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Abstract: Longwall mining leaves pillars and irregular blocks of coal behind in its aftermath.
In this study, a shortwall block mining (SBM) technique for recovering these coal resources has
been proposed. A mechanical analysis model for calculating the heights of the water-conducting
fracture zone (HWFZ) in overlying strata of SBM was established based on the theory of beams
on elastic foundations. Using this model and the data acquired from a working face in the
experimental area, a height of 50.30 m was calculated for HWFZ corresponding to this working face.
This observation indicates that the equation for predicting HWFZ in working faces specified by the
Hydrogeological Procedures for Mines (HPM) standard is not suitable for application in SBM. For this
reason, the Universal Distinct Element Code (UDEC) modeling program was used to analyze the
developmental behavior of the water-conducting fracture zone under various determining factors in
SBM. The UDEC simulations indicated that the HWFZ increase linearly with an increase in mining
height, decrease linearly with an increase in the width of the protective coal pillars, and increase
logarithmically with block length. A nonlinear regression analysis of HWFZ was performed using the
SPSS software suite, from which a model for predicting HWFZ in SBM was constructed. This model
predicted that the HWFZ was 52.58 m in the experimental area, while field measurements yielded
HWFZ values varying from 47.98 to 50.06 m, which was basically consistent with the results of the
prediction model and the mechanical model, thus confirming the accuracy of the mechanical model
and the reliability of the regression model. The results of this study will provide critical practical
references for the enhancement of coal recovery rates in mining areas and enhance theories on aquifer
protection during mining operations.

Keywords: water protection; shortwall block mining (SBM); heights of water-conducting fracture
zone (HWFZ); beams on elastic foundations; predictive model

1. Introduction

The focal point for coal mining in China has shifted from eastern China to western China
owing to massive coal reserves in the west. The coal reserves in these regions generally occur as
shallow-lying coal seams buried at depths ranging from 100 to 200 m, with simple geological structures
and high-quality coal. The mining technologies in these regions are also highly advanced [1–4].
However, western China is a semi-arid region with scarce water resources, sparse vegetation,
and fragile ecological environments. In recent years, an increase in the number of mines and large-scale
high-intensity mining in western China has resulted in significant losses of water resources and
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an exacerbation of desertification [5–10] (see Figure 1 [11]). Furthermore, significant quantities of
coal have been left unmined in the form of coal pillars and irregular coal blocks [12–14]. The loss
of water resources and the waste of coal resources not only disturb the production, life of the local
people, and social stability, but also bring serious troubles to the sustainable development strategy of
the government.
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Figure 1. Distribution of coal resources in the mining areas of western China and the ecological issues
caused by mining operations.

To address the issue of residual and discarded coal resources, this study proposes their recovery
using the shortwall block mining (SBM) technique. The SBM technique is used to recover coal
resources that are not suitable for extraction via longwall mining, and to reduce the damage range
of overlying strata by retaining the protective coal pillars. Compared to conventional room mining,
this technique has an enhanced resource recovery rate and integrates the excavation and mining of
a working face, which substantially increases its efficiency [14,15]. A few of the relevant studies on
SBM include the following: Zhou et al. [14,16] systematically studied the behavior of rock pressures
during SBM based on the stress of coal pillars and roof movements. Cao et al. [15] analyzed the
mechanism underlying abrupt instabilities in protective inter-block coal pillars during SBM from
the perspective of cusp catastrophe theories. Mining processes will nonetheless result in movements
and damage in the overlying strata, resulting in the formation of water-conducting fractures; further
losses in water resources then occur if the water-conducting fractures develop and come into contact
with aquifers or water-rich areas on the surface [17–23]. However, there are very few theoretical
studies on the developmental behavior of the water-conducting fracture zone that are caused by SBM.
Hence, there is an urgent need to investigate this issue. The predictive equation specified by the
Hydrogeological Procedures for Mines (HPM) [24] standard is widely used to calculate the heights of the
water-conducting fracture zone (HWFZ) caused by mining processes. Nonetheless, the unique layout
of SBM operations necessitates further investigation to clarify whether the HPM standard’s empirical
equation is appropriate for describing these cases.

