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Abstract: The shadow prices of carbon emissions are essential for assessing emission abatement costs
and formulating environmental public policies. By adopting the directional distance function method,
this paper studies the shadow prices of carbon emissions caused by three main emission sources from
China’s planting industry for a panel of 30 provinces spanning the period 1997–2014. We find that
there is considerable regional heterogeneity in the shadow prices, and, of the 30 provinces, 23 are
characterized by decreasing trends while only seven are on the rise over time. This implies that
there is inefficiency of resource allocation among provinces, and the capacity for abatement increases
during the observed period. The results support the following recommendation: It might be worth
attempting to bring agriculture in China into line with its emission rights trading scheme, not only to
help motivate the reduction of emissions but also to improve resource allocation. Also, policymakers
are required to enhance regional cooperation and facilitate carbon-reduction technology transfer, to
improve the immaterial production factors’ contribution to planting industry growth.
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1. Introduction

Global greenhouse gas (GHG) emissions and associated climate change have been increasing at
accelerating rates in recent decades [1,2]. It is widely acknowledged that GHG emissions resulting
from anthropogenic sources are the main cause of global warming. According to Climate Change,
Agriculture and Food Security (CCAFS), direct emissions from food systems have reached 19–29% of
overall emissions caused by human activities [3]. China, meanwhile, as the biggest carbon emitter,
produces 28% of the world’s total emissions [2], and its agricultural sector’s emissions, which account
for 16–17% of its total [4], are roughly equivalent to 70% of India’s national emissions. Since China
announced in the Paris Agreement that it would shoulder its responsibility for curtailing carbon
emissions, its agricultural carbon emissions should not be a neglected issue any longer. Therefore, in
an effort to come into compliance with China’s “low-carbon economy” regime, it is worth examining
the abatement costs of carbon emissions for China’s agricultural sector. The main objective of our
paper is to accomplish this empirical work from the perspective of the planting industry, China’s
most important, representative agricultural industry. Also, this is fundamental to the design of carbon
reduction policies.

As global climate change becomes an increasing worldwide concern, a large number of studies
have focused on the issue of GHG emission abatement and the environmental performance of global
and regional economies. Since undesirable outputs, such as GHGs, that are by-products of the
production process are non-marketable and cannot be priced in accordance with normal commodities,
there would be obstacles if the costs to reduce them were to be measured. Extensive studies have been
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conducted to solve this problem. The shadow price method is one of the most important approaches
for deriving the marginal abatement costs of undesirable outputs. The shadow price, which can be
interpreted as the opportunity cost of reducing one additional unit of undesirable output in terms of
decreased desirable output or increased input [5,6], is a well-established and widely applied approach
for estimating undesirable outputs’ economic values under different frameworks.

Many earlier studies have concentrated to explore the theoretical framework of distance functions
to estimate shadow prices [5,7–11]. According to the literature review by Zhou et al. [12], each of
these shadow pricing models has its own particular field of employment as well as its strengths and
weaknesses, and no model has advantages over others for all aspects. It is important to choose an
existing model that meets the practical requirements in terms of data availability and realistic factors.
For this reason, we adopt the directional distance function (DDF) method that allows us to model the
production of both good and bad outputs and provides a practical and flexible approach to assess the
shadow price of carbon emissions.

In application, extensive studies involving the estimation of shadow prices have successfully
applied distance function methods across a variety of polluting industries. For example,
Coggins et al. [13] employed an output distance function to estimate the shadow price of SO2

