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Abstract: Researchers are searching for opportunities to organize production systems that save energy
and natural resources. Preventive maintenance (PM) is essential for the efficient use of machines and
energy saving. Any rework due to a machine failure consumes additional energy, human resources,
equipment, spare parts and raw materials. Two criteria—quality robustness (QR) and solution
robustness (SR)—are used in order to compute the operational efficiency of the production system
in the event of disruption. Any cost criterion can be added to the QR in order to measure losses
due to a machine failure. The SR criterion measures a number of changes necessary to adopt the
production schedule after the machine failure. Two proactive approaches are compared to compute
the operational efficiency. In the predictive-reactive approach, the PM time is predicted and a stable
schedule is built. In the proactive-reactive approach, a schedule is achieved for the best sequence of
idle times between jobs. The influence of disturbance on both schedules using robustness measures
is examined. This paper presents the results of computer simulations for the above approaches.
The approaches are compared in order to select a better method of production organization that
reduces costs and waste due to machine failure.

Keywords: sustainable manufacturing; robustness; preventive maintenance; proactive scheduling;
predictive-reactive scheduling; immune algorithm; job shop

1. Introduction

Real-life situations relate to a new way of doing business and creating value by “sustainable
manufacturing”. Researchers are searching for production systems that minimize negative
environmental impacts, conserve energy and natural resources, are safe for employees, communities
and consumers, and are economically sound.

Energy saving is a key factor resulting from the need to reduce costs, use limited resources
efficiently and be environmentally friendly. Preventive maintenance (PM) is essential for the efficient
use of machines and energy saving. Any rework due to a machine failure consumes additional energy,
human resources, equipment, spare parts and raw materials. Additional energy is consumed by
adapting of a shop floor in accordance with the schedule changes. Additional set-up operations are
carried out for machines. Additional organizational changes of human resources and raw materials
requirements are also necessary. In other words, the fewer changes in the adopted schedule, the greater
the energy savings. A stable and reliable schedule can be obtained using predictive methods for
determining PM time. Building a schedule for production and maintenance jobs helps in the creation
of manufacturing processes that minimize negative environmental impacts, conserve energy and
natural resources, and are economically sound. The number of changes made to the schedules after the
disturbance (the bottleneck failure) is measured using the criteria of quality robustness and solution

Sustainability 2019, 11, 65; doi:10.3390/su11010065 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-3870-7509
http://dx.doi.org/10.3390/su11010065
http://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/11/1/65?type=check_update&version=3


Sustainability 2019, 11, 65 2 of 18

robustness. Quality robustness measures the degradation of the performance of the schedule due to
the disturbance. Solution robustness measures the sum of absolute deviations of operation start times
in the reactive and basic schedules. The impact of machine failures must be minimized.

Preventive maintenance is carried out in order to keep the production system at the high level
of operation due to restricted resources. The main idea of PM is to prevent failures before they occur.
Some papers search for a method that minimizes the probability of failure. Other papers search for
a method that minimizes the impact of failure on a schedule. The first group of methods belongs to
predictive scheduling. The second group of methods belongs to proactive and reactive scheduling.
Both groups are important in real-life situations. The following literature review is carried out taking
into account the above research groups.

1.1. Literature Review

First, the pros and cons of predictive, proactive and reactive scheduling methods are determined.
The main idea of predictive scheduling is to introduce maintenance into a schedule in order to increase
the probability of running the schedule without disturbances. In predictive scheduling, researchers
assume that PM performed at regular intervals is enough for machines to be available and reliable [1].
Some researchers assume that the time to implement preventive maintenance is flexible. Certain
flexibility is obtained by giving each maintenance task a time window in which the actual start time of
the maintenance can move [1,2]. However, more reliable methods are based on inserting a time buffer
for maintenance prior to a job with a disturbance prediction [3].

In proactive scheduling, the impact of an unexpected machine failure over the performance of
the production system is investigated. A common feature of the proactive scheduling methods is that
researchers advocate schedule robustness to deal with uncertainty. A schedule that best deals with the
disturbance is accepted for action. There are two types of schedule assessment measures: robustness
of a solution and robustness of the solution quality. Solution robustness measures the insensitivity of
the operation start times to variations in the input data. Quality robustness measures the insensitivity
of objective functions due to disruptions [4]. Proactive scheduling methods differ in their strategy of
reducing the impact of uncertainty. Some researchers use prediction methods in order to predict time
of PM and built predictive schedules. Next, the influence of the disturbance on the predictive schedule
using the robustness measures is examined. This approach is called predictive-reactive (proactive
with prediction) [5–7]. Some researchers simply investigate the impact of disruption on a proactive
schedule using robustness criteria. But the proactive schedule is achieved for the best sequence of idle
times between jobs or batches taking advantage of the simulation process. This approach is called
proactive-reactive (proactive without prediction) [8–10]. Predictive-reactive and proactive-reactive
approaches are implemented at the decision stage. It is necessary to compare predictive-reactive and
proactive-reactive approaches and this is the subject of this paper.