The objective of the study is to predict HWFZ in SBM. Based on the characteristics of the SBM
process, the present authors have put forward the factors that determine HWFZ and constructed a
mechanical analysis model for calculating HWFZ caused by SBM by taking into consideration the
damage characteristics of the overlying strata. This model was then used to evaluate the applicability
of the HPM standard’s predictive equation. An investigation was performed on the developmental
behavior of the water-conducting fracture zone in SBM using the Universal Distinct Element Code



Sustainability 2018, 10, 1636 3 of 20

(UDEC) numerical modeling program. Multiple nonlinear regression analysis was used to fit the
results of the simulations and derive a model for predicting HWFZ in SBM. Field verifications of this
model were then performed. The observations of this research are likely to play a highly critical role in
the recovery of coal resources, the enhancement of water resource protection measures during mining
operations, and the protection of ecological environments.

2. Engineering Background and Shortwall Block Mining (SBM) Process

2.1. Engineering Background

The experimental area of SBM in Inner Mongolia is located in Ordos City, the surface of the area
is covered with eolian sand, and the surface rivers and lakes do not exist in the surrounding area.
With serious soil erosion, sparse vegetation, and a fragile ecological environment, there is an aquifer
in the underground above the red clay, and the area belongs to the typical semi-arid and semi-desert
climate, which displays strong seasonality. The experimental area of SBM has an area of 32,400.00 m2

and 93,000.00 t of estimated recoverable coal reserves. The working face mainly extracts coal from the
#3 coal seam, which is a flat-lying coal seam with a simple and stable structure and relatively minute
variations in thickness. Its average burial depth is 110.00 m, and its thickness is approximately 4 m.
The roof of the coal seam is composed (from the bottom to the top) of medium-grained sandstones,
siltstone, mudstone, fine sandstone, Hipparion red clay, and drift sand. An aquifer lies above the
red clay stratum at approximately 80.00 m from the coal seam; loss of groundwater is highly likely if
the water-conducting fractures in the overlying strata reach the aquifer. The columnar pattern and
mechanical parameters of the mining area are presented in Figure 2.
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Figure 2. Columnar pattern of the coal-bearing rocks and their physical and mechanical properties.

Coal recovery was performed in two blocks—each with a mining height of 4.00 m—in the
experimental area. The length of each block was approximately 70.00 m, and the protective coal pillars
between the blocks were approximately 10.00 m wide. The design of the working face is illustrated in
Figure 3.
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Figure 3. Location and layout of the working face of the experimental area of shortwall block mining
(SBM). (a) Location of experimental area of SBM; (b) Layout of the working face for SBM.
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2.2. SBM Processes

The main purpose of the SBM technique is to recover coal resources that are not suitable for
extraction via longwall mining. In the working face for SBM, bolts, mobile roof supports, and preserved
coal pillars are used to support the roof [14]. These techniques integrate excavation and mining
operations, are highly automated and flexible, require minimal upfront investment, and can be rapidly
deployed, which substantially enhances the recovery rate of a mine.

(1) The technical system for SBM

A classic technical system for SBM and the layout of the working face is illustrated in Figure 4.
The recovered coal is transported in the following order: working face of SBM→ haulage roadway
of SBM→main haulage roadway→main shaft; the material transport system has following order:
auxiliary shaft→ track haulage roadway→ track haulage roadway of SBM→ working face. A mining
block is formed through the installation of four branch roadways and three connecting roadways,
and a protective coal pillar is set between each block. The coal pillars in each block are recovered from
the top to the bottom, in retreating fashion. Based on the stability of the roof, each block was designed
with an approximate length of 70.00 m, while the protective pillars between the blocks had a width of
approximately 10.00 m.
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(2) Main Equipment and Working Face Parameters

The most critical pieces of equipment for SBM include mobile roof supports and continuous
miners. During the recovery of coal pillars, a temporary coal pillar is left between each mining cave,
which acts in unison with four mobile roof supports to ensure that the continuous miners are able
to safely complete their coal cutting and loading processes. The layout of the mobile roof supports
is displayed in Figure 5, which shows that the supports were separated into two groups (Supports 1
and 2 formed one group, while Supports 3 and 4 formed another group), with one group placed in
the branch roadways and the other group placed in the connecting roadways between two adjacent
branch roadways. The width of the branch and connecting roadways was 5.00 m. The length of the
mining caves was less than 11 m, while their width was 3.30 m, and the angle between the mining
cave and branch roadways was approximately 45◦, with a 0.5–1.5 m gap left between each cut to form
coal pillars between the mining caves.
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3. Mechanistic Analysis of the Development of Water-Conducting Fracture Zone during SBM

