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Abstract: Mobile Edge Computing (MEC) relates to the deployment of decision-making processes at
the network edge or mobile devices rather than in a centralized network entity like the cloud.
This paradigm shift is acknowledged as one key pillar to enable autonomous operation and
self-awareness in mobile devices in IoT. Under this paradigm, we focus on mobility-based services
(MBSs), where mobile devices are expected to perform energy-efficient GPS data acquisition while also
providing location accuracy. We rely on a fully on-device Cognitive Dynamic Systems (CDS) platform
to propose and evaluate a cognitive controller aimed at both tackling the presence of uncertainties
and exploiting the mobility information learned by such CDS toward energy-efficient and accurate
location tracking via mobility-aware sampling policies. We performed a set of experiments and
validated that the proposed control strategy outperformed similar approaches in terms of energy
savings and spatio-temporal accuracy in LBS and MBS for smartphone devices.

Keywords: trajectory; stay point; cognitive control; smartphone; location; power-aware

1. Introduction

Smart devices in IoT systems incorporate multiple sensors that potentially enable them with
context-awareness. Among these sensors, location sensors play a critical role in IoT, specifically in
use cases in which nodes, such as smartphones, are dispersed on large areas and might have different
mobility patterns. For these cases, continuous fine-grained location readings are fundamental for
further individual mobility pattern mining. However, energy consumption deters continuous location
sensing as embedded GPSs are power-hungry modules with a high cost on battery-powered devices.
This calls for novel solutions to reduce energy consumption without compromising the quality of
location data in terms of accuracy and granularity. In particular, we have recently witnessed a
paradigm shift from Mobile Cloud Computing (MCC) toward Mobile Edge Computing (MEC) fog
computing solutions, which also contribute to reducing the latency and enhance the security of
collected information: mobile devices are expected to play a more active processing role rather than
simply sensing and transmitting tasks [1].

An individual’s mobility can be modeled as a sequence of events raised from the interaction
with frequent places [2]. A mobility sensing application might take advantage of these events and
their patterns to adjust the GPS sampling accordingly and to avoid redundant location fixes to save
energy (power-aware event-based sensing). Instead, periodic sampling does not take into account the
diversity in actual human mobility. Thus, for a better energy control in always-on and power-aware
on-device location and mobility sensing, it is desirable to [3]: (i) take into account adaptive sampling
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rate of the employed sensors and (ii) implement optimized local analytic and control mechanisms to
assist this purpose.

In this regard, advances in neuroscience offer control engineering a source of inspiration to recast
classic controllers into more optimized and adaptive ones, based on the claim that machines and living
organisms might exhibit similar behavioral mechanisms, with parallels between computation and
control mechanisms [4,5]. Cognitive control relies on the concept of the information gap between what a
Cognitive Dynamic System (CDS) knows about the environment and what it must know to achieve a
goal. It is inspired by the action-oriented theory of controlled sensing: what we perceive is determined by
what we do [5], so that the relevance of actions is only determined within the context of perception in
an environment prone to unexpected and unpredictable events [6]. However, the successful application
of CDSs to real-world problems in mobile devices has still been rather limited [7].

Under event-based sensing and CDS paradigms, in a previous work [7], we proposed an on-device
sensing architecture, without cloud-dependency, to characterize an individual’s mobility based on
mobility events. In this paper, we extend our previous work and propose a cognitive controller that
exploits mobility information learned by a CDS for accurate and energy-efficient on-device location
tracking via mobility-aware sampling policies.

We argue that CDS-inspired solutions are fundamental to enable a truly distributed intelligence
of mobile devices, a highly desirable feature in IoT systems. Similarly, we stress that event-based
control, where GPS sampling is event-triggered, is closer in nature to how humans interact with the
environment, and it suits a clear purpose for mobile devices with proven control performance and low
resource utilization [8]. Our main contribution is summarized as follows: an innovative power-aware
control approach for IoT devices to enable on-device location data processing and adaptive GPS
sampling rates, based on cognitive control and event-based processing. We experimentally demonstrate
that a good accuracy-energy tradeoff for continuous location tracking is achieved by the proposed
cognitive controller, where associations between perception and action are formed via the individual’s
interaction with the environment.

The rest of this article is structured as follows. Section 2 presents the related work for location
data processing toward energy efficiency. Section 3 describes the proposed event-based representation
of an individual’s mobility. Section 4 details our cognitive controller strategy for accurate power-aware
location and mobility tracking. The implementation of our solution and its experimental evaluation
are discussed in Section 5, followed by conclusions in Section 6.

2. Related Work

Bio-inspired cognitive control encompasses the collection of processes that are involved in
generating and maintaining appropriate task goals (suppressing those no longer relevant), as well as
the way in which the current goal is used to modify attentional biases to improve task performance [9].
As proposed by Haykin [4,5], cognitive control implies a perception-action cycle, on which the
recently-perceived stimuli (in conjunction with learned information across time) have an impact
on the decisions made by the controller. Cognitive control is present in the decision making of multiple
human daily tasks, for instance in word prediction while reading [10], and in general, it allows the
individual to adapt when conflicts or contradictions with previous experience and expectations emerge.

Given its importance toward behavior understanding, a rich body of research has been carried out
toward human activity recognition. Sources such as raw inertial sensor data [11] and video analysis
have been employed for identifying and even modeling the transitions between the elemental steps of
complex activities like cooking or playing basketball [12].