In reactive (dynamic) scheduling, the impact of frequency and method of rescheduling over the
performance of a production system is investigated. Researchers investigate when and how to respond
to real-time events [11]. The efficiency of rescheduling techniques is assessed using robustness criteria.
Reactive scheduling is carried out at runtime to adjust the schedule to the real-time situation.

The author of this paper intends to compare proactive-reactive approaches with predictive-reactive
approaches. Thus, the literature review is continued considering these two groups.

First, proactive-reactive approaches are considered. Lei [12] considered PM as an availability
constraint but there is no explanation of how the PM time is determined. Each maintenance operation
has a fixed predefined time interval. The beginning times of operations are fuzzy. The author examined
the impact of PM time on the completion times of jobs. He proved that “most of the possible actual
completion times lie in the cut of fuzzy completion time for each job.” [12]. Bali and Labdelaoui [13]
searched for a maintenance schedule that guarantees a high level of system reliability and reduces both
maintenance resources and power demand. The time horizon of the schedule is divided into periods
in which maintenance operations are performed. The authors examine the impact of starting times of
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maintenance, for each unit of the power system, on constraints of the problem. The first constraint
imposes a continuous and limited maintenance window for each unit of the power system. The second
constraint imposes a limited total number of maintenance crew available for each scheduling period.
The third constraint imposes a limited capacity of the running units at each period of the maintenance
schedule. The capacity should not be less than the predicted load demand at given period.

Considering only the relationship between production and maintenance as a conflict in
management decisions may result in unsatisfied demand or machine breakdowns. A common objective
is to maximize system productivity and efficiency. Moreover, the time interval of PM activities and the
number of PMs are usually pre-known and fixed in advance. In the proactive–reactive approaches,
reliability analyses need to be applied to handle the maintenance aspect. The mentioned deficiencies
in the proactive-reactive approaches are the advantages in the predictive-reactive approaches.

Next, predictive-reactive approaches are considered. Mokhtari et al. [14] searched for the best
allocation of jobs for machines in order to satisfy the predefined makespan value as well as PMs in
order to minimize unavailability of the production system. The advantage of the proposed method is
the description of a machine condition using the availability function. Unavailability of the machine is
zero at the beginning of the scheduling horizon. Availability of the machine is deteriorated with the
maximum repair rate predefined for the machine. The machine is restored to the “as good as new”
condition after PM. PM time is determined for each machine in order to maximize the availability of the
production system. By using the availability component in the objective function, the algorithm assigns
PMs in intervals that increase the availability of machines. But the searching process is longer because
the neighborhood search algorithm is based on random insertion and swap moves. The disadvantage
of this method is the lack of prediction of the time of machine unavailability. Bajestani et al. [15]
searched for the best allocation of jobs and PMs for machines in order to minimize the total cost of
maintenance and lost production. Two cases are considered: a machine is maintenance-free and the
machine needs maintenance. In the first case, the state of the machine and its production rate are
known at the beginning of a time period. The transition probability in which the machine changes its
state at a given time is predefined. The probability that a machine is in a given state at the start-time of
a job depends on both the condition of the machine and the time of maintenance. The disadvantage of
the proposed method is that maintenance is performed with a negligible time at the beginning of each
time period. The machine is maintained only when it is in a state of failure and as a result, there is no
production at the beginning of the next period. The average production rate of the machine depends
on its state given at the beginning and at the end of the period. And the average values are described
by given time intervals (uniformly distributed) with no historical analysis. In the paper [16] the idea of
predictive-reactive scheduling of production tasks is outlined. Predictive scheduling is proposed for
a production process with two uncertainties: unknown machine failure times and variability of task
processing times. A possible machine failure is introduced as a buffer time (for maintenance) with a
fixed duration in the production model. The time of failure is pre-determined for each machine. Failure
times are selected based on the assumption of the largest number of tasks processed on machines
at that time. The advantage of the method is that the lengths of time buffers are supported by the
technical data issued by the maintenance department of a given manufacturing company.

Taking into account machine conditions allows for more efficient use of potential production time.
Some predictive-reactive approaches use probability theory to describe machine conditions. Other
predictive-reactive approaches assume only a fixed period of unavailability of machines for technical
service. However, accepting the assumption that machine conditions are observable at the beginning of
each period is not sufficient. Recently, the problems of production scheduling with disturbances have
become more and more popular in the scientific community. The most popular machine maintenance
strategies are based on the periodic inspection of a machine and age dependent inspection. Researchers
should use predictive methods to analyse historical failure-free times. Attributes to describe a machine
age and the influence of maintenance should be drawn from analysis of historical data [7,17].
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The advantages of the predictive-reactive method used in this paper are four-fold:

• The predictive-reactive approach uses historical data analysis for PM time prediction;
• Preventive maintenance of the bottleneck is planned in order to reduce unexpected failure;
• Flexible operations are allocated to the bottleneck during a higher probability of failure in order

to increase the robustness of the schedule;
• The computer simulation is used to determine the start time of operations on machines in a

balanced schedule for robustness criteria.