It is imperative that water-conducting fractures are prevented from reaching an aquifer when coal
is mined from deposits lying beneath aquifers. The most widely applied method for predicting HWFZ
in China is the predictive equation given in the HPM standard, but this equation was derived from
regression calculations based on limited field measurement data from mining done in China during
the early 80 s. Both SBM and longwall mining use caving techniques to manage the roof, and thus
display similar behaviors and mechanisms in their roof fractures, ground pressure, and fractures
development [25]. Nonetheless, the predictive equation given in the HPM standard was based on
measurements made in longwall mining, whereas the layout of the working face in SBM is quite
different from that of longwall mining. Therefore, further investigation is required to elucidate
whether the HPM standard’s empirical equation based on longwall mining is applicable in SBM.

3.1. Characteristics of Overlying Strata Damage in SBM

(1) Conventional longwall caving methods

In conventional mechanized coal mining, the immediate roof of mined-out areas collapses under
the action of its own weight and that of the overlying strata as the working face progresses forward.
In turn, the main roof also collapses, ultimately causing fractures in key strata that subsequently result
in surface subsidence. The coal mining processes in shallow-lying coal seams in western China in
particular are likely to cause highly adverse “step” subsidence, which results in elastic damage over
a wide area [26]. The characteristics of overlying strata displacements in conventional mechanized
longwall mining are illustrated in Figure 6a.
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Figure 6. Characteristics of the overlying strata in longwall mining and SBM. (a) Characteristics of
overlying strata displacements caused by conventional longwall caving methods; (b) Characteristics of
overlying strata displacements caused by SBM.

(2) SBM

In the SBM process, protective coal pillars are preserved between adjacent blocks as the working
face progresses and causes caving along the way. The coal pillars support the load of the overlying
strata, which substantially reduces the damage inflicted on the main roof and the overlying strata
above it, thus restricting the development of the water-conducting fracture zone. The characteristics of
deformation in rocks surrounding SBM are illustrated in Figure 6b.

3.2. Determining Factors of HWFZ in SBM

The determining factors of HWFZ in SBM were obtained through comparisons based on the
characteristics of overlying strata damage and the layout of working faces in SBM, as illustrated in
Figure 7. These factors include the following:
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(1) Mining height

Mining height is one of the most critical factors that determine the range of damage in overlying
strata [27]. After a volume of coal has been recovered, the surrounding stresses of the goaf redistribute
themselves and locally induce concentrations of stress that result in bedding fractures. Varying
mining heights in the working face results in varying heights in the “three zones” (caved, fractured,
and continuous zones) developed within the overlying strata [2,28,29]. Furthermore, the empirical
equation in the HPM standard for predicting HWFZ implies that mining height is the only factor that
determines HWFZ.

(2) Width of the protective coal pillars

The preservation of protective coal pillars plays a critical role in regulating overlying strata
movements and maintaining the stability of rocks surrounding a mine as these pillars bear the
combined rock load over the goafs and coal pillars [30]. Under certain conditions, the load capacity
of the coal pillars is determined by their dimensions; hence, the design of the protective pillars has a
substantial determining effect on the regulation of damage in the overlying strata and HWFZ.

(3) Length of the block

Similar to the mining height, the length of the block is one of the parameters of the working face
that determine HWFZ. This is reflected in the fact that the length of the excavation has a direct effect
on plastic damage, deformations, and stress redistributions in the overlying strata.

(4) Mining depth

Based on rock mechanics theories [31], ground stresses increase as the depth increases, and varying
coal mining depths result in varying levels of stress in the surrounding rocks of a working face.
Therefore, the mining depth also affects the range of overlying strata damage to a certain extent.

(5) Structural geology

Different geological structures not only directly affect the movement law of overlying strata,
but also the characteristics of surrounding rock stress distribution and the shape of ground subsidence
after the working face was mined out. The thickness, lithology, location, stability, etc., of each rock
stratum will lead to a different range of development of the water-conducting fracture zone.

It is not feasible to alter the mining depth and structural geology for a specified geological setting.
Therefore, regulation of the water-conducting fracture zone is to be accomplished through the rational
design of key technical parameters such as mining height, block length, and width of protective coal
pillars, in order to ensure that losses in water resources do not occur as a result of the growth of
water-conducting fractures.