Correctly modeling and understanding user behavior helps the better employment of computing,
energy, and sensing resources of a mobile device [2]. Regarding user’s mobility, prior works have
investigated energy efficiency in smartphone-based sensing platforms from different perspectives,
as it is essential for application and system developers to maximize the smartphone’s battery lifetime.
As surveyed in [13], there are multiple strategies for making the most of the mobile battery when
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employing different smartphone components. For mobility sensing, in [14], energy-efficient strategies
for continuous sampling in Location-Based Services (LBSs) were analyzed: approaches such as duty
cycling, recycling of existing data, and next data prediction have been documented.

Rather than describing the particularities of the proposed solutions (see existing surveys [13–15]),
herein, we focus our discussion on their high level characteristics. Most of the solutions sort the energy
consumption vs. accuracy tradeoff by adjusting the duty cycle of the GPS [16,17] or by replacing it with
another less expensive energy location provider (cellular ID, Wi-Fi Positioning System (WPS)) [18–20].
Similarly, some solutions replace the GPS with sensors that indirectly provide information of the
user’s displacements [21–23], aiming to account for the traveled distance in sampling rate adjustments.
Nevertheless, the data analysis in such solutions usually refers to short-term or instantaneous mobility;
adaptations are thus not tied to representative spatio-temporal characteristics of human mobility,
but only to recent speed changes. In other words, the understanding of an individual’s mobility has
received little attention for on-device exploitation toward energy efficiency.

On the other hand, the availability of large amounts of location data calls for techniques for
individual and collective human mobility mining [24], which gives a high-level meaning to raw
location data, making possible Mobility-Based Services (MBSs) such as place recommendation,
route suggestions, and mobility prediction. MBSs, unlike LBSs, which react to changes in raw location
data, self-adapt to people mobility patterns.

The extraction of mobility information in MBSs has been typically performed using an MCC
approach [25], where the smartphone only collects and transmits location data to be processed in
external computing entities (the cloud) to achieve a degree of mobility understanding. An MCC
approach is suitable for community sensing [15] to concentrate mobility information of groups of
people, but it faces important issues like latency, data fees, and energy consumption derived from raw
data transmission [1,26]. In any case, the analysis of an individual’s mobility does not require such a
concentration of location data, so that it can be performed directly on-device, the paradigm followed
in this work.

Nonetheless, a limited number of works have been proposed for on-device mobility mining.
An example of such on-device solutions is the SmartDC framework [27], which collects cellular ID
and WPS data to learn user’s frequent places (semantically, rather than raw coordinates) and to
predict stay times to reduce the sensors’ sampling rate following an optimization approach. However,
a drawback of optimization-based solutions is that the underlying modeling of sensors’ accuracy,
energy consumption, energy budget, and battery characteristics might not be held in practice. This is
because the operation of smartphone components can differ from a given modeling (accuracy changes,
lack of sensors data, non-linear battery discharge, etc.), which in the best scenario requires the sampling
rate to be constantly updated to become feasible. Additionally, optimization parameters (expected
running time, energy budget, accuracy level, etc.) might be hard to specify and tune for the diversity
of mobility conditions and scenarios that could be found in LBSs [14].

We argue that optimization approaches can be enriched with spatio-temporal attributes of the
user’s mobility. Thus, we propose a cognitive controller that reduces the uncertainty about user’s
mobility using adaptive sampling policies tailored to the current mobility state. Such policies are
implemented only when major changing events are detected.

3. Individual Mobility Modeling

In our work, stay points are the cornerstone for characterizing an individual’s mobility in a
spatio-temporal model (cognitive map) [2], under the simplified CDS architecture shown in Figure 1.
The architecture is structured into three main components: the perceptor that perceives the surrounding
environment and builds an internal representation of it, the actuator (controller) that generates actions
on the environment, and the working memory (in a Probabilistic Reasoning Machine (PRM)) that
provides a dynamic coupling between perception and action. These components form a closed-loop
feedback system, i.e., the perception-action cycle. The structure of the cognitive map is a multigraph,
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on which nodes refer to stay points (spatial information) and edges represent the user’s visit to them
(temporal attributes).

We model an individual’s mobility as a sequence of states, as shown in Figure 2. The transitions
between states are handled by the working memory of our system, based on the input stimuli and the
learned mobility in the map, e.g., the regularity of individual’s routines. Besides enter and exit events,
there are also events linked to no changes in mobility, i.e., the user is still inside a stay point (evstill sp)
or in a trajectory (evstill trj). Such events are relevant to detect mobility inconsistencies, as described
later on.
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Figure 1. Architecture of our Cognitive Dynamic Systems (CDS) [2] for mobility characterization and
events’ prediction.
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Figure 2. The mobility states in the cognitive controller and the transitions between them caused by
mobility events. An enter event (evin) causes the system to reach the SSP state, indicating that the user
arrived to a previously-known place. An exit event (evout) leads to the Strajectory state, denoting that the
user left a place and headed to the next one. The user might not follow the learned mobility patterns:
when the user does not leave a place at the expected time, an evstill sp event moves the system to
the Sabout exit state; when the user keeps on a trajectory and does not arrive at a place as expected,
an evstill trj event makes the system reach the Sabout enter state.

3.1. Mobility States

The working memory derives meaningful information from the current mobility state and
transitions (see Figure 2), for decision making in the cognitive controller. Table 1 provides a brief
description of these states; notice that we define two types of mobility states:

• Observed mobility states: They are detected by system perceptors without involving further
processing, i.e., the SSP and Strajectory states.