1.2. Goals and Approaches

It is necessary to examine the following research point—which construction of proactive
algorithms achieves better solutions: proactive-reactive (proactive without prediction) or
predictive-reactive (proactive with prediction). The first construction consists in repeating the closed
loop: the set of task sequences is obtained in the coding procedure, trained in the affinity maturation
procedure and evaluated after the decoding procedure. The quality of a schedule depends on the
impact of the disruption on criteria: the makespan Cmax, total tardiness T, total flow-time F, total idle
time of machines I, and stability criterion SR. The second construction consists in repeating the closed
loop: a population of the task sequence is generated, the sequence is rebuilt using the minimal impact
of disrupted operation on the schedule MIDOS rule in order to make the schedule more robust. In the
MIDOS rule, PM is assigned to the bottleneck at the time of predicted failure. Estimation methods of
the mean time to failure and other reliability characteristics are presented in [7,17]. Next, the sequences
of production and maintenance tasks are trained and evaluated taking into account the effects of the
machine failure on criteria: Cmax, T, F, I and SR. Taking into account the reliability information of a
critical machine some predictions are added in the second construction. Both approaches are compared
using the multi-objective immune algorithm described in the next section.

The original contribution to the existing state of research is the comparison analysis of proactive
methods using not only the advantage of computer simulation but also prediction. Bearing in mind
the review of the literature, the research points are defined:

1. Approaches of dealing with the machine failure and obtaining the best proactive schedules, when
the objective is to minimise criteria: Cmax, T, F, I.

2. Methods dealing with anticipated or unanticipated disruptions, that maximize robustness criteria:
SR and QR.

The paper is organized as follows: two constructions of proactive algorithms—proactive-reactive
(proactive without prediction) and predictive-reactive (proactive with prediction)—are presented in
the next section. The criteria for the assessment of predictive and reactive schedules are also described
in Section 2. The mathematical model of the production system with disruptions (a machine failure) is
presented in Section 3. The job shop scheduling problem, together with interruptions for experimental
study, is presented in Section 4. Section 5 contains necessary analyses and experimental test results
related to the research on the application of proactive algorithms in the job shop problem. The paper
concludes with a brief summary of the results (Section 6).

2. Two Proactive Approaches Using the HMOIA

Originally, the multi-objective immune algorithm (MOIA) was applicable to solve deterministic
(basic) scheduling problems [18–20].

Next, modification of the MOIA was applied to solve proactive-reactive scheduling problems [21].
The modification is called the hybrid multi-objective immune algorithm II (HMOIA II). The HMOIA
II searches the solution space for the most stable and robust solutions. The algorithm repeats
the procedures: coding solutions, training solutions, decoding solutions, evaluating solutions and
eliminating similar solutions (Figure 1). The algorithm effectively scans the solution space to achieve
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the most robust schedule (Fig.1 in [21]). Solutions are evaluated using two criteria: solution robustness
(SR) and quality robustness (QR). QR measures how much the quality of the basic schedule has
deteriorated after the disruption. SR measures the sum of absolute deviations of operation start times
in the reactive and nominal (basic) schedule. The fitness function adds the weighted values of QR and
SR. The criteria are equivalent.Sustainability 2018, 10, x FOR PEER REVIEW  5 of 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Architecture of the hybrid multi-objective immune algorithm (HMOIA) II in the searching 
process for the best nominal schedule that will best deal with disruption. 
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Figure 1. Architecture of the hybrid multi-objective immune algorithm (HMOIA) II in the searching
process for the best nominal schedule that will best deal with disruption.
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The elite selection is used to select a better solution from a pair: parent and offspring. Solutions
with lower values of the fitness function create a new initial population in the next iteration. In each
iteration, the best solution is copied to the immune memory. It means that the job sequence will best
deal with disruption (Figure 1). In HMOIA II, the training process is terminated with a given number
of iterations.

“The training process of antibody population for QR starts with antibodies selection to create
a mating pool. Parents are randomly matched in couples.” [21] (Figure 1). Mutation and crossover
procedures are used to train the population of solutions for QR [21]. Hypermutation procedure is used
to train the population of solutions for SR [21].