3.3. The Construction of a Mechanical Model and the Analysis of Bending Deformations

(1) Construction of a mechanical model for calculating HWFZ

HWFZ were determined from the height of the failed strata above the working face based on the
factors that determine HWFZ in SBM. Here, an arbitrary stratum above the coal seam (denoted as the
ith stratum) is considered as the subject of study, and the loads above this stratum are simplified as
q1(i), q2(i), and q3(i), as illustrated in Figure 8. Suppose that the thicknesses of the strata above the coal
seam are h1, h2, h3, ..., hm, the total thickness of the rock composed of i strata lying above the coal seam
is Hi = ∑ hk(i = 1, 2, 3, · · · , m).
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Figure 8. Schematic of the basic environmental stresses in SBM.

Figure 8 shows that the actions of the strata and coal beneath the ith stratum on rock beams of
the ith stratum can be simplified using Winkler’s model for elastic foundations [32,33]. The location
of the starting cut, O, was set as the origin, the direction of the working face’s progression was set as
the x-axis, and the direction of the displacement function wi(x) was set as the y-axis. The resulting
mechanical model for calculating HWFZ is illustrated in Figure 9. The length of each block is l1, and the
width of the protective pillars between each block is l2. Here, the effects of factors such as the coal
pillars between the mining caves in the mine and time have not been considered.
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Figure 9. Mechanical model for an arbitrary stratum in SBM.

In particular, the uniformly distributed load that an arbitrary stratum above the rock beams bears
may be expressed as:

q1(i) = γ(d− Hi−1), load above coal seam
q2(i) = γ(d′ − Hi−1) , load above goaf
q3(i) = jγ(d− Hi−1), load above protective coal pillar

(1)

In this equation, γ is the bulk density of the rocks, d is the burial depth, d’ is the potential caving
height, and j is the stress concentration coefficient. The elastic foundation coefficients, ki, of the coal
seam and the (i-1)th strata above the seam are expressed as:

1
ki =

1
kc

+
1
k1

+
1
k2

. . . +
1

ki−2
+

1
ki−1

(2)

In this equation, kc is the elastic foundation coefficient of the coal bodies, while k1, k2, k3, ..., ki-1

are the elastic foundation coefficients of each stratum.

(2) Analysis of bending deformations

Based on the theories of rock beams on elastic foundations [34–36], the deflection wi(x) of rock
beams in the ith stratum of the mine and the loading on the rock beams should satisfy the fundamental
differential equations for the deflection curves of beams on a foundation, in which n is the number of
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mining blocks. Hence, the differential equations of the deflection curves of rock beams in an arbitrary
stratum of the overlying strata are:

EI d4wi
1(x)

dx4 + kiwi
1(x) = q1(i) (x ≤ 0)

EI d4wi
2(x)

dx4 = q2(i) (0 ≤ x ≤ l1)

EI d4wi
3(x)

dx4 + kiwi
3(x) = q3(i) (l1 ≤ x ≤ l1 + l2)

· · · · · ·
EI d4wi

2n(x)
dx4 = q2(i) ((n− 1)(l1 + l2) ≤ x ≤ nl1 + (n− 1)l2)

EI
d4wi

2n+1(x)
dx4 + kiwi

2n+1(x) = q1(i) (x > nl1 + (n− 1)l2)

(3)

In these equations, EI is the flexural rigidity of a beam section, while n is the number of blocks.

A characteristic coefficient is defined as α = 4
√

ki

4EI , and the deflections of an arbitrary stratum
are introduced. This yields the equations for the deflection curves of each segment above the beams,
as illustrated below:

wi
1(x) = eαx(A1 cos αx + B1 sin αx) + e−αx(C1 cos αx + D1 sin αx) + q1(i)

ki (− l2
2 ≤ x ≤ 0)

wi
2(x) = q2(i)x4

24EI + A2x3

6 + B2x2

2 + C2x + D2 (0 ≤ x ≤ l1)

wi
3(x) = eαx(A3 cos αx + B3 sin αx) + e−αx(C3 cos αx + D3 sin αx) + q3(i)

ki (l1 ≤ x ≤ l1 + l2)
· · · · · · · · ·
wi

2n(x) = q2(i)x4

24EI + A2nx3

6 + B2nx2

2 + C2nx + D2n ((n− 1)(l1 + l2) ≤ x ≤ nl1 + (n− 1)l2)

wi
2n+1(x) = eαx(A2n+1 cos αx + B2n+1 sin αx) + e−αx(C2n+1 cos αx + D2n+1 sin αx) + q1(i)

ki (x > nl1 + (n− 1)l2)

(4)

The foundation coefficient is related to the thickness of the coal seam by the following
equations [37]: {

kc = Ec/hc
ki = Ei/hi

(5)

Here, Ec is the elastic modulus of the coal bodies, Ei is the elastic modulus of an arbitrary stratum,
and hc is the mining height.

