentrations of 
carbon monoxide [22]. Fe2O3 sensors show great potential for industrial process monitoring, due to 
their fast response, high stability, high sensitivity [23] and especially their remarkably strong 
insensitivity to humidity [24-26]. 

The multivariable data processing techniques of EN systems can essentially be divided into two 
categories: statistical techniques and neural network techniques. The most important representatives of 
the former are principal component analysis (PCA) and multiple regression analysis, while ANNs  
fall into the latter. PCA is a linear feature extraction technique which is used to classify different  
odors [27,28] and multiple regression analysis is commonly employed as a quantitative measurement 
method for multicomponent mixtures. Recently, multiple linear regression (MLR), principal 
component regression (PCR) and partial least square regression (PLSR) have been successfully used in 
estimating concentrations of complex gas mixtures [20,29]. However, since MOS gas sensors 
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commonly have a nonlinear characteristic, the methods mentioned above that were originally 
developed as linear regression methods will be invalid in a nonlinear model. ANNs use biologically 
inspired neural constructs and are similar to the human cognitive process. Detailed descriptions of 
ANNs applied in pattern recognition and quantitative analysis of the complex odors can be found  
in [30,31]. However, it may be difficult for ANNs to select hidden layers and the number of hidden 
units so that errors can occur when quantifications are not divided in detail during the training process. 
Inevitably, a large amount of network units will increase the computational complexity and require 
more training samples [32]. 

A more attractive and effective pattern recognition method, support vector machine (SVM), is a set 
of supervised learning machine methods based on statistical learning theory [33]. SVM, which uses the 
principle of structural risk minimization (SRM), enhances the generalization ability and has been 
successfully applied to multidimensional EN data [8,34] with good classification and regression ability 
in the case of insufficient training samples [35]. Recently, least squares support vector machine  
(LS-SVM), an extension of standard SVM, was presented by Suykens [36]. LS-SVM regards a least 
square linear system as a loss function instead of the quadratic programming problem of the standard 
SVM, which simplifies operations, accelerates the convergence rate and improves the precision of the 
classification and nonlinear regression [37]. In this paper, a binary gas mixture analysis is regarded as 
a multivariate nonlinear regression problem. Classification and concentration estimation is 
synchronously fulfilled in a process. Meanwhile, the algorithm for quantifying gas mixtures, i.e., the 
LS-SVR concentration estimator, is implemented in the DSP system (slave node) which can 
communicate with a desktop PC via a wireless sensor network, as shown in Figure 1.  

Figure 1. Block diagram of the WEN system. 
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This paper is organized as follows. Section 2 describes production engineering and performance test 
of the fabricated Fe2O3 gas sensors with high sensitivity and little humidity effects. In addition, 
temperature compensation circuits based upon thermistors are designed. Section 3 discusses the 
principle and algorithm flow of LS-SVR. Section 4 presents the hardware and software design of this 
WEN system. Section 5 is devoted to the experimental description and the principle of classification 
and concentration measurement by using the same LS-SVR model. Furthermore, discussion and 
comparison on the performance of the system for detection of the target odors (CH4, H2 and their 
mixtures) are provided. Finally, conclusions are drawn in Section 6.  

2. Fabrication and Property Measurement of Fe2O3 Sensor 

A Fe2O3 sensor is a semiconductor gas sensing device that can detect odors through the body 
resistance change. When the gas sensing slurry is fabricated, a sinter with a strong adhesion is simply 
shaped in the metal heater wire. Sensitivity and selectivity to different combustible gases can be 
changed by adding doping elements as well as controlling the grain size and the micro-structure of the 
sinter [26,38]. 

2.1. Gas Sensing Mechanism 

Because of the deviation from stoichiometry and its active chemical nature (i.e., easily reduced), the 
crystal defects of the gas sensing device are easily changed, which results in its body resistance change 
in contact with odors [25]. For example, a reduction reaction occurs when the gas sensing device 
contacts odors and Fe2+ ions are generated and changed into Fe3O4 with the increase of the gas 
concentrations so that body resistance of the device decreases [39]. At the same time, this change is 
reversible, as shown in Equation (1). The device will resume its original state when the testing gas is 
removed. Therefore, gas detection is achieved through such a reversible chemical transformation: 

Reduction

Oxidatio2 n3 3 4Fe O Fe Oα ⎯⎯⎯⎯→− ←⎯⎯⎯⎯  (1) 

The device will resume its original state when the testing gas is removed. Therefore, gas detection 
is achieved through such a reversible chemical transformation. 

2.2. Sensor Fabrication 

The Fe2O3 gas sensor fabrication process included fabrication of gas sensing material, additive 
selection, electrode preparation, substrate coating and sintering, lead welding, aging, packaging, etc., 
as shown in Figure 2. In this paper, the chemical precipitation method was used to fabricate the  
α-Fe2O3 powders [38,40]. Firstly, 150 g ferrous sulfate [FeSO4·7H2O] were dissolved in 2,000 mL 
solution and the concentration of Fe2+ was 0.25 mol/L. Then 100 g Na2C2O4·2H2O was added to the 
solution: 

pH=4, 60 C
4 2 2 2 4 2 2 4 2 2 4 2FeSO 7H O Na C O 2H O FeC O 2H O Na SO 7H O°⋅ + ⋅ ⎯⎯⎯⎯→ ⋅ ↓ + +  

820 C, 0.5h
2 4 2 2 2 3 2 24FeC O 2H O 3O 2 -Fe O 8H O +8COα°⋅ + ⎯⎯⎯⎯→ + ↑ ↑  

(2)
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The whole procedure was carried out at 60 °C and the solution was adjusted to pH 4 in the reaction 
process. The precipitate was formed at the end of the reaction when the solution was cooled. 
Subsequently, the precipitate was centrifuged and washed with the distilled water, then the filtrate was 
dried at 80 °C and calcined at 820 °C for half an hour to thus form the α-Fe2O3 powders. 