In order to maintain a high diversity of solutions trained in subpopulations for QR and SR, the
Hamming distance is calculated for each solution. Affthres is a threshold value that determines the
similarity of two solutions. “An antibody is deleted from the population trained for the SR if it is
stimulated by a number of antibodies more than stimthres.” [21]. The removed antibody is replaced by
an antibody with the same index from the population trained for SR.

After the terminal condition is met, the best solution is selected from the immune memory.
In [21], authors proposed the construction of the algorithm to achieve the best compromise

solution for SR and QR. In this paper, the decoding process is differentiated in two approaches:
proactive-reactive (proactive without prediction) or predictive-reactive (proactive with prediction)
(Figures 2 and 3).
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Figure 2. The decoding process in the proactive scheduling approach without prediction: generating a
nominal schedule (HMOIA II).

In the first approach (HMOIA II), a job sequence is decoded by generating the nominal schedule
(with deterministic input data), then, the reactive schedule is generated after the bottleneck failure
(Figure 2). In the second approach (HMOIA III), a job sequence is decoded by generating the basic
(nominal) schedule. The basic schedule is then rebuilt using the MIDOS rule in order to generate
a predictive schedule [22]. The MIDOS rule assigns a preventive maintenance task at the predicted
time of the bottleneck failure. Then the most flexible task operations are assigned during the high
probability period of failure. The MIDOS rule makes the schedule more robust and flexible in the event
of the bottleneck failure. The reactive schedule is generated after the bottleneck failure (Figure 3).

The proactive scheduling approaches differ in their strategy of reducing the impact of uncertainty.
The first approach (HMOIA II) simply investigates the impact of disruption on a nominal schedule
using robustness criteria. But the proactive schedule is achieved for the best sequence of jobs taking
advantage of the simulation process. The second approach (HMOIA III) uses prediction methods [7,17]
in order to predict time of PM and built a predictive schedule using the MIDOS rule. Then, the influence
of the disturbance on the predictive schedule using the robustness measures is examined.

Computer simulations are run for the two proactive approaches for the job shop scheduling
problem and reliability characteristics presented in Section 4. First the mathematical model of the
production system with disruptions (a machine failure) is presented.
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3. The Mathematical Model of the Production System with Disruptions

A job shop scheduling problem with disturbance is described by J tasks (j = 1,2, . . . , J) that
are to be scheduled on W machines (w = 1,2, . . . , W). Each production task is represented by a
number of non-pre-emptive operations Vj which is equal to the number of machines (vj = 1,2, . . . , Vj).
The execution of operation vj of task j requires a machine according to a technological route. Operation
vj occupies predefined machine time units. After the machine failure, operation vj requires one machine
selected from a set of parallel machines. Processing time aw,vj of operation vj is non-resumable after a
disruption (the bottleneck failure). It means that operation vj must be reprocessed fully after repair of
the bottleneck.

The maintenance task must be performed on the most occupied machine in every planning
horizon. The production system with disturbances (bottleneck failures) is monitored in order to
collect information on a number of disruptions, disruption-free times and repair times. It is assumed
that successive disruption-free times are assumed to have Weibull distributions and are followed by
exponentially distributed times of machine service (repair). It was observed that parameters of these
distributions change with time. Based on the collected information in a number of planning horizons
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of the same duration in the past predictions of the reliability characteristics are estimated. Such a
production system, firstly, is observed on m successive planning horizons:

[0, T), [T, 2T), . . . , [(m− 1)T, mT) (1)

of the same duration, for which information about numbers of disturbances or disturbance-free times
is collected. The prediction of job shop system operation is being built for the next planning horizon
[mT, (m + 1)T). Disturbance-free times Xi,1, . . . , Xi,Ni in the ith planning horizon [(i− 1)T, iT), i =
1, . . . , m + 1 have a Weibull distribution with probability density function fi(·) of the form:

fi(t) =

{
λi pitpi−1exp(−λitpi ), t > 0,
0, t ≤ 0,

(2)

where pi > 0, λi > 0, thus parameters of the distribution depend on the number of period and are the
same in each period separately. Here Ni denotes a random number of failures detected in [(i− 1)T, iT).

At the end of reliable work period Xi,k, as the failure occurs, a repair time Yi,k begins immediately
and so on. Repair times Yi,1, . . . , Yi,Ni for i = 1, . . . , m + 1 are supposed to be exponentially distributed
with probability distribution functions PDFs gi(·) of the form:

gi(t) =

{
αiexp(−αit), t > 0,
0, t ≤ 0,

(3)

Assuming that numbers and durations of successive disturbance-free periods have been measured
and are known for each planning horizon, parameters of distributions fi(·) are estimated using the
maximum likelihood approach or empirical moments approach.