• Derived mobility states: They are detected by the working memory when inconsistencies
(mismatches) are found between the observed mobility and the cognitive map information,
i.e., the Sabout enter and Sabout exit states.

Table 1. Mobility states defined for the proposed CDS.

State Type Description

Trajectory (Strajectory) Observed The user is moving between stay points, consistent with learned information.
Stay point (SSP) Observed The user is inside a stay point, consistent with learned information.

About Exit (Sabout exit) Derived
The user is inside a stay point, although she/he is expected to be already outside
the place, i.e., there is inconsistency with respect of learned information.

About Enter (Sabout enter) Derived
The user is moving between stay points, although she/he is expected to be already
inside a place, i.e., there is inconsistency with respect of learned information.

3.2. Motion States Transition

Human mobility might be expressed in terms of pauses when visiting stay points and the speed
during trajectory. On the one hand, a visit to a stay point yields a mobility state transition from high to
low speed (idleness) during enters and low to high speed during exits. Considering that a high speed
requires a high sampling rate to ensure spatial accuracy, then a high rate would be appropriate at the
enter and exit stay points. On the other hand, a low sampling rate at the middle of a visit might suffice
as motion is not expected to occur. A sampling rate that accounts for such a motion state transition
could produce a spatio-temporal accurate tracking while also achieving energy efficiency.

Similarly, when moving between stay points, the transportation mode, detected by a Human
Activity Recognition (HAR) module, is used to infer the user’s speed to adjust the GPS sampling rate,
again assuming a fast rate for high speeds. We focused on transportation modes in the set {static
(0–1 m/s), walking (1–2 m/s), cycling (2–5 m/s), vehicle (5–20 m/s, or more)}. The values shown in
parenthesis, which are not definitive and can be configured, aid in obtaining such speed insight, as they
are typical in people’s mobility [28]. We follow this rationale aiming to cover the different stages of a
user’s mobility: the varying motion between stay point displacements and the transition to idleness
during stay point visits.
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3.3. Predictions of Mobility States

The CDS working memory generates spatio-temporal predictions from enter/exit events using
the cognitive map information. The timestamp t of an event aids the traversal of the cognitive map
nodes, filtering out only those transitions meaningful to a prediction, expressed as ρ = (sp, t), where sp
is the stay point involved in the predicted event. For instance, whenever the user enters a place (i.e.,
a evin event is detected), the working memory predicts an exit ρout; similarly, once the user leaves a
place (evout), an enter prediction ρin is produced. Predictions aid the cognitive controller in producing
actions (i.e., GPS sampling rate adjustments) and detecting irregularity in the individual’s mobility.

3.4. Mismatches

A prediction not held indicates that the individual is not moving as expected, so that the system
detects a mismatch (inconsistency) and transitions to a derived mobility state. For a prediction ρ and a
no-change event ev (evstill sp, evstill trj), a mismatch is detected if:

|ev.t− ρ.t| > ρtime (1)

where ρtime is a time threshold that adjusts the sensitivity to temporal inconsistencies.
Thus, if an evstill sp or an evstill trj event represents a mismatch, the CDS moves to the Sabout exit and

Sabout enter states, respectively. Mismatches are notified to the controller for implementing a sampling
policy aimed at improving the CDS perception.

4. Cognitive Control for Power Savings

In engineering terms, a Cognitive Controller (CC), within a CDS architecture as shown in Figure 3,
holds two main objectives: one is a system-specific objective, while the second one is to reduce the
information gap (uncertainty) between the observed information and the sufficient information to
achieve the system-specific goal [5]. In our CDS, the CC first detects whether a mobility mismatch
exists to implement one of such objectives:

• To reduce energy consumption: If consistent mobility is found (low uncertainty), then it is
possible to rely on the predictions for adjusting the sampling, i.e., the controller reduces the
sensors’ sampling rate to save energy (green arrow).

• To reduce mobility uncertainty: If inconsistent mobility is found (high uncertainty due to
mobility mismatch), the controller must reduce the information gap by using a sampling focused
on improving the mobility perception (red arrow).

Executive
memory

Working
memory

Perceptual
memory

State (classic)
controller

Cognitive
controller Cognitive action

(energy saving)
System Environment

(Mobility)

Action components PRM Perception components

Cognitive action
(uncertainty reduction)

Sensory
measurements

Physical
action

mis-
match?

N

Y

Figure 3. A Cognitive Controller (CC) within a CDS architecture, adapted from [5]. A classic controller
produces a physical action if observed mobility is consistent with learned mobility (green arrow).
Uncertainty is reduced by increasing the observations in perception (red arrow).

Figure 4 shows the CC main blocks. The reaction of a CC to stimuli is called a cognitive action; in our
system, it refers to a sampling policy. The CC selects a policy from the pool of exploration-exploitation
policies based on the current mobility state, and then, the Sampling Decision Maker instantiates such
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policy using the predictions from the working memory. The cognitive action is kept in the executive
memory to account for its execution in further PAC loops. The CC is expressed as:

CC : (ρ, ρmismatch flag) 7→ Sconf (2)

where ρ and ρmismatch flag are the prediction and mismatch flag, respectively, Sconf = (s, Treal) is the
sensor configuration, and s ∈ {GPS, accelerometer} and Treal the sampling.