Figure 2. Fabrication diagram of the sintered Fe2O3 gas sensing device. 
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The prepared gas sensors used in this WEN system should have different sensitivity to the 

combustible gases in order to ensure the validity of multivariate analysis algorithms [16]. To adjust the 
selectivity of the sensors, heavy metals dopants were added to the powders. Experimental results show 
that the sensor has a greater sensitivity to CH4 when the content of SnO2 is 1.0–1.8% and the sensor 
has a greater sensitivity to H2 when the content of Sb is 0.7–1.6%. Therefore, sensors with different 
sensitivity to H2 and CH4 can be obtained by changing the content of additives. 

The detailed process of electrode preparation, substrate coating, substrate sintering, lead welding, 
aging and packaging are described as follows: firstly, the prepared gold slurry was coated on the 
surface of the selected cylindrical ceramic tube in order to form a comb-shaped electrode. The coated 
ceramic tube was dried at room temperature and then calcined in the tube furnace. The temperature of 
the tube furnace was increased to 800 °C for 10 min and then dropped to room temperature. Electrode 
preparation could be accomplished after a diameter of 0.2 mm Pt wire as the electrode lead was welded 
to the calcined electrode. Secondly, the substrate material was ground into a paste and evenly coated 
on the ceramic tube. After natural drying, the substrate was calcined at 650 °C for 1 h. Subsequently, 
the calcined substrate was formed into small cylinders (diameter 1.5 mm × length 3 mm) where a heater 
wire could be put. Thirdly, a small Ni-Cr alloy wire (diameter 0.08 mm) used as the heater coil was 
placed on the ceramic tube and then the electrode lead and heater wire were welded to the base of the 
sensor. In order to improve the stability and the repeatability of the gas sensing device, the fabricated 
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elements were placed in an aging platform and kept at 300 °C for 10 days in air. After aging, the 
characteristic parameters of each element were measured and the qualified ones were selected. Here, 
the elements were filtered according to resistances of sensors in the sample gas (H2 1,000 ppm) and the 
resistance range was 100 K–1 M. By filtering, the qualified rate of a batch of elements were 73%. 
Finally, 100 mesh double stainless steel mesh was used to packet the element to complete fabrication 
of the Fe2O3 gas sensor. 

2.3. Property Measurement 

To detect leakage of combustible gases in the industrial field, stable sensors with high sensitivity, 
fast response and low dependence on the environmental conditions are required. Here, performance 
testing (sensitivity, response and recovery time, temperature and humidity characteristics, stability and 
life characteristic, etc.) was undertaken for the designed Fe2O3 gas sensor. Sensitivity curves of the 
sensor for the target odors (CH4 and H2) at 30 °C (ambient temperature) and 60% RH (relative 
humidity) are shown in Figure 3. It is obvious that the sensor’s resistance reduces while the 
combustible gas concentration increases and their relationship are nonlinear. Moreover, the sensor has 
high sensitivity to the two odors. 

Figure 3. Sensitivity characteristics of the Fe2O3 gas sensor. 
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Table 1. Response and recovery time of Fe2O3 gas sensor at 2,000 ppm CH4 and H2. 

Time (s) CH4 H2 
tres 5 9 
trec 15 29 

 
To eliminate the influence of the ambient temperature and humidity, one way is to maintain the 

same experimental conditions for different data samples. This method is feasible for the constant 
temperature and humidity measurement chamber in the laboratory, but does not have any practical 
engineering value. In practice, hardware compensation circuits [19] or software compensation 
algorithms [21] are usually used for temperature and humidity compensation, and special sensors with 
humidity or temperature independency are thus developed. Figure 4 shows the humidity characteristic 
of the fabricated Fe2O3 gas sensor at 2,000 ppm CH4.  

Figure 4. Humidity characteristic of Fe2O3 gas sensor. 
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range of ambient temperature conditions and the temperature coefficient was calculated to decide the 
thermistor. From the above discussion, the α-Fe2O3 sensor developed in this paper, which has the 
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insensitivity and long use life, is a promising type of gas sensor for industrial monitoring. 
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Figure 5. Temperature characteristics of the Fe2O3 gas sensor. 

 

3. Least Squares Support Vector Regression 

As previously mentioned, traditional multivariate data processing methods such as ANNs generally 
require enough training samples to ensure the generalization accuracy. This problem can be solved by 
LS-SVM, which shows excellent performance in solving small samples, nonlinear and local optimal 
points [37]. As reported in [36], LS-SVM adheres to the principle of SRM by minimizing an upper 
bound of the generalization error rather than minimizing the training error followed by ANNs. 
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equation, which reduces the computational complexity and improves the solution velocity. With 
Vapnik’s ε-insensitive loss function theory, SVM has been extended to solve the nonlinear regression 
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LS-SVR is that the input sample of data space is mapped into a higher dimensional feature space via a 
nonlinear mapping process, and then linear regression is obtained in feature space in order to indirectly 
accomplish the nonlinear regression in original space. A detailed description follows. 