3.1. Maximum Likelihood Approach

Assuming that in each of planning horizon [0, T), [T, 2T), . . . , [(m− 1)T, mT) disturbance-free
periods Xi,k, k = 1, . . . , Ni for any i = 1, . . . , m are given, where ni is the observed value of Ni, thus the
observations are described by:(

x1,1, x1,2, . . . , x1,n1

)
, . . . , (xm,1, xm,2, . . . , xm,nm) (4)

Consider firstly the planning horizon [0, T). x1,1, x1,2, . . . , x1,n1 are independent and identically
distributed collected variables. Unknown parameter p1 of Weibull distribution is estimated using the
following equation [23]:

n
n1

∑
k=1

xp1
1,klnx1,k −

(
n1

p1
+

n1

∑
k=1

lnx1,k

)
n1

∑
k=1

xp1
1,k = 0. (5)

Obtaining estimated value of
ˆ

p1 unknown parameter λ1 of Weibull distribution is estimated just
from the following equation:

λ̂1 =
n1

∑n1
k=1 x p̂1

1k

. (6)

After achieving estimators p̂1, . . . , p̂m and λ̂1, . . . , λ̂m one can extrapolate values p̂m+1 and
λ̂m+1 for the next planning horizon [mT, (m + 1)T) for which we have no observation, using the
regression method.
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3.2. Empirical Moments Approach

Assume that there are disturbance-free periods x1,1, x1,2, . . . , x1,n1 for planning horizon [0, T) as in
the previous section. Analyzing the behavior of the condition [23]:

T1

(
1
p1

)
=

√
π

p1
·
(

1
4

) 1
p1

(7)

for fixed value T0 =
m2

1(x1)
m2(x1)

, one can find an approximate value p̂1 of p1. Here m1(x1) denotes
disturbance-free mean and m2(x1) is the second moment as follows:

m1(x1) = x1 =
1
n1

n1

∑
k=1

x1,k, m2(x1) =
1
n1

n1

∑
k=1

x2
1,k (8)

Having p̂1 one can obtain an approximate value λ̂1 of λ1 just from the equation:

λ̂1 =

[
m1(x1)/Γ

(
1
p̂1

+ 1
)]− p̂1

(9)

The exact value of λ1 is impossible to obtain just from the above equation. One method of
approximation uses the Gamma function:

Γ(x + 1) ≈ xx+ 1
2 e−xe

1
2 ln2π , x → ∞ (10)

After obtaining estimators p̂1, . . . , p̂m and λ̂1, . . . , λ̂m one can extrapolate values p̂m+1 and
λ̂m+1 for the next planning horizon [mT, (m + 1)T) for which we have no observation, using the
regression method.

3.3. Reliability Characeristics

Let us consider planning horizons [(m− 1)T, mT) for which estimators p̂m+1 and λ̂m+1 of Weibull
distribution were obtained (using one of two methods). Below the formulae for the reliability
characteristics used in the MIDOS rule are given:

1. The maintenance task is assigned to the bottleneck at the time determined by the mean time
between failures (MTBF)

MTBF = E{Xm+1,1 + Ym+1,1} =
(

1
λ̂m+1

) 1
p̂m+1

Γ
(

1
p̂m+1

+ 1
)
+

(
1

αm+1

)
, (11)

where: αm+1 > 0 is predefined.
2. The risk of inconsistent prediction of machine failure-free time is minimized by assigning the

most flexible operations to the period limited by points b and a, where: a is estimated on
the assumption [7] that the probability of the failure-free time of the bottleneck described
by the Weibull distribution with parameters p̂m+1 and λ̂m+1 is higher than a equalling 40%,
P{Xm+1,1 > a} = 0.4. Thus, P{Xm+1,1 < a} = 0.6 and 1 − e(−λ · ap) = 0.6, and we have
e(−λ · ap) = 0.4 and taking the property lne(r) = r we achieve ap = −ln(0.4)/λ and finally:

a = p
√
−ln(0.4)/λ (12)

b is estimated on the assumption that the probability of the failure-free time of the bottleneck
described by Weibull distribution with parameters p̂m+1 and λ̂m+1 is less than b equalling 70%,
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P{Xm+1,1 < b} = 0.7 thus 1− e(−λ · bp) = 0.7 and we have e(−λ · bp) = 0.3 and taking the
property lne(r) = r we achieve bp = −ln(0.3)/λ and finally

b = p
√
−ln(0.3)/λ (13)

Having the above reliability characteristics, a flexible schedule is generated using the MIDOS rule.
The achieved schedule is evaluated before and after the disturbance.

3.4. Evaluation Criteria

The job shop scheduling problem with disturbance is formulated to schedule a set of production
tasks to a set of machines subject to the following constraints:

• the operation sequence of a production task is predefined;
• operations of production tasks are pre-assigned to machines according to technological routes;
• the disturbed operation can be rescheduled to one machine from a set of parallel machines;
• preventive maintenance of the bottleneck has to be completed at the time of the MTBF.