The boundary conditions of the beams are as follows:{
θi

1(−∞) = 0 wi
1(−∞) = 0

θi
2n+1(+∞) = 0 wi

2n+1(+∞) = 0
(6)

Continuity condition: The deflections, bending moments, corner angles, and shear forces of the
coal pillars, stope, and coal seam are equivalent at their points of connection.

The introduction of boundary and continuity conditions yields the following parameters to
be solved: A1, B1, C1, D1, A2, B2, C2, D2, ..., A2n+1, B2n+1, C2n+1, D2n+1. With these parameters,
the equations for the roof’s bending and subsidence, wi(x), and the bending moment, Mi(x),
are obtained.

3.4. Calculating of HWFZ

The maximum tensile stress of a beam according to the theory of beams with rectangular
sections is:

σi
max =

∣∣∣∣∣6Mi
max

h2
i

∣∣∣∣∣ (7)

In this equation, σi
max is the maximum stress of an arbitrary stratum in the overlying strata, and

Mi
max is the maximum bending moment in an arbitrary stratum of the overlying strata.

Based on the maximum normal stress theory, if a stratum fails, the following equation should
be satisfied:

σi
max ≥ [σi] (8)
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In this equation, [σi] is the tensile strength of an arbitrary stratum of the overlying strata.
The analysis here begins from the first stratum above the coal seam; if this stratum satisfies

Equation (7), the stratum will fail and water-conducting fractures will then occur. Then, the adjacent
upper strata will continue to be checked until the calculation is stopped when a stratum does not fail.
HWFZ is then the sum of the thicknesses of the failed strata, and its value is:

Hi = h1 + h2 + h3 + · · · · · · (9)

The predictive equation H = 100m
3.3n+3.8 + 5.1 in Appendix 7 of the HMP standard (m being the

mining height and n being the number of mined strata) yields an HWFZ of 75.50 m based on the
mechanical parameters of the strata illustrated in Figure 2. The calculation based on mechanical
theories, however, yields an HWFZ of 50.30 m. These outcomes indicate that the prediction by the
HMP standard’s predictive equation varies substantially from the results of the analysis using the
mechanical model. This reveals that the empirical equation in the HMP standard is not effective in
predicting HWFZ in SBM.

4. Methods for Predicting HWFZ in SBM

4.1. Procedure for Designing a System that Predicts HWFZ in SBM

As the HMP standard’s predictive equations are determined to be inaccurate in the prediction
of HWFZ in SBM, a system for predicting HWFZ in SBM had been established according to
the characteristics of the previously described SBM processes and the mechanical analysis of the
developments pattern of the water-conducting fracture zone. UDEC numerical simulations were
performed based on the geological characteristics of an actual mine and its area of recovery, and single
factor analyses were performed for determining factors such as mining height, width of the protective
pillar, and block length, to obtain HWFZ corresponding to varying sets of conditions. Finally, a multiple
nonlinear regression analysis was used to complete the construction of the prediction model for HWFZ,
and the procedure for its design is described in Figure 10.
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4.2. Numerical Simulation Studies of HWFZ in SBM

The predictive equation in the HMP standard was derived using empirical methods, in which a
limited set of field measurement data on HWFZ in working faces were analyzed. During this analysis,
the effects of the physical and mechanical properties of the overlying strata on damage and deformation
were not taken into consideration. The method for determination used in the analysis, which was
based on mechanical theories, was conservative and not capable of accurately calculating HWFZ in
rock layers that have suffered damage, and the mechanistic model could not calculate HWFZ caused
by the local failure of a stratum. The UDEC analytical software uses the discrete element method based
on rock mechanical theories, as well as the lithology and parameters of the various strata; this method
is thus capable of simulating the range of plastic damage in strata with a substantially high level of
accuracy and overcoming the deficiencies of the HMP standard’s predictive equation and mechanical
calculation [38,39].