abatement for Wisconsin coal-burning utility plants, which helped to approximate the allowance
price. By using a distance function, Murty et al. [14,15] investigated the marginal abatement costs
of water pollutants, such as Bio Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and
Suspended Solids (SS) in Indian sugar and other industries. Likewise, Hernández-Sancho et al. [16]
estimated the shadow prices of the pollutants (nitrogen, phosphorus, SS, BOD and COD) removed
in a treatment process for wastewater treatment plants located in Valencia, Spain. Similarly,
María Molinos-Senante et al. [17,18] estimated the CO2 shadow prices for wastewater treatment
plants as well as drinking water treatment plants. It is clear from these studies that the marginal
abatement costs can be estimated for various pollutants from different industries which face the
challenge of reducing pollution. The feasibility of environmental policies requires determining their
value in social and economic terms. This is very important for related companies and policy makers to
allow the introduction of incentives for using less contaminant production processes. Furthermore, as
global warming has worsened, more and more studies have concentrated on the abatement costs of
CO2, especially on country and sectoral levels. China, as the largest developing country and GHG
emitter, has long been the center of attention. Similar approaches have been adopted in China to
estimate the national abatement cost of CO2, e.g., [19–22]. These studies, in general, concluded that the
abatement costs of CO2 vary across provinces in China, and the Eastern regions have higher shadow
prices and productive efficiency than the middle and Western regions. In addition, other studies
have worked on the CO2 marginal abatement costs for China’s different industrial and manufacturing
sectors, e.g., [23–26]. These abundant studies have also discussed the application of carbon tax or the
emission trading system based on the shadow prices estimated for China’s specific sectors.

Our paper makes contributions to the current literature on the abatement costs of carbon emissions
in China. For China’s agricultural sector, studies focusing on this issue are very limited. Wu et al. [27],
who mainly focused on carbon reduction liability-sharing among provinces, computed the shadow
prices of agricultural emissions, concluding that, in different provinces, the shadow prices range
between 1050 and 25,420 Yuan per tonne (about $150–$3630 per tonne). This result seems to be far
beyond a reasonable scope. Our paper examines the abatement costs of carbon emissions for China’s
planting industry, which can help to improve and extend the literature in China’s agriculture sector.
We provide a most up-to-date estimate of the shadow price using panel data of 30 provinces over the
period from 1997 to 2014. Notably, to the maximum extent possible, we take three main GHG emission
sources in the planting industry into consideration, which allows us to draw more reliable conclusions
to support decision-making for emission control.

The remainder of this paper is organized as follows: Section 2 introduces the techniques employed
for the derivation of the directional output distance function and shadow prices. Section 3 presents the
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dataset and empirical results. Section 4 discusses the empirical results obtained and provides some
policy implications for emission reductions. The conclusions are summarized in Section 5.

2. Methodology

2.1. Directional Output Distance Function

The shadow prices of undesirable outputs can be derived by using a radial output/input distance
function or a directional (output) distance function [12]. In this study, we adopt the directional distance
function (DDF) method, which allows us to model the production of both good and bad outputs and
provides a practical and flexible approach for assessing the shadow prices of carbon emissions.

First, the DDF is introduced as the representation of the production model. Assume that a
production process involves N inputs denoted by x = (x1, . . . , xN) ∈ RN

+ , M desirable outputs
denoted by y = (y1, . . . , yM) ∈ RM

+ and J undesirable outputs denoted by b =
(
b1, . . . , bJ

)
∈ RJ

+.
The production technology can be described as

P(x) = {(y, b) : x can produce(y, b)} (1)

According to Färe et al. [28], some standard assumptions are imposed on the output sets P(x):
inputs are compact and freely disposable. Also, three nonstandard assumptions are imposed on
them [18,28]. First, desirable and undesirable outputs are weakly disposable. Second, the desirable
outputs by themselves are freely disposable. Third, the undesirable outputs are jointly produced with
desirable outputs. Following the above assumptions, the directional output distance function that
represents the production technology can be defined as

→
Do
(

x, y, b; gy, gb
)
= max

{
β :
(
y + βgy, b− βgb

)
∈ P(x)

}
. (2)

g =
(

gy, gb
)
> 0 denotes a directional vector.

(
y + βgy, b− βgb

)
means that desirable outputs expand

βgy and undesirable outputs simultaneously contract βgb where β is the coefficient of expansion
and contraction. Thus, the directional output distance Function (2) represents the maximum feasible
changes of both desirable and undesirable outputs when they hit the boundary of the given production
technology, P(x).