Consider a training sample set {(xk,yk)|k = 1,…,N} with input data xk א Rn and output yk א R, where 
N denotes the number of training samples and n is the dimension of data space. In feature space H, the 
LS-SVM model takes the form [36]: 

( ) ( )Ty x w x bϕ= +  (3) 

where the nonlinear mapping )(⋅ϕ maps the input data into a higher dimensional feature space, w
denotes the weight vector and b is a real constant namely the bias threshold [36]. In LS-SVR, the 
following optimization problem is formulated [37]: 
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where the loss function J is the sum of SSE (sum of squared errors) and scale volumes, γ is a 
regularization parameter and ek are the error variables. Since LS-SVM has only the equality constraint 
conditions and loss function is the 2-norm of ek, the optimization problem can be greatly simplified. 
Define Lagrange function Las: 

1
( , , , ) ( , ) { ( ) }

N
T

k k k k
k

L w b e J w e w x b e yα α ϕ
=

= − + + −∑  (6) 

where ak are the Lagrange multipliers namely the support vectors. Exploit Karush-Kuhn-Tucher 
condition to optimize Equation (6) by: 

1

1
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0 0

0
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L w x
w
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L e
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=

∂⎧
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⎨ ∂⎪ = → =
⎪∂
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∑
 (7) 

For k = 1,…,N, substitute ek and w to obtain a matrix equation: 

1

T

b

γ

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

0 0l

yl I αΩ
 (8) 

where y = [y1,…, yN]T, ι = [1,…, 1]T, α = [αi,…, αN]T, Ωkj = φ(xk)T φ(xj), j = 1,…, N, I is a unit matrix 
and dimensions of l and I are N. Thus, optimization problem is transformed into the solution of linear 
equations. Note that K(·,·) is a kernel function that fulfills Mercer’s condition: 

( , ) ( ) ( )    , 1, ,T
k j k jK x x x x k j Nϕ ϕ= = L  (9) 

Finally, the LS-SVR model for function estimator is described as: 

1

( ) ( , )
N

k k
k

y x K x x bα
=

= +∑  (10) 

where αk and b can be solved by Equation (8). Here, the key issue is how to select an appropriate 
kernel function K(·,·) instead of the specific form of the nonlinear mapping φ. Some of the most widely 
used kernel functions include the radial basis kernel, polynomial kernel, sigmoid kernel and linear 
kernel, etc. The polynomial kernel and radial basis kernel always satisfy Mercer’s theorem, whereas 
other kernels satisfy it only for certain conditions [41]. In practice, the most commonly adopted one is 
the radial basis kernel function, namely: 

( )
2

2, exp i j
i j

x x
K x x

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (11) 

where the kernel parameterσ is specified a priori. 
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Above is the detailed LS-SVR calculation process. In this paper, the LS-SVR parameters were 
trained in advance via large numbers of experimental data from repeated measurements of the target 
gases. This training process was accomplished using Matlab language on a PC. After the regression 
model was trained, the related parameters were programmed in DSP and the real-time measurement 
data from the sensors could be used for the on-line analysis of unknown gas components. 

4. Design and Implementation of the WEN System 

4.1. Hardware Design 

As shown in Figure 1, the slave node consists of a three parts-analog circuit unit, DSP unit and 
wireless transceiver unit. In the analog circuit, the gas sensor array composed of four of the developed 
Fe2O3 sensors is used to measure the target odors i.e., CH4, H2 and their mixtures.  

Figure 6. Photographs of the WEN system including slave node, master node and PC. 
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A temperature and humidity module is used to monitor the ambient temperature and relative 
humidity. Through the signal conditioning circuits, voltage signal outputs of the sensors are filtered 
and amplified, and then are acquired by the DSP for later data analysis. The TMS320F28335 is a  
high-performance 32-bit floating-point DSP whose working frequency is up to 150 MHz [42]. 
Additionally, it has a built-in 16-channel and 12-bit analog to digital converter (ADC) whose 
programmable acquisition rate throughput is up to 12.5 MSPS. It can synchronously acquire the 
voltage signal outputs of six sensors by the 32-bit timer as well as transfers data by direct memory 
access (DMA) without CPU, which greatly improves the velocity of data transmission. Real-time 
detection results are transmitted to the WTU (CC2430 module) by the serial communication interface 
(SCI) of the DSP. The low power wireless single chip, CC2430, which integrates a 2.4 GHz IEEE 
802.15.4 compliant RF transceiver and an enhanced 8051 microcontrol unit (MCU), can achieve the 
wireless data transmission between the two nodes [43].  
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The main sensor node not only sends the detection results received from the slave node to PC but 
also receives the control instructions from PC and sends them to the slave node for controlling the 
DSP’s run. Figure 6 shows photographs of the designed WEN system including a slave node, a master 
node and a desktop PC. 

4.2. Software Development 

According to the hardware architecture of the designed WEN system, the tasks of the whole system 
are to achieve qualitative and quantitative detection of the combustible gases, wireless data 
transmission and information component display on a PC. Therefore, software development of the 
system includes three parts—DSP software design, WTU software design and PC software design. 