Based on the geological conditions of the experimental area, the UDEC modeling program
was used to study the developmental behavior of the water-conducting fracture zone during SBM.
The construction of the numerical model is illustrated in Figure 11. Both sides of the model were
constrained to horizontal displacements, while the bottom of the model was constrained to vertical
displacements. The Mohr–Coulomb model was used to add an evenly distributed 0.56 MPa load
on the top of the model. The fundamental length and height of the model were 270.00 × 111.00 m,
and 50.00 m margins were dug out on each side of the model. Mesh refinement was performed on the
strata in the vicinity of the coal seam, taking into account both the accuracy of the calculations and
computational time.
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Figure 11. Mechanical model for numerical calculations.

To study the state of development of the water-conducting fracture zone with various mining
heights, block lengths, and protective coal pillar widths, three simulation cases were designed,
as presented in Table 1. The simulation cases in Table 1 were determined according to the key
factors that affect the development of the water-conducting fracture zone during SBM, engineering
geological conditions of Figure 2, preliminary design parameters of the experimental area in Figure 3,
and related empirical design parameters in SBM. The physical and mechanical parameters of the coal
seam and the various strata in the numerical model were based on rock mechanics data measured in a
laboratory (as illustrated in Figure 2).
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Table 1. Numerical simulation cases.

Case Mining Height/m Block Length/m Width of Protective Coal Pillar/m

1 2.00/2.40/2.80/3.20/3.60/4.00 70.00 10.00
2 4.00 70.00 6.00/10.00/12.00/14.00/18.00/22.00
3 4.00 50.00/55.00/60.00/70.00/75.00/80.00 10.00

The results of the numerical simulations are as follows:

(1) HWFZ with varying mining heights

Based on the analysis illustrated in Figure 12, HWFZ increased linearly with mining height (when
the width of the protective coal pillars and the length of the blocks were kept constant). HWFZ was
45.00 m when the mining height was 2.00 m, and it developed to 53.00 m when the mining height
was 4.00 m. Hence, it is shown that increases in mining height promote the development of the
water-conducting fracture zone.
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(2) HWFZ with various protective coal pillar widths

The analysis in Figure 13 indicates that the width of the protective coal pillar was inversely
correlated with HWFZ when the mining height and block length were kept constant. The amplitude
of the curve’s decline is uniform and approximates a straight line. Hence, it is demonstrated
that a sufficiently protective coal pillar width is a prerequisite for suppressing the growth of the
water-conducting fracture zone.
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(3) HWFZ with various block lengths

From Figure 14, it is evident that HWFZ increased with an increase in block length, albeit at a
decreasing rate of increase, such that HWFZ appears to be a logarithmic function of block length.
HWFZ increased rapidly when the block length ranged between 50.00 and 60.00 m; however, it attained
a plateau (and stabilized) when the block length ranged from 60.00 to 80.00 m. Hence, reasonable
adjustments of block length directly affect the regulation of overlying strata movements and HWFZ.
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(4) The comparison between the results of the mechanical model [40] and numerical simulation
could be obtained when a stratum was completely broken or the water-conducting fractures fully
penetrated the stratum in overlying strata, and the results of mechanical model and numerical
simulation were very close. While a stratum was partially destroyed or the water-conducting
fractures did not completely pass through the stratum, the results of the mechanical model and
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numerical simulation exhibit a certain difference. For example, the block length block (70.00 m)
and the width of protective coal pillar (10.00 m) were constant, and when the mining height was
3.00 m, the mechanical model result was 51.00 m and the numerical simulation result was about
51.33 m, but while the mining height was 3.00 m, the result of the mechanical model was 49.00 m
and the result of numerical simulation was about 49.33 m. Therefore, based on the above analysis,
when a stratum was partially broken or the water-conducting fractures did not completely pass
through the stratum in overlying strata, there was a certain error in the calculation results of the
mechanical model.