The objective is to minimise the following criteria of predictive schedule x:

1. Makespan of production tasks:
F1 = min Cmax[tz,Vj

]max (14)

where: tz,vj is completion time of operation vj of task j, vj = 1, . . . , Vj, j = 1, . . . , J;

2. Flow time of production tasks:

F2 = min F =
J

∑
j=1

(
tz,Vj − tr,1j

)
(15)

where: tr,vj is start time of operation vj of task j;

3. Total tardiness of production tasks:

F3 = min T =
J

∑
j=1

[
0, Dj

]
(16)

where:

{
0, i f dj − tz,Vj ≤ 0
Di,i f dj − tz,Vj > 0

and dj is deadline for completing task j; Dj is delay in completing

task j.
4. Idle time of machines:

F4 = min I =
W

∑
w=1

Iw (17)

where Iw is idle time of machine w, w = 1, . . . , W.
5. The weighted sum of values of the four objective functions are combined into one objective

function:
FF(x) = v1 · F1(x) + v2 · F2(x) + v3 · F3(x) + v4 · F4(x) (18)

Subject to:
v1, v2, v3, v4 ∈ [0, 1], and v1 + v2 + v3 + v4 = 1 (19)

The objective is to minimise the following criteria of reactive schedule x*:
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1. The weighted sum of values of the four objective functions:

FF(x∗) = v1 · F1(x∗) + v2 · F2(x∗) + v3 · F3(x∗) + v4 · F4(x∗) (20)

2. Quality robustness:
QR(x∗) = |FF(x)− FF(x∗)| (21)

3. Solution robustness:

SR(x∗) =
J

∑
j=1

Vj

∑
vj=1

∣∣∣stj,vj(x)− stj,vj(x∗)
∣∣∣ (22)

where stj,vj(x) is start time of operation vj of task j in predictive schedule x; and stj,vj(x∗) is start
time of operation vj of task j in reactive schedule x*.

4. The weighted sum of values of the above robustness criteria:

FFr(x∗) = ω1 ·QR1(x∗) + ω2 · SR2(x∗) (23)

Subject to:
ω1, ω2 ∈ [0, 1], and ω1 + ω2 = 1 (24)

4. A Job Shop Scheduling Problem

A numerical example of a job shop (JS) system with disturbances is presented in this section.
A total of 15 production tasks should be executed on 10 machines (15 × 10) in the JS scheduling
problem. Routes of the production processes, durations of technological operations, deadlines of
production tasks and a set of parallel machines are presented in [24]. The goal is to obtain a feasible
solution for four criteria: Cmax → min; F→ min; T→ min and I→ min. The weights of the criteria are
as follows: Cmax and T equal 0.3; F and I equal 0.2. “The increased probability of the bottleneck failure
occurs in time horizon: [a,b+MTTR] where: a = 60 and b = 72 and the mean time of repair, MTTR = 6.
The mean time to failure, MTTF) equals 66” [24].

The question is: Which structure of proactive algorithms allows one to achieve better solutions:
proactive-reactive (proactive without prediction) or predictive-reactive (proactive with prediction)?
In the two proactive approaches, the population of task sequences is trained and then evaluated taking
into account the effects of the disturbance. The effect of the disturbance is assessed using the SR
and QR.

In the proactive-reactive approach, the criterion used for stability (SR) is the sum of absolute
deviations between the start times of operations of planned jobs in the nominal schedule and
those performed after the disruption (in the reactive schedule). In the predictive-reactive approach,
the criterion used for stability (SR) is the sum of absolute deviations between start times of
operations of planned jobs in the predictive schedule and those performed after the disruption (in the
reactive schedule).

In the proactive-reactive approach, the criterion of quality robustness (QR) is the difference
between the fitness function value (FFy) obtained for the nominal schedule y and the fitness function
value (FFy*) achieved for reactive schedule y*. In the predictive-reactive approach, the criterion of
quality robustness (QR) is the difference between the fitness function value (FFx) obtained for the
predictive schedule x and the fitness function value (FFx*) achieved for reactive schedule x*. In both
proactive approaches, it is possible to use any combination of criteria Cmax, F, I and T for assessing
the schedules before and after the disruption [13]. The fitness function (FFy) adds the weighted
values of the criteria: Cmax, F, I and T achieved for the nominal schedule y in the proactive –reactive
approach. The fitness function (FFx) adds the weighted values of criteria Cmax, F, I and T achieved
for the predictive schedule x in the predictive–reactive approach. The fitness function achieved for
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reactive schedule (FFy* or FFx*) adds the weighted values of criteria Cmax, F, I and T achieved for the
reactive schedule in both proactive approaches. Weights of criteria Cmax, F, I and T are predefined
depending on decision-maker preference.