The DSP software design is the most important part of system software development. The DSP 
programs are designed in three steps. Firstly, the data acquisition program acquires the sensor array 
response data. Secondly, the LS-SVR multivariate analysis algorithm detects components of the 
analyte and then a SD card saves sensor array response data and detection results in the “txt” format. 
Finally, the serial communication program transmits the detection results to WTU. The specific 
program flow diagram is shown in Figure 7. 

Figure 7. Flow diagram of the DSP program. 
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The WTU program is developed and compiled using the IAR Embedded Workbench software. The 

communication program of each node includes two parts: wireless communication with the other node 
and serial communication with the DSP (for slave node) or PC (for master node). The CC2430 
wireless single chip integrates a wireless transceiver circuit in its internals, which provides the 
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necessary hardware conditions for wireless communication. Therefore, we only program a wireless 
receiver and wireless transmitter function to achieve wireless data transmission between the two nodes. 
In addition, we design a wireless communication protocol and use the universal asynchronous 
receiver/transmitter (UART) interfaces of CC2430 to carry out the serial data transmission between 
WTU and DSP or PC. The data frame format is composed of frame head (0xFE), node address (Addr), 
function bit (Fn), four valid data bits, checksum bit (Check) and frame end (0xFF), as shown in  
Figure 8. Communication baud rate is set at 19,200 baud. The flow diagram of the communication 
program of nodes is shown in Figure 9.  

Figure 8. Wireless communication protocol. 
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Figure 9. Flow diagram of the WTU program. 

WTU initialization

Start

Wireless data are received ?

Frame data validation

Serial data transmitter

Serial data are received ?

Wireless data transmitter

N

Y

Y

N

 
 



Sensors 2011, 11              
 

 

497

The PC Software of the WEN system programmed in C++ language executes the gas detection 
result display and other related operations. The desktop PC is connected with the master node via a 
serial port which can achieve full-duplex serial communication. Functions of the software include the 
monitoring of the target gas concentrations, environmental temperature and humidity, working time 
and date, etc. 

5. Experimental Results and Discussion  

In our experiments, methane, hydrogen and their mixtures of different concentrations were chosen 
as the target odors. To verify the effectiveness of the developed WEN system, training and validation 
experiments were conducted. The former provided the samples to set up the LS-SVR model on the PC 
while the latter achieved the real-time gas component analysis by using the built model programmed in 
the designed WEN system. 

5.1. Experimental Description 

The experimental system based on the static gas distribution method [35,44] consisted of an organic 
glass gas chamber, a fan, two commercially available gas cylinders (99.99% CH4 and 99.99% H2), two 
syringes and two airbags. The slave node was powered via 7.4 V lithium batteries and was placed in 
the gas chamber whose effective volume was 10,000 mL. Four developed Fe2O3 sensors with different 
sensitivities to CH4 and H2 were installed in the slave node to form a sensor array. The heater voltage 
(VH) applied to the heater in order to maintain the sensor at 270 °C which is optimal for sensing was  
5 V. The circuit voltage (VC) applied to allow voltage measurement across a load resistor which is 
connected in series with the sensor was 3.3 V. Temperature coefficient, β of the thermistor in the 
temperature compensation circuit was −5 × 10−3/°C. The master node connected with a desktop PC 
was used to fulfill the wireless data transmission with the slave node via the RF transceiver. CH4 and 
H2 were taken through the syringes from the airbags and injected into the gas chamber both singly and 
in mixtures. Different concentrations of the two gases and their mixtures could be made up by 
changing the amounts injected into the chamber. The fan in the chamber was used to aid the dispersal 
of the target odors. To illustrate the gas preparation process, we take the preparation of 1,000 ppm CH4 
as an example. Since the volume of test container used in the experiments is 10,000 mL and the 
required concentration is 1,000 ppm (1,000/106 = 10 mL/10,000 mL), only 10 mL of pure CH4 will be 
injected into the gas chamber with a 10 mL syringe. According to the lower alarm threshold limit 
(LATL) of the two combustible gases, i.e., 20% of the lower explosion limit (LEL) and the responses 
of four sensors to their mixtures, the experimental concentration range of CH4 was 0–7,000 ppm and 
the concentration range of H2 was 0–5,000 ppm. When the baseline voltage in air was stabilized, the 
target odors were brought into the gas chamber and the responses were measured. The response curves 
were displayed on the monitor and the steady-state response voltages (VO) were recorded. 

In the training experiments, the gas chamber temperature was maintained at 30 °C with 60% RH. 
The training samples of the analyte concentrations were shown in Table 2. Each measurement cycle 
was replicated 10 times for 19 training samples from those in Table 2, resulting in 190 measurements. 
As a result, the sensor array response made a 190 × 4 data set (i.e., N = 190 samples and n = 4 sensors). 
Then the data set was processed using the Matlab language on the PC in order to build the LS-SVR 
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model. We could thus compute the regression parameters via Equations (4–8) and obtain the 
concentration estimation results in Equation (10).  

Table 2. Concentration ranges of target odors for training. The symbol (√) in the table 
denotes the selected training samples. 