According to Färe et al. [10], thanks to the assumptions previously imposed, the directional output

distance function,
→
Do, inherits its properties from the production technology, P(x), including that

→
Do is

monotonic, concave and non-negative for feasible output vectors;
→
Do is freely disposable in inputs and

in desirable outputs;
→
Do is weakly disposable in undesirable outputs;

→
Do has a translational property.

→
Do
(

x, y + αgy, b− αgb; g
)
=
→
Do(x, y, b; g)− α (3)

2.2. Shadow Prices of Undesirable Output

To derive the shadow prices of undesirable outputs, the relationship between the directional
output distance function and the revenue function has to be clarified [7]. The revenue function is
defined as

R(x, p, q) = max
y,b
{py− qb : (y, b) ∈ P(x)} (4)

where p = (p1, . . . , pM) ∈ RM
+ denotes the desirable outputs’ prices and q =

(
q1, . . . , qJ

)
∈ RJ

+ denotes
the undesirable outputs’ prices.

The revenue function describes the maximum feasible output value, with both desirable and
undesirable outputs taken into consideration. As the translation property (Equation (3)) implies,
the producer moving from the feasible output vector (y, b) along the direction

(
gy,−gb

)
will cause
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an increase in desirable outputs and a decrease in undesirable outputs, which means a shrinkage of
inefficiency. Thus, given the feasible directional vector, g =

(
gy, gb

)
, we can write

R(x, p, q) ≥ (py− qb) + p·
→
Do(x, y, b; g)·gy + q·

→
Do(x, y, b; g)·gb (5)

where (p·
→
Do(x, y, b; g)·gy) and (q·

→
Do(x, y, b; g)·gb) represent revenue increases resulting from desirable

output increases and undesirable output decreases, respectively. Equation (5) becomes an equality
when the producer reaches the frontier of P(x) and the production is therefore efficient. Also, we can
write Equation (5) as

→
Do(x, y, b; g) ≤ R(x, p, q)− (py− qb)

pgy + qgb
(6)

Moreover, if it holds with equality, we have

→
Do(x, y, b; g) = minp,q

{
R(x, p, q)− (py− qb)

pgy + qgb

}
(7)

Applying the envelope theorem to (Equation 7) we have

∇y
→
Do(x, y, b; g) =

−p
pgy + qgb

≤ 0 (8)

and
∇b
→
Do(x, y, b; g) =

q
pgy + qgb

≥ 0 (9)

Given the market price of the mth desirable output is pm, the shadow price of the jth undesirable
output is

qj = −pm·

∂
→
Do(x, y, b; g)

∂bj
/

∂
→
Do(x, y, b; g)

∂ym

 (10)

Equation (10) informs us that the shadow price is determined by the marginal transformation rate
between the desirable and undesirable outputs on the production frontier.

To put this differently, we illustrate this process in Figure 1. Given an output vector, A(y, b),
located in P(x) that represents the production technology, and a directional vector, g =

(
gy, gb

)
> 0,

point A can be mapped to point B along the direction,
(

gy,−gb
)
, resulting in an increase in desirable

outputs and a decrease in undesirable outputs for a given input. The value of the DDF represents the
maximum proportional change of the desirable and undesirable outputs. Assuming that the value of
DDF is α1, the desirable outputs expand (α1gy) and the undesirable outputs contract (α1gb). In contrast,
the traditional Shephard distance function is a special case of the directional output distance function
where the directional vector, g′′ = (y,−b), follows a direction that leads A to D, expanding both the
desirable and undesirable outputs simultaneously.