4.3. Prediction of HWFZ Based on Multiple Nonlinear Regression

(1) Multiple nonlinear regression analysis

A multiple nonlinear regression model may be constructed based on the results of the
numerical simulations:

y = α1x1 + α2x2 + α3 ln x3 + α0 (10)

Here, let x′1 = x1, x′2 = x2, and x′3 = ln x3; the nonlinear regression model in Equation (10) may
then be converted into a linear regression model as follows:

y = α1x′1 + α2x′2 + α3x′3 + α0 (11)

The least squares method is then used to obtain the regression coefficients, α0, α1, α2, and α3,
as illustrated below:

f (x′i) = ∑ (yi − ŷi)
2 = ∑

(
yi − α0 − α1x′1i − α2x′2i − α3x′3i

)2
= min (12)

In Equation (12), x′1i, x′2i, and x′3i are independent variables, while yi is a dependent variable.
As both the sets of variables are known observables, one may then solve the regression coefficients α0,
α1, α2, and α3 by setting their first derivatives as 0. This yields the following:

K11α1 + K12α2 + K13α3 = K1y
K21α1 + K22α2 + K23α3 = K2y
K31α1 + K32α2 + K33α3 = K3y

(13)

Here, it is revealed in Equation (13) that Kij = Kji = ∑ (x′ij − x′i)(x′ij − x′j) and
Kiy = ∑ (x′ij − x′i)(yi − yi).

As Ki1, Ki2, Ki3, and Kiy (i = 1, 2, 3) are already known, x′ij, yi, x′j, x′i and yi (i = 1, 2, 3) are also
known. Hence, there are three equations for the three unknown regression coefficients, α0, α1, α2, and α3.
These three unknowns may then be solved via either elementary matrix operations or the calculation
of determinants; α0 may be solved using the values of α0, α1, α2, and α3. The accuracy of the obtained

regression equation may be determined using a correlation coefficient R
(

R2(y, 1, 2, 3, 4) = ∑ (ŷi−y)2

∑ (yi−y)2

)
.

The more closely the value of R approaches 1, the more reliable the fit of the regression equation.

(2) Construction of the model for predicting HWFZ

Based on the simulation results in Section 4.2. and the aforementioned procedure, SPSS 19.0 was
used to perform nonlinear regression analyses on the relationships between HWFZ and mining height,
the block length, and the width of the protective coal pillars (in Figures 12–14, respectively). The model
equation for predicting HWFZ is:

H = 35.03 ln l1 − 0.51l2 + 3.48hc − 105.04 (14)
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The correlation coefficient of the regression model’s fit is illustrated in Table 2.

Table 2. Correlation coefficient of the regression model’s fit.

R R2

0.97 0.93

Table 2 reveals that the fit coefficient of the regression model is R2 = 0.93, which indicates an
excellent level of fit and demonstrates that the equation is statistically significant. The construction
of this predictive regression model enables accurate predictions for this type of geological work
under varying sets of mining parameters and conditions (mining height, protective coal pillar width,
and block length), thus providing a form of on-site guidance that can, to an extent, inform the design
of working face layouts and key mining parameters. In addition, the application of this system for
predicting HWFZ in SBM is likely to have profound significance in the prediction of HWFZ during
the recovery of coal pillars in varied geological environments, and it will be of practical value for the
protection of ecological environments, ensuring adequate resource utilization, and China’s sustainable
development strategies.

5. Practical Applications

5.1. Methods for Monitoring HWFZ

During SBM recovery, HWFZ were measured through losses in drilling fluid, integrity of drilled
cores, and the tomography of drilling television system in bored holes. After the working face was
mined-out, two observation boreholes (D1 and D2) were installed above the working face to measure
HWFZ. The layout of the boreholes was as illustrated in Figures 3 and 15; boreholes D1 and D2 lie in
two central positions above the working face at 35.00 m and 115.00 m, respectively, from the starting
cut. The depth of these boreholes was 114.00 m, with the final drilled stratum being the floor stratum
of the coal seam; the loss of washing fluid was monitored during the borehole drilling process.
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5.2. Analysis of the Monitoring Data