H2 
(ppm) 

CH4 (ppm) 
0 1,000 3,000 5,000 7,000 

0  √ √ √ √ 
1,000 √ √ √ √ √ 
3,000 √ √ √ √ √ 
5,000 √ √ √ √ √ 

 
Figure 10 shows the average steady-state response distribution of the sensor array for the three types 

of odors with different concentrations. It is apparent that the relationship between responses of 
individual sensors and gas concentrations is nonlinear, and the response of each sensor is a binary 
function of two gas concentrations. Here, the mean of each sensor’s response for concentration 
distribution in Figure 10 is calculated with 10 measured voltages, VO. 

Figure 10. The average steady-state response distribution of the sensor array for the three 
target odors (CH4, H2 and their mixtures) in the training experiments. 

 

5.2. Results and Discussion 

From the previous discussion, the procedures of applying LS-SVR for gas component analysis are 
summarized as follows: 

(1) Acquire gas concentrations and sensor array response as training samples. 
(2) Determine kernel function K(·,·) as well as the kernel parameters σ and γ. 
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(3) Calculate regression parameters αk and b via Equation (8). 
(4) Establish the concentration estimator given in Equation (10). 

The inputs of the regression model are the sensor array response and the outputs are the 
concentrations of the analyte both alone and in mixtures. Training samples are used to determine the 
kernel, calculate kernel parameters and establish the regression model. According to the physical 
characteristics of the Fe2O3 gas sensor, the radial basis kernel is more appropriate to capture the 
nonlinearity of the considered system compared with other kernels. Therefore, the radial basis kernel is 
adopted as the kernel function in this paper. The regularization parameter γ and kernel parameter σ is 
tuned experimentally by the k-fold cross-validation technique [45], where the training samples are 
randomly split into k approximately equal subsets. For each parameter set {σ,γ}, we train LS-SVR using 
k-1 subsets and check the generalization error using the subset left out. This procedure is repeated k 
times and in this fashion each subset is tested once. Averaging the testing error over the k trials, an 
estimation of the expected generalization error of the chosen parameter set {σ,γ} is derived. In this 
paper, the optimal parameters are selected as σ2 = 32, γ = 3,000 by minimizing the cross-validation error 
over the all parameter sets, then the regression parameters αk and b can be calculated by Equation (8). 

The remaining task is to fulfill gas classification and concentration estimation with the built  
LS-SVR model which contains two groups of regression parameters (one for CH4 and the other for H2) 
programmed on DSP. Since the trained LS-SVR model outputs the estimated concentrations of target 
odors (CH4, H2 and their mixtures) quantitatively, a minimum threshold is used to judge whether each 
component exists or not in order to perform classification. Because of the direct impact on the gas 
classification accuracy, the threshold for CH4 and H2 is chosen as 200 ppm (0.5% LEL) according to 
the distinguishing rate of the system for the target odors. If the predicted concentration of the analyzed 
component is less than the threshold, it can be concluded that the component does not exist. For 
example, if the estimated gas concentrations are 47 ppm for CH4 and 3,991 ppm for H2, the qualitative 
classification result is that the analyte is only H2 but not CH4, and the quantitative measurement result 
is 0 ppm CH4 and 3,991 ppm H2. Therefore, types and concentrations of both single and complex gas 
can be measured in a synchronous calculation process. 

An important property that verifies performance of the system is its potential capability of 
predicting the out of range unknown analytes under different experimental conditions by using the in 
range training samples. Therefore, validation experiments were executed with arbitrarily selected 
analytes in order to test the accuracy, the repeatability and the real-time performance of the system for 
gas classification and concentration measurement. The 11 testing samples for validation are shown in 
Table 3. Since water vapor and atmosphere temperature are variables in a real environment, their 
influence on the response of gas sensor used for the system is supposed to be considered in the 
validation experiments. Figure 11 illustrates the on-line measurement result of the WEN system to the 
selected analyte (the mixture of 6,000 ppm CH4/4,000 ppm H2) in the condition of 32.5 °C and 70% 
RH. The four colored curves displayed on the PC software interface represent the steady-state response 
voltages of the four developed Fe2O3 sensors, respectively. The analyte was injected into the gas 
chamber 15 s later, and the component analysis result of 6,149 ppm CH4/3,890 ppm H2 was obtained 
from the LS-SVR concentration estimator. This demonstrates the fact that the designed WEN system can 
predict online the concentrations of the target odors with high precision under variable humidity conditions.  
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Table 3. Experimental results for validation using LS-SVR. 

Testing  
samples 

Actual conc. (ppm) Estimated conc. 
(ppm) Absolute error (%) 

CH4 H2 CH4 H2 CH4 H2 
1 2,000 0 2,176 0 8.8 0.0 
2 4,000 0 3,928 0 1.8 0.0 
3 6,000 0 5,736 0 4.4 0.0 
4 0 2,000 0 2,091 0.0 4.6 
5 0 4,000 0 3,991 0.0 0.2 
6 2,000 2,000 2,089 2,255 4.5 12.8 
7 2,000 4,000 1,979 4,308 1.1 7.7 
8 4,000 2,000 4,141 2,017 3.5 0.9 
9 4,000 4,000 4,232 3,673 5.8 8.2 
10 6,000 2,000 5,996 2,077 0.1 3.9 
11 6,000 4,000 6,149 3,890 2.5 2.8 

Figure 11. On-line measurement result of the WEN system for the arbitrarily selected analyte. 