Boyd et al. [29] have defined an alternative DDF to assess the marginal costs of undesirable
outputs. Given another directional vector, g′ =

(
g′y, 0

)
, that directs point A to point C on

the frontier, the maximum proportional increase of desirable outputs (α2) is obtained while the
inputs and undesirable outputs remain unchanged. By comparing DDF with alternative DDFs,
thereby representing two kinds of environmental constrained activities, we are able to estimate the
marginal abatement costs of undesirable outputs. Let EB = α1gy and EA = α1gb represent DDF;
EG = AC = α2g′y represents the alternative DDF. Then, BG = EG− EB = α2g′y − α1gy is the loss of
desirable outputs resulting from the contraction of undesirable outputs (EA). Therefore, the marginal
abatement costs of undesirable outputs is given by

(p·BG)/(q·EA) = p
(

α2g′y − α1gy

)
/(qα1gb) (11)
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where p and q denote the desirable and undesirable outputs’ prices.Sustainability 2018, 10, x FOR PEER REVIEW  5 of 12 
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3. Data and Results

3.1. Data

In this section we provide the definitions of our data sets, including inputs, and desirable and
undesirable outputs. We consider a case with seven inputs (land, labor, fertilizer, pesticide, plastic film,
irrigation and energy), one desirable output (economic output) and one undesirable output (carbon
emission). All our data are from China Rural Statistical Yearbooks and China Agricultural Statistical
Yearbooks. The data are available for 30 provinces in mainland China over the period from 1997 to 2014
and constitute a province-by-year panel. Hong Kong, Macao, Taiwan, Tibet have been excluded from
the sample due to missing data.

We employed the sown area as a proxy for land in order to eliminate the effect of multiple
cropping. Labor was measured as the total rural work force at the end of each year. Fertilizer, pesticide,
plastic film and irrigation are the necessary material inputs used to produce crops. Energy represented
the consumption of fuels and electricity by mechanical work. The desirable output in this study was the
gross output value of the planting industry at 2000 constant prices. Since China has not promulgated
the provincial data for carbon emissions in the agricultural sector, in accordance with Wu et al. [30]
and Tian et al. [31] the estimation was as follows:

c = ∑ ci = ∑ ei·εi (12)

where c is the total carbon emissions and ci is the emissions from each source. ei is the amount of each
emission source and εi is the emission coefficient of each source. In China’s planting industry, there are
three main sources responsible for carbon emissions: (1) GHGs caused by carbon-generating activities,
such as the utilization of fertilizer, pesticide and plastic film, and the consumption of fossil fuels
and electrical energy during production processes; (2) CH4, a potent GHG, generated in paddy field
during rice growing process; (3) CO and CO2 caused by crop straw burning on the farmland. We refer
the reader interested in the details and derivation of the emission coefficients to Wu et al. [30] and
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Tian et al. [31]. To facilitate our analysis, we boiled down the GHG emissions into carbon equivalents,
in accordance with the IPCC Fourth Assessment Report (2007), such that the greenhouse effect caused
by 1 t N2O and 1 t CH4 is equivalent to that caused by 298 t CO2 (81.2727 t C) and 25 t CO2 (6.8182 t C),
respectively. Descriptive statistics for the outputs and inputs are provided in Table 1.

Table 1. Descriptive statistics of inputs and outputs (30 provinces, 18 years, 1997–2014).

Variable Units Mean SD Max Min

Inputs

Land 103 hectares 5237.18 3453.16 14,378.3 196.1
Labor 104 persons 1050.34 771.09 3564 37.09

Fertilizer 104 tonnes 163.58 130.51 705.75 6.57
Pesticide tonnes 50,319.36 42,425.85 198,764 1345

Plastic film tonnes 59,923.7 57,696.79 343,524 113
Irrigation 103 hectares 1891.99 1415.56 5342.1 143.1

Energy 104 kilowatts 2426.85 2491.61 13,101.4 95.3

Desirable output Gross output 108 Yuan 592.60 454.12 2433.78 23.52

Undesirable output Carbon equivalent 104 tonnes 760.04 581.03 2187.45 17.77

3.2. The Empirical Results

With the methods and data above, we conducted statistical analyses using Max DEA 5.0
software. Table 2 presents the descriptive statistics of the shadow prices on a regional level.
Of the 540 observations, 90 are from Northern China, 54 from Northeast China, 126 from Eastern
China, 54 from Central China, 54 from Southern China, 72 from Southwestern China and 90 from
Northwestern China. The minimum shadow price (4.36 Yuan/tonne) appeared in Central China, while
the maximum in was in Northwest China (820.76 Yuan/tonne). Furthermore, these two regions had
the smallest and largest mean values of shadow prices (6.96 and 187.35) as well as standard deviation
values (2.06 and 246.76). The large standard deviations in the statistics indicate substantial diversity
in shadow prices. The average shadow price countrywide was 66.1 Yuan/tonne, but interestingly,
the mean values of shadow prices in Northern China and Northwestern China were significantly
higher than those in other regions, which is not in line with the results of some previous studies on
China’s other sectors. We will further discuss this case in Section 4.