Pool of
policies

(explore-exploit)

Policy
selector

Sampling
decision
maker

Executive
memory

Past
decisions (Z-1)

Produced
cognitive action

Set of
possible

actions for
next PAC

Energy reduction policy
Reduce uncertainty policy

...

Figure 4. The functional blocks of the proposed CC, adapted from [5]. A pool of explore-exploit policies
provides the sampling decision maker with cognitive actions.

4.1. Exploitation and Exploration Behavior

Mobility event changes cause the CC to select an exploitation or exploration policy:

• Exploitation policies: use a sampling that exploits the PRM’s predictions when mobility
uncertainty is low, i.e., they are associated with reducing energy consumption actions suitable
when the user roughly moves as expected.

• Exploration policies: are for cases on which predictions are not held, i.e., the CDS does not
provide enough spatio-temporal accuracy due to mobility mismatches, and the CC tries to regain
tracking accuracy based on the current mobility mode. Thus, these policies are associated with
reducing system uncertainty.

The following section describes in detail the sampling policies designed for the CC, as well as the
thorough process to generate cognitive actions for power savings.

4.2. Policies Tailored to Mobility States

We defined three sampling policies as cognitive actions. The stay point and trajectory state
policies are for regular mobility (SSP and Strajectory, respectively). The about exit policy is selected
during the Sabout exit state (the user has not left the place at the predicted time). For the Sabout enter
state, the trajectory state policy is selected because the user is still moving toward a stay point, and the
accuracy of the tracking must be ensured.

4.2.1. Stay Point State Policy

The motion state transition during visits could be modeled by a sigmoid function, sig(x) = 1
1+e−αx .

Note from Figure 5a that the sigmoid non-linearity can be exploited to map a sampling sequence
with a fast rate during a visit’s start and end, and a slower sampling rate i the middle. The sigmoid
generates the sampling during the SSP state, using the stay times of the predictions provided by the
working memory.
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Figure 5. A representation of the sigmoid sampling policy for the SSP state. (a) The non-linear
increments (∆y) of the sigmoid suit the fast sampling rate at the start and end of a visit and the slow
sampling at the middle. (b) A piece-wise linear approximation of the sigmoid so as to avoid long
empty sampling intervals.

We approximate the sigmoid through ςn segments line segments, as shown in Figure 5b:

Σsegments → ςsegment(xmin, xmax, tmin, tmax)k, ∀ k ∈ [1, . . . , ςn segments] (3)

where xmin, tmin are the domain’s start and timestamp, as xmax, tmax are for the domain’s end. For each
ςsegment, a specific ςtime sep time threshold indicates the maximum time gap without sensor data, e.g.,
minutes. The list of time thresholds defines the set Σtime seps.

The sigmoid-based sampling produces a set Tfunction of intervals that are evaluated under the
sigmoid to obtain the actual Treal sampling. The predicted stay time helps to map the sampling times
from the sigmoid (Tfunction) to real-world values (Treal) according to the mobility learned from the user.

A different degree of spatio-temporal accuracy can be achieved through the Σsegments and Σtime seps

parameters, with a different energy impact. Although it could be simpler to divide the sigmoid into
an arbitrary number of slices (i.e., linear space), defining such a value is hard: a large value would
produce a fast sampling rate at the cost of consuming more energy, while a small value would reduce
the energy consumption, but also the accuracy.

4.2.2. Trajectory State Policy

There are many factors affecting the user’s mobility during a trajectory:
meteorological phenomena, roads maintenance, etc., could cause discrepancies from expected
mobility. We argue that while it is safe to rely on learned mobility to adjust the GPS sampling during
visits, it is not the case in trajectories due to such discrepancies. As a result, we do not model motion
during a trajectory other than the user moving within a speed range.

To this end, we employ the transportation mode detected by the HAR module to obtain a clue
about the current user’s speed. As shown in Figure 6, we use a window of detected transportation
modes (of length trjwin size) to calculate a speed tendency as follows. We detect an up speed tendency
when faster transportation modes are at the window’s end; if slower transportation modes are at the
end, we detect a down speed tendency.

Each transportation mode is associated with a specific sampling rate. The sampling policy uses
the detected speed tendency as follows:

• Up speed tendency: We select the sampling rate of the fastest transportation mode in the window.
This aims to reduce the accuracy loss during location tracking.

• Down speed tendency: We select the average sampling rate of transportation modes in the
window. This aims to smooth the decrements in the sampling rate, as the user might start moving
again soon.
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This policy uses both exploration and exploitation, as it quickly reacts to the increasing speed
during a trajectory, while it also reduces the sampling rate during stops.

... W V V

Tendency
window size

Speed tendency is up,
using sampling rate of the fastest

transportation mode detected
rate (V)

... V W S

Tendency
window size

Speed tendency is down,
using the average sampling rate

of transportation modes detected

mean(rate (V), 
rate (W), rate (S))

rate (static) sr
4

rate (vehicle) sr
1

rate (biking) sr
2

rate (walking) sr
3

Figure 6. The sampling policy for the Strajectory state. The speed tendency is inferred from a window of
transportation modes, and a sampling rate is assigned accordingly. Sampling rates are related to the
speed of typical transportation modes (the sr1 is the fastest one).