 
 

Table 3 reports the quantitative concentration measurement results and absolute errors analysis 
using this LS-SVR method in the validation experiments. It is apparent that the classification success 
rate is 100%. According to the absolute errors provided in Table 3, the worst-case prediction error is 
8.8% for CH4 and is 12.8% for H2, and the average error of all testing samples is 2.9% for CH4 and 
3.7% for H2. To further prove the performance of LS-SVR, the quantitative concentration 
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measurement results using standard SVR and back-propagation artificial neural networks (BP-ANNs) 
for the same testing samples are given in Tables 4 and 5, respectively. The optimal regularization 
parameter C of SVR was chosen as 1,500 by minimizing the k-fold cross-validation error over the 
parameter sets [45]. The neural network consisted of an input layer with four nodes (i.e., the sensor 
array response), a hidden layer with 12 nodes, and an output layer with two nodes which represented 
different components of the two gases, respectively. The initial weights for the neurons were chosen 
randomly, a hyperbolic tangent sigmoid function was used as the transfer function of the input layer to 
the hidden layer and a linear function was selected as the transfer function of the hidden layer to the 
output layer. The variable learning rate method [32] was used as the learning algorithm of the network.  

Table 4. Experimental results of quantitative measurement using standard SVR. 

Testing  
samples 

Actual conc. (ppm) Estimated conc. 
(ppm) Absolute error (%) 

CH4 H2 CH4 H2 CH4 H2 
1 2,000 0 2,150 0 7.5 0.0 
2 4,000 0 3,921 0 2.0 0.0 
3 6,000 0 5,846 0 2.6 0.0 
4 0 2,000 0 1,888 0.0 5.6 
5 0 4,000 0 3,927 0.0 1.8 
6 2,000 2,000 2,037 2,361 1.9 18.1 
7 2,000 4,000 1,865 4,426 6.8 10.7 
8 4,000 2,000 4,046 2,026 1.2 1.3 
9 4,000 4,000 4,115 3,726 2.9 6.9 
10 6,000 2,000 6,033 2,197 0.6 9.9 
11 6,000 4,000 6,132 3,987 2.2 0.3 

Table 5. Experimental results of quantitative measurement using BP-ANNs. 

Testing  
samples 

Actual conc. (ppm) Estimated conc. 
(ppm) Absolute error (%) 

CH4 H2 CH4 H2 CH4 H2 
1 2,000 0 2,310 0 15.5 0.0 
2 4,000 0 3,831 0 4.2 0.0 
3 6,000 0 5,814 0 3.1 0.0 
4 0 2,000 0 2,059 0.0 3.0 
5 0 4,000 0 4,111 0.0 2.8 
6 2,000 2,000 2,105 2,396 5.3 19.8 
7 2,000 4,000 1,933 4,352 3.4 8.8 
8 4,000 2,000 4,036 2,192 0.9 9.6 
9 4,000 4,000 4,224 3,787 5.6 5.3 
10 6,000 2,000 6,053 2,116 0.9 5.8 
11 6,000 4,000 6,303 3,931 5.1 1.7 
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Consider the correlation coefficient (C.C) (Table 6) as the index of estimation accuracy to evaluate 
the performance of the multivariable data processing methods [8]. C.C is a number between 0 and 1. 
The higher the correlation coefficient, the better the regression performance of the method. If the 
estimated concentrations are identical with the actual values, the correlation coefficient is 1. C.C is 
calculated as follows: 
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(12) 

where X are the actual concentrations, ܺ are the estimated concentration, and n is the number of testing 
samples. 

Obviously, compared with BP-ANNs, LS-SVR applied to gas mixture analysis is capable of 
improving the accuracy of concentration measurements. This is because that the training samples 
(concentration interval for each target gas) are insufficient for ANNs to perform a precise estimation. It 
is unrealistic to get enough training samples of concentration distribution with a small interval, which 
will greatly increase the experimental complexity and time consumption of the learning process. 
Compared with standard SVR, LS-SVR performs higher accuracy for CH4 whereas it produces lower 
accuracy for H2. Furthermore, LS-SVR has a faster convergence rate than the standard SVR in the 
training process (Table 6). The reason is that LS-SVM solves the linear equations instead of the 
quadratic programming of the standard SVR. Linear equations have faster solution velocity and require 
fewer computing resources compared to quadratic programming. 

Table 6. Performance evaluation of the three methods. 

Correlation 
coefficient LS-SVR SVR BP-ANNs 

CH4 0.9981 0.9990 0.9972 
H2 0.9948 0.9925 0.9944 

Training time (s) 0.0238 12.8440 115.9940 
 

In addition, traditional methods are needed to set up two different model architectures for gas 
component analysis. One is used as qualitative classification. The other served as a quantitative 
concentration measurement. However, the threshold-based method devised for the WEN system 
synchronously achieves qualitative and quantitative gas component analysis with only one built  
LS-SVR model, which dramatically reduces the computational complexity of DSP and can be suitably 
applied to a real-time electronic nose test system.  
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6. Conclusions 

This paper develops a Fe2O3 gas sensor array based WEN system for detection of the main 
combustible gases CH4, H2 and their mixtures in industry.  A type of Fe2O3 gas sensor with rapid 
response rate and high sensitivity to combustible gases was fabricated. This type of gas sensing 
element composed of a Ni-Cr integrated heater, and α-Fe2O3 powders that have remarkably strong 
insensitivity against humidity is particularly suitable for a real atmosphere environment under variable 
humidity conditions. A multivariable data processing method, LS-SVR, is presented to identify and 
quantify the binary analytes in a synchronous process. Compared with SVR and ANNs, the LS-SVR 
method devised for the WEN system requires less time and provides better concentration 
quantification of the analytes both singly and in mixtures. 