Table 2. Descriptive statistics of the regional shadow prices.

Region a Mean b SD Max Min

Northern China 113.26 132.12 530.1 8.01
Northeastern China 15.07 6.18 30.62 5.15

Eastern China 28.57 44.87 183.6 5.44
Central China 6.96 2.06 12.32 4.36

Southern China 34.36 32.44 90.98 10.73
Southwestern China 27.65 11 48.73 10.28
Northwestern China 187.35 246.73 820.76 18.34

Nationwide 66.1 132.63 820.76 4.36
a The geographical regionalization here includes all provinces, except for Hong Kong, Macao, Taiwan and Tibet.
Northern China includes Beijing, Tianjin, Hebei, Shanxi and Inner Mongolia; Northeastern China includes Liaoning,
Jilin and Heilongjiang; Eastern China includes Shanghai, Jiangsu, Zhejiang, Fujian, Anhui, Jiangxi and Shandong;
Central China includes Henan, Hubei and Hunan; Southern China includes Guangdong, Guangxi and Hainan;
Southwestern China includes Sichuan, Chongqing, Yunnan and Guizhou; Northwestern China includes Shaanxi,
Gansu, Xinjiang and Ningxia. b The estimates displayed are the simple arithmetic averages for the observations.

It can be seen in Table 3 that the diversity of the shadow prices on a provincial level was even
more substantial, with the provincial mean values ranging from 5.06 to 664.35 Yuan/tonne. The most
notable was Qinghai province, where the mean value was rated the highest (with 664.35 Yuan/tonne)
among the observed areas, followed by Beijing with 305.12 Yuan/tonne, Tianjin with 184.01 Yuan/tonne
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and Shanghai with 130.88 Yuan/tonne. Hunan province is at the bottom of the list, with an estimate of
5.06 Yuan/tonne.

Also, the dynamic trends of shadow prices show great disparity. While most of them were
characterized by a decreasing trend during the observed period, only a small number of them are on
the rise. The prevalent drop in marginal abatement costs signifies the capacity for abatement increases
during the observed period.

The provinces with increasing shadow prices were Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang,
Fujian and Guangdong, whose average annual growth rates were 9.9%, 4.22%, 5.10%, 0.82%, 1.35%,
0.18% and 0.76%, respectively, indicating that it is becoming more difficult to mitigate carbon emissions
over time. Notably, they are all Eastern coastal areas, with the most developed economies and
agricultural technologies in China.

The shadow prices of the remaining 23 provinces showed more or less downward trends,
suggesting a prevalent drop in marginal abatement costs in China. The figures for grain-producing
areas like Heilongjiang, Jilin, Shanxi, Liaoning and Henan provinces fell sharply, with average
annual reduction rates of 6.96%, 5.12%, 4.95%, 3.17% and 3.06%, respectively; also, in pastoral and
agricultural–pastoral areas like Xinjiang, Ningxia and Gansu, the shadow prices slumped by 4.38%,
3.92% and 3.84%, annually.

Table 3. Shadow prices of carbon emissions in the planting industry from 1997 to 2014.