Also, the weighted sum of SR and QR is computed for the predictive-reactive approach (FFrx*)
and for the proactive-reactive approach (FFry*). The weights of the two criteria are equal.

In the next section, the results of computer simulations of the application of the two proactive
approaches are presented. The influence of the quality of basic schedules over the quality of reactive
schedules is investigated in the proactive-reactive approach. The influence of the quality of predictive
schedules over the quality of reactive schedules is investigated in the predictive-reactive approach.
The objective is to find an approach that is able to generate a stable and robust schedule in the event of
the bottleneck failure.

5. Results of Computer Simulations

In the HMOIA II and III, input parameters have the same values in order to allow comparison.
The input parameters are presented in [21]. Both algorithms were coded in Borland C++.

5.1. Predictive-Reactive (Proactive with Prediction) Approach (HMOIA III)

Searching for the best predictive schedule for the JS problem using the HMOIA III, six computer
simulations were carried out for affthres = 8 and for affthres = 80. The decision maker determines the
number of computer simulations performed. Basic schedules are subject to modification using the
MIDOS rule in order to build a predictive schedule. The predictive schedule undergoes a disruption.
The schedule is then rebuilt in order to evaluate the effect of the disturbance on the quality of the
predictive schedule. The best predictive schedule is obtained based on the minimal value of fitness
function FFrx* of reactive schedule The fitness function has two sub-functions: SR and QR.

Let us consider the predictive schedule achieved in the first simulation done for affthres = 8.
The best predictive schedule was obtained for the priority rule of {4 14 9 0 7 8 3 6 12 10 1 13 2 5
11}. The quality of the reactive schedule is FFr1* = 3,3 with the components of QR = 0.6 and SR = 6.
The quality of this solution is also evaluated using Cmax, F, I and T. The quality of the predictive
schedule is Cmax = 125, F = 503, I = 712 and T = 127, and Cmax = 125, F = 509, I = 709 and T = 127 after
disruption. The rest of the solutions are presented in Table 1.

Table 1. Predictive and reactive schedules achieved by the HMOIA III and affthres = 8.

No

Job Shop Scheduling Problem (15 × 10)

The Priority Rule
of the Basic

Schedule

The Quality of Predictive
Schedule X The Quality of Reactive Schedule x*

Cmax F I T FFx Cmax F I T FFx* QR SR FFrx*

1 4 14 9 0 7 8 3 6 12
10 1 13 2 5 11 125 503 712 127 318.6 125 509 709 127 319.2 0.6 6 3.3

2 6 5 10 11 3 12 4 8 7
2 0 9 13 1 14 129 647 752 65 338 129 646 749 64 336.9 1,1 14 7.55

3 14 7 6 9 1 12 11 8 0
3 10 13 5 2 4 132 574 782 161 359.1 132 575 779 156 357.2 1,9 12 6.95

4 2 8 13 12 3 9 11 5 7
14 0 10 1 6 4 127 474 732 84 304.5 124 468 699 73 292.5 12 40 26

5 12 8 10 14 5 3 2 0 6
7 11 4 1 13 9 123 589 692 25 300.6 123 589 689 25 300 0,6 16 8.3

6 9 5 12 1 0 11 7 13 2
8 14 10 3 4 6 127 627 732 58 327.3 127 633 729 64 329.7 2,4 58 30.2

Average 324.68 322.58 3.1 24.3 13.71

The same number of simulations were also run for affthres = 80. In the fifth simulation, the best
predictive schedule was obtained for the priority of {8 10 7 5 12 2 14 1 6 11 3 4 13 0 9}. The quality of
the reactive schedule is FFr5* = 5.83 with the components of QR = 1.2 and SR = 10.5. The quality of this
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solution is also evaluated using Cmax, F, I and T. The quality of the predictive schedule is Cmax = 122,
F = 557, I = 682 and T = 12, and Cmax = 122, F = 554, I = 679 and T = 12 after disruption. The rest of the
solutions are presented in Table 2.

Table 2. Predictive and reactive schedules achieved by the HMOIA III and affthres = 80.

No

Job Shop Scheduling Problem (15 × 10)

The Priority Rule
of the Basic

Schedule

The Quality of Predictive
Schedule X The Quality of Reactive Schedule x*

Cmax F I T FFx Cmax F I T FFx* QR SR FFrx*

1 9 10 1 11 3 2 6 5 8 0
12 7 13 14 4 130 700 769 68 353.2 130 704 759 68 352 1.2 18 9.6

2 11 3 8 7 12 5 1 4 0 9
13 14 10 6 2 131 624 772 97 347.6 131 619 769 97 346 1.6 30 15.8

3 14 13 3 6 5 11 8 10 2
4 0 1 12 7 9 128 472 742 79 304.9 126 467 719 69 295.7 9.2 28 18.6