4.2.3. About Exit State Policy

During the Sabout exit state, the CC aims to detect an eventual departure from the current stay
point. To do so, the CDS checks user’s mobility via the HAR module as follows. As shown in
Figure 7, we define a Finite-State Machine (FSM) with the set {sr1, . . . , srn} of sampling rates as states
(specifically, {30, 60, 90, 120, 150, 180 s}, although it is configurable). The FSM moves to the next state
when motion is not detected (i.e., the outcome of the HAR module is static). Whenever motion is
detected, the FSM moves back to the initial state and instructs a GPS sampling to confirm the place exit.

Motion detected

sr
1 ...

No motion detected

τmode  ! =  static

τmode = static

sr
2

sr
n-1

sr
n

Figure 7. The sampling policy for the Sabout exit state. The HAR-based motion detection controls the
transitions to adjust the sampling rate. The lack of motion causes the transitions from the fast-rate
initial states (sr1) to the slow-rate ending states (srn).

4.3. Fusion of Mobility Data Sources

As a framing architecture to implement the cognitive controller, we used the Subsumption
Architecture (SA) proposed by Brooks [29]. The SA naturally couples sensory information to action
selection in a layered hierarchical manner inspired by principles of brain organization [30]. The SA
relies on distributed and parallel control, by integrating the perception, control, and action in
a manner similar to animals: behaviors are decomposed into sub-behaviors organized into a
hierarchy in which higher layers use lower ones to create a more complex behavior; see Figure 8.
There is not a centralized control within these modules, but they communicate with each other via
inhibition/suppression signals.

The CDS relies on combined fine- and coarse-grained mobility information derived from
accelerometer and GPS data, respectively, to track the user with accuracy and energy efficiency.
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Figure 8. The subsumption architecture for the CC. The bottom layer includes different policies,
executed according to detected transitions in the top level states.

Figure 8 shows the SA-enabled controller consisting of (i) a reactive control layer where
low-complexity sensory events trigger simple actions or policies, (ii) an adaptive control layer that
generates conditioned responses by exploiting the acquired representations as a result of learning,
and (iii) a contextual control layer that generates specific actions when a discrepancy between expected
and actual events occurs. In this sense, the cognitive map partially solves the lack of memory and
symbolic representation in the SA. Moreover, the CC aids in the fusing of GPS and accelerometer data
using two layers with distinctive and autonomous operation according to the active policy.

5. CDS Implementation and Experimental Evaluation

In this section, we discuss the implementation of our CDS on real-world devices, as well as its
performance evaluation in both energy consumption and the spatio-temporal accuracy of detected
events. We compared such performance against representative approaches in the literature, as well as
against variants of itself (in terms of the sensors employed for mobility information input).

5.1. CDS Implementation

In this work, our solution was implemented on Android-powered mobile devices (Version 7,
also known as Nougat) due to its flexible developing environment for accessing and controlling sensors’
information. However, the underlying principles of the proposed cognitive controller are still valid
for other mobile platforms. The continuous and extended acquisition is hindered by power-saving
mechanisms controlling the power-states at the system and application level: Doze and App StandBy
features, respectively [31]. We implemented the following workarounds. We relied on the scheduling
of Alarms to ensure that the mobile device was active (even woken up) during the sampling specified
by the cognitive action. We implemented the CDS as a foreground service for whitelisting it to avoid its
interruption by the OS. Similarly, we employed WakeLocks to ensure that the device remained active
during data collection and processing.

As a way to enhance the GPS access provided by Android, we implemented a collecting interval
(using a Timer and TimerTask combination); if a fix was not obtained, the perceptors were notified
using a special event. Note that Android lacks ways to cancel location requests that are not likely to be
obtained, leading to unnecessary energy overhead.

Figure 9 shows the CDS blocks implemented as a middleware using different Android API
components across multiple OS layers for isolating the complexity of sensors access and power
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management. Here, the SA eased the implementation of the data fusion scheme and the nested FSMs
shown in Figure 8.

Background service

notification of obtained location fix
(or of a not obtained fix due to time out)

Current
mobility

event

New sensors
configuration

Learned
mobility

information

notification of accelerometer samples 

S = Service

AM = AlarmManager

BR = BroadcastReceiverI = Intent LL = LocationListener

LL = SensorsListener

WL = WakeLock

LM = LocationManager

SM = SensorsManager

Running location-based mobile application I

S

TimerTask controller
(enables a time window for
obtaining sensor samples)

Sensor administrator (Acc)

Sensor listener

Accelerometer

SM

SL

TimerTask controller
(enables a time window for
obtaining location update)

GPS administrator

GPS listener

GPS receiver

LM

LL

Pe
rc

ep
tu

al
 m

em
or

y

Short-term memory

PRM
(looks at instant and learned mobility information for  providing

an spatial-time estimation and identifying mismatches)

Policy executor
(instructs readings according to specified configuration)

WakeLock manager
(The PARTIAL_WAKE_LOCK is released)

Alarm manager
(sets the smartphone to wake up at scheduled time)

zZzZ

AM,BR

WL

Window-based
geofencing

Stay points
detection algorithm

HAR module

M
ob

ili
ty

 e
ve

nt
s 

de
te

ct
or

Long-term memory

STM
Estimation
generation

Event miner
(explores the STM) Cognitive controller

(Uses the estimation and mismatch flag 
for adapting sensors’ sampling)

registers for location tracking

Device is idle

Sensors’ data collection

Android software
stack layers

HAL
(Hardware
Abstraction

Layer)

API
(Application

Programming
Interface)

Framework

Applications

Background service S

WakeLock manager
(The PARTIAL_WAKE_LOCK is acquired)

Alarm manager
(the alarm is fired and caught)

zZzZ

AM,BR

WL

Figure 9. The CDS architecture implemented in the Android software stack. The different employed
Android API components are labeled.