Province 1997 2000 2003 2006 2009 2012 2014 Mean Growth Rate

Beijing 105.07 152.54 306.37 253.97 434.41 459.84 530.10 305.12 9.99%
Tianjin 129.13 164.30 216.71 172.09 183.30 205.07 260.94 184.01 4.22%
Hebei 12.15 12.29 11.36 8.56 9.02 8.54 8.23 9.83 −2.27%
Shanxi 44.71 52.51 49.10 25.58 24.89 19.58 18.87 33.38 −4.95%

Inner Mongolia 37.27 37.70 37.53 28.14 36.38 35.18 27.85 33.97 −1.70%
Liaoning 28.66 30.62 24.16 18.70 18.89 14.83 16.58 20.83 −3.17%

Jilin 20.83 22.11 13.60 10.34 12.60 8.92 8.52 13.61 −5.12%
Heilongjiang 17.55 16.07 14.48 9.55 7.12 5.61 5.15 10.78 −6.96%

Shanghai 78.84 80.82 137.85 133.54 165.24 176.45 183.60 130.88 5.10%
Jiangsu 6.33 6.74 7.96 6.77 7.61 7.38 7.27 7.10 0.82%

Zhejiang 12.50 13.51 16.74 15.83 15.96 16.48 15.68 14.68 1.35%
Anhui 8.55 8.06 6.99 6.18 5.93 5.56 5.44 6.73 −2.62%
Fujian 25.12 25.56 25.87 25.46 26.18 25.87 25.92 25.56 0.18%
Jiangxi 8.82 8.50 8.08 6.72 6.49 6.17 6.13 7.23 −2.11%

Shandong 9.34 8.62 8.38 7.17 7.40 7.15 7.24 7.84 −1.49%
Henan 12.32 11.01 10.15 8.53 7.92 7.34 7.26 9.23 −3.06%
Hubei 7.22 7.82 7.53 6.30 5.89 5.69 5.57 6.60 −1.52%
Hunan 6.05 5.57 5.66 4.99 4.55 4.37 4.36 5.06 −1.91%

Guangdong 10.73 11.48 13.02 13.04 12.65 12.23 12.19 12.30 0.76%
Guangxi 12.93 12.40 11.26 10.97 11.58 11.24 10.88 11.57 −1.01%
Hainan 88.50 88.63 85.93 79.68 69.47 68.14 66.50 79.20 −1.67%

Chongqing 34.80 31.73 29.60 28.36 28.49 29.20 28.64 29.99 −1.14%
Sichuan 13.24 12.04 11.87 10.91 10.54 10.41 10.33 11.28 −1.45%
Guizhou 48.73 45.64 36.22 34.06 32.63 32.70 33.22 37.80 −2.23%
Yunnan 42.59 38.53 32.10 27.80 28.86 24.67 22.90 31.52 −3.58%
Shaanxi 45.35 41.50 41.27 37.92 33.58 28.54 28.59 37.36 −2.68%
Gansu 68.98 68.89 63.22 59.40 44.01 38.36 35.46 53.56 −3.84%

Qinghai 667.12 647.75 760.97 711.81 645.62 560.03 527.15 664.35 −1.38%
Ningxia 209.09 183.27 183.59 154.93 124.20 108.74 106.01 149.80 −3.92%
Xinjiang 39.31 39.59 40.15 33.46 25.90 21.49 18.34 31.69 −4.38%