Acknowledgements 

The authors would like to thank H.Y. Yue and D.X. Lin for constructive suggestions on the sensor 
fabrication and experimental process. Also, we are grateful to Z.P. Zhang for valuable help in the 
previous software development. This work is supported by National Natural Science Foundation of 
China (No. 60871034 and 60971020) and Specialized Research Fund for the Doctoral Program of 
Higher Education (No. 200802130020). 

References and Notes 

1. Gardner, J.W.; Bartlett, P.N. Electronic Noses: Principles and Applications; Oxford University 
Press: Oxford, UK, 1999; pp. 140-179. 

2. Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction: 
Electronic Nose Technology; WILEY-VCH: Weinheim, Germany, 2003; pp. 134-159. 

3. Lee, D.; Lee, D.; Ban, S.; Lee, M.; Kim, Y. SnO2 gas sensing array for combustible and explosive 
gas leakage recognition. IEEE Sens. J. 2002, 2, 140-149. 

4. Lee, D.; Lee, D. Environmental gas sensors. IEEE Sens. J. 2001, 1, 214-224. 
5. Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 

2008, 108, 705-725. 
6. Ghasemi-Varnamkhasti, M.; Mohtasebi, S.S.; Siadat, M.; Balasubramanian, S. Meat quality 

assessment by electronic nose (Machine Olfaction Technology). Sensors 2009, 9, 6058-6083. 
7. El Barbri, N.; Llobet, E.; El Bari, N.; Correig, X.; Bouchikhi, B. Electronic nose based on metal 

oxide semiconductor sensors as an alternative technique for the spoilage classification of red 
meat. Sensors 2008, 8, 142-156. 

8. Khallaf, W.; Pace, C.; Gaudioso, M. Least square regression method for estimating gas 
concentration in an electronic nose system. Sensors 2009, 9, 1678-1691. 

9. Cho, J.H.; Kim, Y.W.; Na, K.J; Jeon, G.J. Wireless electronic nose system for real-time 
quantitative analysis of gas mixtures using micro-gas sensor array and neuro-fuzzy network.  
Sens. Actuat. B 2008, 134, 104-111. 

  



Sensors 2011, 11              
 

 

504

10. Yu, X.; Li, C.; Low, Z.N.; Lin, J.; Anderson, T.J.; Wang, H.T.; Ren, F.; Wang, Y.L.; Chang, C.Y.; 
Pearton, S.J.; Hsu, C.H.; Osinsky, A.; Dabiran, A.; Chow, P.; Balaban, C.; Painter, J. Wireless 
hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode 
sensors. Sens. Actuat. B 2008, 135, 188-194. 

11. Shepherd, R.; Beirne, S.; Lau, K.T.; Corcoran, B.; Diamond, D. Monitoring chemical plumes in 
an environmental sensing chamber with a wireless chemical sensor network. Sens. Actuat. B 2007, 
121, 142-149. 

12. Panigrahi, S.; Balasubramanian, S.; Gub, H.; Logue, C.M.; Marchello, M. Design and development 
of a metal oxide based electronic nose for spoilage classification of beef. Sens. Actuat. B 2006, 
119, 2-14. 

13. Capone, S.; Zuppa, M.; Presicce, D.S.; Francioso, L; Casino, F.; Siciliano, P. Metal oxide gas 
sensor array for the detection of diesel fuel in engine oil. Sens. Actuat. B 2008, 131, 125-133. 

14. Waitz, T.; Becker, B.; Wagner, T.; Sauerwald, T.; Kohl, C.D.; Tiemann, M. Ordered nanoporous 
SnO2 gas sensors with high thermal stability. Sens. Actuat. B 2010, in press. 

15. Natale, C.D.; Martinelli, E.; D’Amico, A. Counteraction of environmental disturbances of 
electronic nose data by independent component analysis. Sens. Actuat. B 2002, 82, 158-165. 

16. Capone, S.; Siciliano, P.; Barsan, N.; Weimar, U; Vasanelli, L. Analysis of CO and CH4 gas 
mixtures by using a micromachined sensor array. Sens. Actuat. B 2001, 78, 40-48. 

17. Sharma, R.K.; Chan, P.C.H.; Tang, Z.; Yan, G.; Hsing, I.M.; Sin, J.K.O. Sensitive, selective and 
stable tin dioxide thin-films for carbon monoxide and hydrogen sensing in integrated gas sensor 
array applications. Sens. Actuat. B 2001, 72, 160-166. 

18. Han, N.; Tian, Y.; Wu, X.; Chen, Y. Improving humidity selectivity in formaldehyde gas sensing 
by a two-sensor array made of Ga-doped ZnO. Sens. Actuat. B 2009, 138, 228-235. 