The observed variations in washing fluid losses during the drilling of D1 and D2 are presented in
Figure 16, and images of the drilling television system are shown in Figures 17 and 18. When the bore
depth of D1 reached 62.42 m, the loss in washing fluid increased from 0.27 to 1.93 m3/h. While there
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was an increase in the loss of washing fluid, the magnitude of this increase was relatively marginal,
and the development of layered cracks in the drilled cores was relatively intact. Figure 17a shows
an image from the drilling television system at the bore depth of 58.02 m, with morphological
characteristics of rock strata being relatively complete. As the drilling depth increased, the loss
of washing fluid increased to 4.03 m3/h, which was a relatively large increase in loss. The recovery
rate of the drilled cores was less than 50%, and the cracks in the cores were more developed and
exhibited multiple cracks with narrow widths. An image of the top boundary of HWFZ is shown in
Figure 17b. The first vertical fracture appeared at 62.42 m in borehole D1. The loss of washing fluid
fluctuated within a marginal range as the drilling depth continued to increase, and the cores were
more shattered. Figure 17c shows that the density of the vertical fractures increased with bore depth.
Hence, it is demonstrated that D1 measured an HWFZ of 47.98 m.Sustainability 2018, 10, x FOR PEER REVIEW  16 of 19 
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Figure 17. Image of drilling television system in borehole D1. (a) No fracture; (b) First vertical fracture;
(c) Fractured zone.
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When the drilling depth of D2 reached 60.34 m, the loss in washing fluid increased from 0.14 to
2.27 m3/h, and the recovery rate of the drilled cores was approximately 78%. The rock cores displayed
developments of layered cracks with narrow widths and did not present any distinct cracks. The image
at the bore depth of 56.02 m is shown in Figure 18a, the rock strata did not have any fractures, and the
morphological characteristics were complete. As the drilling depth continued to increase, the loss in
washing fluid increased to 4.58 m3/h, and the fluctuations in these losses were relatively large from
observations of the recovered cores, it was determined that the cores were shattered, as shown in
Figure 18b, and there was an obvious vertical fracture at a bore depth of 60.34 m for the first time.
The fluctuations in washing fluid loss became smaller as the drilling depth continued to increase,
and the broken range of the cores was obviously increased. As can be seen in Figure 18c, the density
of the vertical fractures and the broken range of rock strata increased with bore depth. Hence, it was
determined that the peak of the water-conducting fracture zone was at a depth of approximately
60.34 m, which corresponds to a height of 50.06 m of the water-conducting fracture zone affected
by mining.

5.3. Comparison between the Analyses of HWFZ

As shown in Table 3, the field-measured data indicates that HWFZ in the SBM working face is
approximately 49 m and that it has not reached the aquifer. These results thus indicate that the HMP
standard’s prediction is incompatible with the measured results, while the results of the mechanical
model proposed in this study (50.30 m) and the regression prediction model (52.58 m) reasonably fit
field measurements. This observation verifies that the regression prediction model is highly viable and
valuable as a source of guidance, and also establishes the accuracy of the mechanical model.

Table 3. Comparison between the analyses of HWFZ.

HWFZ

Measured Result Result Predicted by the
HMP Standard

Calculation of
Mechanical Analysis Prediction by this Study

D1 D2

47.98 m 50.06 m 75.00 m 50.30 m 52.58 m

6. Conclusions

(1) This study proposes the SBM process for recovering irregular blocks of coal and coal pillars.
Based on the characteristics of overlying strata displacements of SBM, the key factors that affect the
development of the water-conducting fracture zone and the theory of beams on elastic foundations,
a mechanical model for calculating HWFZ in SBM was constructed, and an HWFZ of 50.30 m in
the working face of the experimental area was calculated; this result varied substantially from the
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prediction of the HMP standard (75.50 m). This reveals that the empirical equation in the HMP
standard is not suitable for predicting HWFZ in SBM.

(2) UDEC was used to perform simulation analyses on the various factors that determine
HWFZ, and the simulations indicated that HWFZ increased linearly with an increase in mining height,
increased logarithmically with an increase in the block length of the coal seam, and decreased linearly
with an increase in the width of the protective coal pillars.

(3) SPSS was used to perform nonlinear regression analyses to obtain an equation for predicting
HWFZ in SBM, i.e., H = 35.03 ln l1 − 0.51 l2 + 3.48 hc − 105.04. On-site measurements indicated
that the mined-out working face in the experimental area had an HWFZ of approximately 49 m,
which is comparable to the prediction of the regression model (52.58 m) and the calculated result of the
mechanical model (50.30 m). This result verifies the reliability of the regression model proposed in this
study and also establishes the accuracy of the mechanical model. The construction of this prediction
system will allow for accurate predictions of HWFZ in overlying strata of SBM, which has significant
implications for the rational utilization of mining resources and the protection of water resources and
ecological environments.
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