For a fast system simulation and evaluation, we also implemented the CDS core components in a
Python desktop environment. This desktop version uses files with timestamped locations as input,
allowing a fast execution of experiments. The CDS requested timestamped location fixes, while a
time-aware file reader delivered the proper fix in the file.

5.2. Materials and Methods (Setup)

We evaluated the CDS via desktop simulations and on-device deployments. We created
a comparison baseline using location data collected with a 1-Hz sampling rate GPS logger
(QStarz GPS logger device (Qstarz International Co., Ltd., Taipei, Taiwan), Model BT-Q1000EX.
Additional information is on the official website [32]) and smartphones with a 30-s sampling rate.
We processed such data using the CDS desktop version to detect mobility events and construct the
ground truth cognitive maps, which were validated by participant users. For comparison, we used the
output events detected by the CDS with different configurations, whether in desktop or on-device trials.

We used smartphones, with the specifications in Table 2, to collect mobility data of five users
during several weeks. User 1 carried out the GPS logger together with a smartphone so that similar
GPS signal strengths were observed. In total, we collected 17 trajectories, 8 of them with smartphone
plus GPS logger data, while 9 of them only with smartphone data.
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Table 2. Main technical specifications of the employed smartphones.

Feature/Smartphone Motorola Nexus 6 Samsung Galaxy A5

System on Chip (SoC) Qualcomm Snapdragon 805 Exynos 7580 Octa
Processor Quad-core Krait 450 2.7 GHz Octa-core Cortex-A53 1.6 GHz
GPU Adreno 420 Mali T720MP2
Memory (internal storage) 3 GB RAM (64 GB) 2 GB RAM (16 GB)
Battery capacity 3220 mAh 2900 mAh
Battery technology Lithium polymer (Li-Po) Lithium-ion
Android OS Nougat (7.1) Nougat (7.0)

5.3. Spatio-Temporal Accuracy of Mobility Events

First, we evaluated the spatio-temporal accuracy of detected mobility events using different
configurations of the SSP state policy, as it produces the largest reduction in the GPS sampling rate with
an impact on event detection accuracy. For simplicity, we implemented the policies for the Strajectory

and Sabout exit as fixed sampling rates. We launched experimental trials using the parameter values
shown in Table 3, empirically selected, aiming at regular mobility scenarios.

Table 3. Input parameters for the CDS spatio-temporal accuracy assessment.

Cognitive
Controller

Sigmoid segments (Σsegments): (−5,−2.375), (−2.375,−1), (−1, 1), (1, 2.375), (2.375, 5)
(−4,−2.375), (−2.375,−1), (−1, 1), (1, 2.375), (2.375, 5)

Time separations (Σtime seps):
[90, 150, 180, 150, 90] seconds
[90, 120, 180, 120, 90] seconds
[60, 150, 180, 150, 60] seconds
[60, 120, 180, 120, 60] seconds

Trajectory sampling: 30-s fixed sampling rate

About exit sampling: 60-s fixed sampling rate

For both 1-Hz and 30-s trajectories, all of the stay points were detected, and users confirmed this.
Figure 10 shows the average enter time difference, which was short as the CDS used a trajectory policy
when the users arrived at stay points. Similarly, Figure 11 shows the exit time difference. Although the
sigmoid reduces the sampling rate, it does not produce a significant impact on the temporal accuracy,
yet it reduces the energy consumption.
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Figure 10. Enter time differences (timeDifferencein). (a) In the 1-Hz trajectories, the largest difference
being below 65 s. (b) For the 30-s trajectories, there are shorter differences (even sometimes negative),
as for many cases, the same GPS fix in the ground truth and observed mobility triggered the detection
of evin enter events.
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Figure 11. Exit time differences (timeDifferenceout). (a) For 1-Hz trajectories, values are within 65 and
165 s, aligned with the parameters of the sigmoid sampling (a theoretical maximum of 360 s). (b) For 30-s
trajectories, the differences are shorter than in the 1-Hz trajectories due to reduced ground truth data.

We measured the accuracy of the CDS during trajectories using the synchronized Euclidean
distance [33]. For 1-Hz trajectories, a distance of 9 m was achieved. For 30-s trajectories, 273 m were
obtained. Such accuracy depends on the user speed when moving, and the trials represent the worst
scenario, as users were moving by vehicle.

5.4. Energy Savings

We also estimated the energy savings of our CC’s adaptive sampling, considering a constant
energy consumption per GPS fix.

Figure 12 shows the proportion of saved (avoided) location updates with respect to the complete
location traces. The CDS requires significantly less fixes than those in ground truth traces (an average of
1.42%); due to the reduced size of ground truth data in the 30-s trajectories, this proportion is increased.

User 1
Trj. 1

User 1
Trj. 2

User 1
Trj. 3

User 1
Trj. 4

User 1
Trj. 5

User 1
Trj. 6

User 4
Trj. 1

User 5
Trj. 1

Trajectories

1.0

1.5

2.0

2.5

3.0

%
 o

f g
ro

un
d 

tru
th

 lo
ca

tio
n 

fix
es

Hypothetical 30-second sampling

(a)

User 1
Trj. 7

User 1
Trj. 8

User 2
Trj. 1

User 2
Trj. 2

User 2
Trj. 3

User 3
Trj. 1

User 3
Trj. 2

User 3
Trj. 3

User 3
Trj. 4

Trajectories

50

60

70

80

%
 o

f g
ro

un
d 

tru
th

 lo
ca

tio
n 

fix
es

(b)

Figure 12. The proportion of saved location fixes. (a) For the 1-Hz trajectories, the CDS used an average
of 1.42% of the ground truth fixes and 43% of a hypothetical 30-s sampling. (b) For the 30-s trajectories,
the CDS used an average of 65%. Notice that the sigmoid configurations with the largest Σtime seps

values used the lowest number of fixes.