4. Discussion and Policy Implications

4.1. Regional Heterogeneity in the Shadow Prices

As is shown in Figure 2, there was considerable regional heterogeneity in the shadow prices.
For our analysis, we divided the provinces into three groups according to their shadow price values.
The first group consisted of Beijing, Tianjin and Shanghai—their shadow prices are at the top of the
list. They share some common characteristics. For example, they are the most developed coastal
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areas with leading agricultural technologies, high value-added agricultural industries like leisure
agriculture, and better industry convergence. They have higher levels of economic outputs and lower
levels of carbon emissions. Specifically, the shadow prices in 2014 were 530.1 Yuan/tonne in Beijing,
260.94 Yuan/tonne in Tianjin and 183.6 Yuan/tonne in Shanghai, respectively. Higher shadow prices
imply higher economic costs if these areas were to mitigate carbon emissions.
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The second group, which had the lowest shadow prices, mainly includes provinces with planting
industry predominating in their agriculture. Furthermore, we classified these provinces in terms of
their shadow prices, regions and planting categories, as is shown in Figure 3. The excluded areas
were of null value. Class 1 includes primary rice production regions, such as Hunan, Hubei, Jiangxi,
Anhui, Sichuan, Jiangsu, Guangdong, Heilongjiang, etc. Class 2 includes areas mainly producing
wheat, corn and Cereals, such as Henan, Hebei, Shandong, Shaanxi, Jilin, Liaoning, etc. Class 3
includes cash crop major producing provinces, like Hainan, Guizhou, Yunnan and Fujian. By and
large, the later classes outnumber the former ones in terms of shadow prices. For example, class 1
provinces, primarily producing rice, like Hunan, Hubei, Anhui, Jiangsu and Jiangxi, have the lowest
shadow prices nationwide—their mean shadow price is about 5–7 Yuan/tonne; class 3 provinces, such
as Hainan (79.2 Yuan/tonne) and Guizhou (37.8 Yuan/tonne), have the highest shadow prices in this
group. On the whole, the second group of provinces have vast areas of cultivated land and optimal
climatic conditions for multiple cropping. A higher intensity of material input is needed to keep soil
fertile and maintain productivity, giving rise to higher level of carbon emissions. The crop products,
however, are generally priced at a relatively low level, resulting in the shadow prices being rated
lowest among the observed provinces.
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The third group of provinces had a medium level of shadow prices. They are mostly pastoral
areas and agricultural–pastoral areas in Northern and Northwestern China, including Xinjiang, Gansu,
Ningxia, Qinghai and Inner Mongolia. There are vast good grasslands for livestock to graze on,
but crops there grow for less than two seasons per year due to the relatively cold and dry climatic
conditions, which requires a lower intensity of material inputs. Moreover, compared to cereal crops,
these areas are rich in higher value crop products, like cotton, oil plants, fruit crops and sugar crops.
In this context, this group of provinces has higher shadow prices than the second group.

It is meaningful to compare the shadow prices in this paper with those of some other previous
studies on other sectors. Broadly, the sequence of regional shadow prices in China, from high to low,
is Eastern, middle and Western regions, in accordance with regional economic development levels
(e.g., [19,20,22]). However, we reveal that the planting industry’s geographical distribution of shadow
prices is quite different—the Northwestern provinces outnumber most middle and Eastern provinces
in shadow prices, and Qinghai province has the highest shadow prices nationwide. The reason may
well be that the planting industry is mostly labor intensive in China and is subject to natural resource
and environmental constraints. The production efficiency in the less developed Northwestern regions
is comparatively low owing to their lack of capital and labor resources, not enabling them to enjoy a
full scale economy. However, many of them have a rich endowment of natural resources, and are in
the increasing stage of scale returns, which means the enlargement of unit inputs could yield more
outputs than some of the Eastern or middle regions, where the agricultural resources are, to some
extent, over-exploited due to production technology. In this context, it is more costly to reduce an
additional unit of carbon emission in such areas.

4.2. Policy Implications

China launched its much-awaited national carbon emission trading scheme (ETS) at the end of
2017, which is now the world’s largest carbon trading system [32,33]. However, this market primarily



Sustainability 2018, 10, 753 10 of 12

aims to limit China’s industrial sector’s emissions; its agricultural emissions still remain at large.
China announced in the Paris Agreement to cut CO2 emissions per unit of GDP by 60–65% by
2030, relative to 2005 levels [34]. To meet this challenging goal, it might be worth attempting to
bring agriculture into line with China’s emission trading scheme. The regional heterogeneity in the
marginal abatement costs strongly supports non-holding of the equimarginal principle and there is
inefficiency of resource allocation among provinces. Theoretically, introducing an agricultural carbon
market and taking shadow prices as the benchmark for trading under the frame of an emission cap
may well be a solution that will help to motivate the reduction of inefficiency. Take China’s three
Northeastern provinces, for example. The shadow prices of Liaoning, Jilin and Heilongjiang provinces
in 2014 were 16.58, 8.52 and 5.15 Yuan/tonne, respectively. Assuming that their mean shadow price
(10.08 Yuan/tonne) is set as the trading price, if, for example, every thousand tonnes of permits are
traded, Jilin and Heilongjiang could acquire 1560 Yuan and 4930 Yuan in abatement compensation,
while Liaoning could save 6500 Yuan. By means of such market adjustment, the permit-buyers would
enlarge their production scales and their increased outputs would result in a decline in shadow prices.
Conversely, the shadow prices of the sellers would rise. In the case of continuous trading, the shadow
prices of both parties would eventually converge [23].

