Supplementary Information

Jesús Tamez-Duque 1, Rebeca Cobian-Ugalde 1, Atilla Kılıçarslan 2, Anusha Venkatakrishnan 2, Rogelio Soto 1 and Jose Luis Contreras-Vidal 2,*

1 National Robotics Laboratory, School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey N.L. 64849, Mexico; E-Mails: chuy_611@hotmail.com (J.T.-D.); cobian.rivka@gmail.com (R.C.-U.); rsoto@itesm.mx (R.S.)

2 Laboratory for Non-Invasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA; E-Mails: a.kılıçarslan@gmail.com (A.K.); anushavenkat1@gmail.com (A.V.)

* Author to whom correspondence should be addressed; E-Mails: jlcontreras-vidal@uh.edu; Tel.: +1-713-743-4429.

Figure S1. Multiplexor with sensor inputs VO1-VO6. Wixel module is included for wireless transmission of data.
Figure S2. Electronic configuration used for each sensor.

Bending effect on pressure measurements.

68.37 mm Hg reference.

\[
\begin{array}{ccc}
\text{r} & \text{73.05 mm Hg} & \text{106.85 %} \\
\text{r} & \text{78.04} & \text{114.14 %} \\
\text{r} & \text{79.42} & \text{116.16 %} \\
\text{r} & \text{85.29} & \text{124.76 %}
\end{array}
\]

Figure S3. Measurement variations with respect to sensor bending.

Table S1. Component details for the developed circuit shown in Figures 6 and 7.

<table>
<thead>
<tr>
<th>Name on Schematic</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1–S6</td>
<td>Tekscan’s FlexiForce® A401-25 Force Sensors</td>
</tr>
<tr>
<td>SN54LV4051A</td>
<td>CMOS Analog Multiplexer</td>
</tr>
<tr>
<td>WIXEL</td>
<td>Polulu Wixel©</td>
</tr>
<tr>
<td>MCP6004</td>
<td>Op-amp</td>
</tr>
<tr>
<td>R1-R6</td>
<td>20k Resistor (1% tolerance)</td>
</tr>
<tr>
<td>R8</td>
<td>2.2k Resistor (1% tolerance)</td>
</tr>
<tr>
<td>R7</td>
<td>1.8k Resistor (5% tolerance)</td>
</tr>
</tbody>
</table>

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).