In fact, we also performed simulations with our CDS and a subset (32 trajectories) of the cabspotting
database, which is composed of location fixes recorded up to 90 s apart by taxi cabs during 23 days [34].
For this dataset, our CDS employed 67% of ground truth fixes. (In consideration of its length
(1,987,200 s), our CDS employed 0.71% of the cabspotting database). Although the presented results
are based on simulations, they demonstrate the possibility of reduced energy consumption in accurate
location tracking.
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5.5. Comparison against Existing Approaches

We further investigated the actual CDS on-device performance with respect to other approaches,
replicating the underlying principles of similar solutions and implementing two approaches as
separated mobile sensing applications:

• Agnostic GPS sampling: It only collects location data using a 30-s sampling rate. No data
processing (mobility inference) or sampling control is performed.

• HAR-assisted GPS sampling (Senseless-like): It triggers a GPS sampling whenever fine-grained
motion is detected by the HAR module, as proposed by the Senseless framework [21]. The HAR
module uses a 30-s sampling rate.

We used the parameter values shown in Table 4 for all on-device deployments, based on the
results of desktop simulations. We deployed our CDS and one of the mobile applications on two
Nexus 6 smartphones. The devices were carried together by a campus student, which was also given
the logger device to collect ground truth data.

Table 4. Input parameters for the on-device evaluation of the CDS.

Cognitive
Controller

Sigmoid segments (Σsegments): (−5,−2.375), (−2.375,−1), (−1, 1), (1, 2.375), (2.375, 5)

Time separations (Σtime seps): {60, 120, 180, 120, 60} seconds

Strajectory sampling rates: Vehicle: 30 s, Biking: 60 s, Walking: 150 s, Static: 210 s
(for speed tendency processing), trjwin size = 3

Sabout exit sampling rates: {30, 60, 90, 120, 150, 180} s
(for the FSM based on motion detection)

Figure 13 shows the battery burnout of smartphones during the two trials. The CDS outperformed
the other approaches after the first day; the most important places (home and work) were learned so
that the CC adjusted the GPS sampling rate for energy efficiency. Tables 5 and 6 details the sensors’
accesses for both trials. The poor energy performance of existing approaches was caused, for the
agnostic GPS sampling, by its heavy use of GPS, while for the Senseless-like implementation, because of
its frequent processing of accelerometer data to detect idleness. The unnecessary access to sensors
and the processing of incoming data were lessened to some extent by our CDS, which improved the
energy consumption.
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Figure 13. Smartphone batteries’ burnout for the CDS and existing approaches. (a) For the Agnostic
GPS sampling system trial, the CDS increased the battery life by a factor of 1.3 (0.23 energy gain). (b) For
the Senseless-like implementation, the CDS increased the battery life by a factor of 1.6 (0.53 energy gain).
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Table 5. Sensors accesses for the Agnostic GPS sampling trial. The ground truth consisted of 720,227
fixes for the CDS and 535,494 fixes for the agnostic system.

HAR Interventions Requested Fixes % of Ground Truth Fixes

GPS agnostic
sampling - 17,800 3.32

CDS 7090
6639

(5213 at
GPS agnostic end)

0.92

Table 6. Sensors accesses for the Senseless-like trial. The ground truth consisted of 670,233 fixes for the
CDS, and 417,234 fixes for the Senseless-like system.

HAR Interventions Requested Fixes % of Ground Truth Fixes

Senseless-like
system 13,251 399 0.09

CDS
5671

(4593 at
Senseless-like end)

3236
(2004 at

Senseless-like end)
0.49

Tables 7 and 8 show the CDS spatio-temporal accuracy during these trials; the CDS accurately
detected mobility events. Existing approaches outperformed the CDS in terms of the trajectory distance
(12.66 m for the agnostic and 39.76 m for the Senseless-like system), at the cost of a higher energy
consumption and the lack of mobility learning features.

Table 7. The CDS spatio-temporal accuracy during the Agnostic GPS sampling trial. All the stay
points were detected; the missed visits were few and short, and the enter-exit time differences were
under thresholds.

Spatial Temporal

Detected stay points 3 Missed visits 0 of 20
Missed stay points 0 Average missed visits time 0
Average centroid distance (m) 16.28 Average timeDifferencein (s) 15.33
Average trajectory distance (m) 65.40 Average timeDifferenceout (s) 29.97

Table 8. The CDS spatio-temporal accuracy during the Senseless-like trial. Again, all the stay
points were detected; the missed visits were few and short, and the enter-exit time differences were
under thresholds.

Spatial Temporal

Detected stay points 6 Missed visits 5 of 27
Missed stay points 0 Average missed visits time 33.60
Average centroid distance (m) 60.62 Average timeDifferencein (s) 21.5
Average trajectory distance (m) 77.24 Average timeDifferenceout (s) 56.27

5.6. Comparison against CDS Variants

We evaluated the CDS capability to use different input sensors:

• Pure GPS CDS: The CDS exclusively uses GPS data to derive fine-grained mobility (i.e.,
the transportation mode) based on traveled distance and elapsed time.