19. General Information for TGS Sensors; Figaro Gas Sensor Company: Osaka, Japan, 2000. 
20. Sohn, J.H.; Atzeni, M.; Zeller, L.; Pioggia, G. Characterisation of humidity dependence of a metal 

oxide semiconductor sensor array using partial least squares. Sens. Actuat. B 2008, 131, 230-235. 
21. Baha, H.; Dibi, Z. A novel neural network-based technique for smart gas sensors operating in a 

dynamic environment. Sensors 2009, 9, 8944-8960. 
22. Wagner, T.; Kohl, C.D.; Froba, M.; Tiemann, M. Gas sensing properties of ordered mesoporous 

SnO2. Sensors 2006, 6, 318-323. 
23. Liao, L.; Zheng, Z.; Yan, B.; Zhang, J.X.; Gong, H.; Li, J.C.; Liu, C.; Shen, Z.X.; Yu, T. 

Morphology controllable synthesis of α-Fe2O3 1D nanostructurs: Growth mechanism and 
nanodevice based on single nanowire. J. Phys. Chem. C 2008, 112, 10784-10788. 

24. Golovanov, V.; Liu, C.C.; Kiv, A.; Fuks, D.; Ivanovskaya, M. Microfabricated one-electrode 
In2O3 and Fe2O3-In2O3 composite sensors. Comput. Model. New. Tech. 2009, 13, 68-73. 

25. Peng, J.; Chai, C.C. A study of the sensing characteristics of Fe2O3 gas-sensing thin film.  
Sens. Actuat. B 1993, 14, 591-593. 

26. Jing, Z.; Wang, Y.; Wu, S. Preparation and gas sensing properties of pure and doped  
gamma-Fe2O3 by an anhydrous solvent method. Sens. Actuat. B 2006, 113, 177-181. 

27. Gardner, J.W. Detection of vapours and odours from a multisensor array using pattern recognition 
Part 1. Principle component and cluster analysis. Sens. Actuat. B 1991, 4, 109-115. 

28. Gardner, J.W.; Taylor, J.E. Novel convolution-based signal processing techniques for an artificial 
olfactory mucosa. IEEE Sens. J. 2009, 9, 929-935. 



Sensors 2011, 11              
 

 

505

29. Song, K.; Wang, Q.; Zhang, H.; Cheng, Y. Design and implementation a real-time electronic nose 
system. In Proceedings of the International Instrumentation and Measurement Technology 
Conference, Singapore, 5–7 May 2009; pp. 589-592. 

30. Gardner, J.W.; Hines, E.L.; Tang, H.C. Detection of vapours and odours from a multisensor array 
using pattern recognition Part 2. Artificial neural networks. Sens. Actuat. B 1992, 9, 9-15. 

31. Bermak, A.; Belhouari, S.B. Bayesian learning using gaussian process for gas identification.  
IEEE Trans. Instrum. Meas. 2006, 55, 787-792. 

32. Wang, Q.; Song, K.; Guo, T. Portable vehicular electronic nose system for detection of 
automobile exhaust. In Proceedings of the IEEE Vehicle Power and Propulsion Conference, Lille, 
France, 1–3 September 2010. 

33. Distante, C.; Ancona, N.; Siciliano, P. Support vector machines for olfactory signals recognition. 
Sens. Actuat. B 2003, 88, 30-39. 

34. Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. 
Sens. Actuat. B 2005, 107, 730-737. 

35. Ge, H.; Liu, J. Identification of gas mixtures by a distributed support vector machine network and 
wavelet decomposition from temperature modulated semiconductor gas sensor. Sens. Actuat. B 
2006, 117, 408-414. 

36. Suykens, J.A.K.; Vandewale, J. Least squares support vector machines classifiers. Neural 
Process. Lett. 1999, 9, 293-300. 

37. Suykens, J.A.K. Least squares support vector machines for classification and nonlinear modeling. 
Neural Network World 2000, 10, 29-47. 

38. Liu, X.; Zhang, J.; Guo, X.; Wu, S.; Wang, S. Porous α-Fe2O3 decorated by Au nanoparticles and 
their enhanced sensor performance. Nanotechnology 2010, 21, 095501. 

39. Lin, H.Y.; Chen, Y.W.; Li. C. The mechanism of reduction of iron oxide by hydrogen. 
Thermochim. Acta 2003, 400, 61-67. 

40. Nakatani, Y.; Matsuoka, M. Some electrical properties of γ-Fe2O3 ceramics. Jpn. J. Appl. Phys. 
1983, 22, 233-239. 

41. Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. 
Chem. Eng. Sci. 2009, 64, 801-811. 

42. TMS320F28335 Digital Signal Controllers (DSCs) Data Manual; Texas Instruments Corporation: 
Dallas, TX, USA, 2007. 

43. A True System-on-chip Solution for 2.4 GHz IEEE 802.15.4/ZigBee; Texas Instruments 
Corporation: Dallas, TX, USA, 2005. 

44. Hayes, J.; Beirne, S.; Lau, K.T.; Diamond, D. Evaluation of a low cost wireless chemical sensor 
network for environmental monitoring. In Proceedings of the IEEE Sensors, Lecce, Italy, 26–29 
October 2008; pp. 530-533. 

45. Duan, K.; Keerthi, S.S.; Poo, A.N. Evaluation of simple performance measures for tuning SVM 
hyperparameters. Neurocomputing 2003, 51, 41-59. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