Agriculture in China, however, is a special sector, owing to the government’s goal of ensuring
food security for its large population. China’s agricultural carbon trading should have its own
framework, different from that of the industrial sectors. Compared with the results of some other
studies (e.g., [22,23] in which the CO2 shadow prices in China’s industrial sectors range from hundreds
of Yuan to more than one hundred thousand Yuan and China’s national average shadow price is
1519 Yuan), the planting industry’s shadow prices are much lower. Hence, China should avoid
making policy instruments that may motive a transfer of emission rights from agriculture to industry,
which could be a great impediment to the development of agriculture. Also, it is thoughtless to simply
drive the agricultural emissions from areas of low marginal abatement costs to areas where the costs
are higher. On the basis of our results, shadow price is highly related to planting structure, implying
that emission trading should be confined to the same crop categories or regions with similar crop
structures, in order to keep an appropriate product mix and a quality structure of crops, in line with
market needs. Therefore, a comprehensive, well-designed emission trading scheme is needed, not
only to mitigate emissions, but also to maintain or adjust the crop structure and improve resource
allocation efficiency.

Meanwhile, further efforts are required from governments to reverse the nationwide downward
trend in shadow prices. They should take effective measures to enhance regional cooperation and learn
from each other, especially from those with increasing shadow prices, in regard to carbon-reduction
technology and experience. It is important to reduce their dependence on material production factors
and improve the immaterial production factors’ contributions to the planting industry’s growth.

5. Conclusions

The shadow prices of carbon emissions play a vital role in assessing emission abatement costs and
in supporting environmental policy making. In this paper we estimated the shadow prices of carbon
emissions in China’s planting industry. We adopted a directional distance function that provided
the most effective solution and allowed us to model the production of both economic output and
carbon emissions. We used the best available data from 30 provinces from 1997 to 2014, and took
into consideration the carbon emissions caused by three main emission sources from the planting
industry. The shadow prices varied greatly among the provinces. Hunan, Hubei, Jiangsu and Jiangxi
had the lowest shadow prices nationwide, while areas like Beijing, Tianjin and Shanghai had the
highest shadow prices. Interestingly, the most undeveloped Northwestern provinces, like Xinjiang,
Gansu, Ningxia, Qinghai and Inner Mongolia, unexpectedly outnumbered many Central and Eastern
provinces in shadow prices. This is highly relevant to their regional planting structures. The analysis
could provide some supporting information for policy recommendations, such as bringing agriculture
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into line with China’s current emission trading scheme, which could help to motivate the reduction of
emissions and improve resource allocation among provinces. However, much work needs to be done
for China’s inchoate emission trading market to live up to expectations.

In addition, the prevalent drop in shadow prices across the country shows that the capacity
for abatement increased during the observed period. This implies further efforts are required from
governments to reverse the nationwide downward trend in shadow prices. They should take effective
measures to enhance regional cooperation and facilitate carbon-reduction technology transfer.

Finally, it should be noted that our study has its limitations. Our estimate does not include the
carbon emissions that crops remove from the atmosphere by sequestering carbon in biomass and
dead organic matter, because we lack reliable carbon sequestration coefficients for different crops
from proven sources. The second limitation relates to the limited consideration of stochastic problems,
because the assumption of weak disposability makes it difficult to employ random error models. How
to introduce the stochastic analysis as well as carbon sinks as one of the desirable outputs to yield
better estimates should be the next direction of research.
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