• WPS CDS: The CDS employs the WPS location provider rather than GPS. The lack of WPS data
was associated with movement (i.e., no access points during trajectories) and its existence with
idleness (i.e., user inside a building).
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Figure 14 shows the battery burnout during these trials. Pure GPS CDS achieved a better energy
performance, partially due to the lack of accelerometer data collection and processing. On the right,
the CDS (with HAR and GPS data) outperformed WPS-CDS, due to the high energy consumption of the
Wi-Fi receiver to establish an Internet connection and determine the device’s location. Tables 9 and 10
details the sensors’ accesses. On Table 9, notice the considerable number of HAR interventions that
our CDS could perform, at the cost of the aforementioned shorter running time. On Table 10, see that
GPS + HAR CDS could retrieve almost double the location fixes as WPS-CDS.

Such a balance of sensors’ accesses translates to the spatio-temporal accuracy shown in
Tables 11 and 12. Note on Table 11 that although the Pure GPS CDS consumed less energy than
the GPS + HAR CDS, it was at the cost of a reduced accuracy in exit events’ detection: the HAR aided
the CDS in detecting an eventual exit that was confirmed using the GPS. On Table 12, the impact of
the WPS is observed as stay points and exit events were detected with a higher accuracy, which was
caused by the short range of access points’ signal: the coordinates of retrieved fixes are very close to
the access point (hence the short centroid distance), and as soon as the signal is lost, the departure is
determined. More work is needed to define a combination of WPS-GPS that improves the CDS energy
efficiency and ensures spatio-temporal accuracy.
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Figure 14. Smartphone batteries’ burnout: (a) For the GPS + HAR CDS vs. Pure GPS CDS trial; the Pure
GPS CDS increased the battery life by a factor of 1.2 (0.26 energy gain). (b) For the GPS + HAR CDS vs.
WPS CDS; the GPS + HAR CDS increased the battery life by 1.57 factor (0.39 energy gain).

Table 9. Sensors’ accesses during the GPS + HAR CDS vs. Pure GPS CDS comparison. The ground
truth consisted of 711,593 fixes for the GPS + HAR CDS and 910,837 fixes for the Pure GPS CDS.

HAR Interventions Requested Fixes % of Ground Truth Fixes

GPS + HAR CDS 4747 2819 0.39

Pure GPS CDS -

8077
(6318 at

GPS + HAR
CDS end)

0.88

Table 10. Sensors’ accesses during the CDS vs. WPS-CDS comparison. The ground truth consisted of
606,422 fixes for the CDS and 385,169 fixes for the WPS-CDS.

HAR Interventions Requested Fixes % of Ground Truth Fixes

WPS-CDS 4264 942 0.24

CDS
5351

(4219 at
WPS-CDS end)

1888
(995 at

WPS-CDS end)
0.31
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Table 11. Spatio-temporal accuracy for CDS variants during the vs. Pure GPS CDS trial. A single stay
point was missed (it was at the edge of the parameters for stay points’ detection). The missed visits
were few and short, and the enter-exit time differences were under thresholds.

Spatial Temporal

GPS + HAR CDS Pure GPS CDS GPS + HAR CDS Pure GPS CDS

Detected stay points 6 7 Missed visits 3 of 37 7 of 46
Missed stay points 1 0 Avg missed visits time 24.33 36.71
Avg centroid distance (m) 34.15 32.66 Avg timeDifferencein (s) 26.26 33.10
Avg trajectory distance (m) 74.83 43.83 Avg timeDifferenceout (s) 43.47 71.10

Table 12. Spatio-temporal accuracy for CDS variants during the vs. WPS-CDS trial. Again, the missed
visits were few and short, and the enter-exit time differences were under thresholds.

Spatial Temporal

CDS WPS-CDS CDS WPS-CDS

Detected stay points 3 3 Missed visits 1 0
Missed stay points 0 0 Avg missed visits time 51.00 0
Avg centroid distance (m) 46.02 10.01 Avg timeDifferencein (s) 15.76 123.71
Avg trajectory distance (m) 60.16 - Avg timeDifferenceout (s) 35.41 15.92

6. Conclusions

We proposed a cognitive controller with event-based processing for energy efficiency and
spatio-temporal accuracy in smartphone-based LBSs and MBSs. Our cognitive controller, part of
a CDS architecture that learns mobility patterns from users, aims to reduce the information gap
that a CDS has of its environment, which in our case was around the spatio-temporal predictions
generated from learned mobility and the exploitation-exploration reactions implemented whenever
such predictions were followed or missed. Our approach runs fully on-device, and we experimentally
validated its accuracy and energy efficiency.

Overall, our CDS contributes to a more proactive role of the smartphone, particularly for LBSs
and MBSs, providing the smartphone with true self-learning and self-adaptation, fundamental features
for the design and deployment of cognitive systems in IoT. We aim to further investigate increasing the
reliability of detected events by integrating more mobility data sources (sensors) using the SA control
architecture. Similarly, we aim to explore the self-definition and adjustment of sampling policies using
reinforcement learning and the energy-accuracy implications of decisions made. Finally, we aim to
improve the efficiency of existing perception-action systems using the cognitive paradigm, in particular
the memory and decision-making components.
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