4 6 10 0 4 2 3 14 9 7
11 8 5 13 1 12 130 567 762 89 331.5 130 567 759 89 330.9 0.6 23 11.8

5 8 10 7 5 12 2 14 1 6
11 3 4 13 0 9 122 557 682 12 288 122 554 679 12 286.8 1.2 10.5 5.85

6 0 2 3 5 8 12 1 9 6 4
13 7 11 14 10 126 614 722 0 305 126 599 719 0 301.4 3.6 23 13.3

Average 321.7 318.8 2.9 22.08 12.49

Let us compare all the simulations carried out by the HMOIA III. The best schedule for dealing
with the uncertainty (the best value of FFrx*) was achieved in the first simulation for affthres = 8.
The best predictive schedule was obtained by the HMOIA III (Figure 4).
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time 66.

Slightly better predictive schedules were achieved for affthres = 80 taking into account the average
values of FFrx*. The same conclusion can be given taking into account the average values of FFx for
predictive schedules and FFx* for reactive schedules.

5.2. Proactive-Reactive (Proactive without Prediction) Approach (HMOIA II)

Searching for the best predictive schedule for JS problem using the HMOIA II, six computer
simulations were carried out for affthres = 8 and for affthres = 80. The basic schedules are subject
to disruption. The basic schedules are then rebuilt for the purpose of evaluation the effect of the
disturbance on the quality. The best basic schedule y is obtained based on the minimal value of fitness
function FFry* of reactive schedule y*. The fitness function has two sub-functions: SR and QR.

Consider the best basic schedule achieved for affthres = 8. The best basic schedule was generated
in the fourth simulation. The best basic schedule was obtained for the priority rule of {3 0 12 13 10 8 4
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11 5 9 2 6 1 7 14}. The quality of the reactive solution is FFr4* = 30.1 with the sub-functions of QR = 15.2
and SR = 45. The quality of this solution is also measured using Cmax, F, I and T. The quality of the
basic solution is Cmax = 129, F = 468, I = 758 and T = 157, and Cmax = 127, F = 548, I = 732 and T = 139
after disruption. The rest of the solutions are presented in Table 3.

Table 3. Proactive-reactive schedules achieved by the HMOIA II and affthres = 8.

No

Job Shop Scheduling Problem (15 × 10)

The Priority Rule of
the Basic Schedule

The Quality of Basic Schedule y The Quality of the Reactive Schedule y*

Cmax F I T FFy Cmax F I T FFy* QR SR FFry*

1 1 2 12 14 10 4 6 11 3 9
5 13 8 7 0 131 520 778 22 305.5 131 535 772 78 324.1 18.6 61 39.8

2 10 8 6 5 11 3 12 9 4 7
0 2 14 13 1 133 587 798 100 346.9 133 586 792 94 343.7 3.2 105 54.1

3 13 0 12 10 9 1 5 4 14 7
2 11 3 6 8 127 539 738 107 325.6 127 559 732 107 328.4 2.8 102 52.4

4 3 0 12 13 10 8 4 11 5 9
2 6 1 7 14 129 568 758 157 351 127 548 732 139 335.8 15.2 45 30.1

5 2 5 0 12 6 3 7 4 8 9 10
13 11 14 1 131 577 778 31 319.6 131 595 772 31 322 2.4 63 32.7

6 3 4 0 5 9 1 2 10 14 12
6 11 13 8 7 125 564 718 49 308.6 125 581 712 49 310.8 2.2 120 61.1

Average 326.2 327.46 7.4 82.66 45.03

Also, six simulations were generated for affthres = 80. The best basic schedule was achieved in the
first simulation. The best basic schedule was obtained for the priority rule of {9 0 11 7 6 10 5 2 4 12 8
14 13 3 1}. The quality of the reactive solution is FFr1* = 29.3 with the sub-functions of QR = 0.6 and
SR = 58. The quality of this solution is also measured using Cmax, F, I and T. The quality of the basic
solution is Cmax = 134, F = 586, I = 808 and T = 95, and Cmax = 134, F = 589, I = 802 and T = 95 after
disruption. The rest of the solutions are presented in Table 4.

Table 4. Proactive-reactive schedules achieved by the HMOIA II and affthres = 80.

No

Job Shop Scheduling Problem (15 × 10)

The Priority Rule of
the Basic Schedule

The Quality of Basic Schedule y The Quality of Reactive Schedule y*

Cmax F I T FFy Cmax F I T FFy* QR SR FFry*

1 9 0 11 7 6 10 5 2 4 12
8 14 13 3 1 134 586 808 95 347.5 134 589 802 95 346.9 0.6 58 29.3

2 6 5 1 14 0 8 7 2 10 4 3
13 12 9 11 127 523 738 37 301.4 127 529 732 37 301.4 0 60 30

3 12 3 0 10 1 6 2 5 8 14
7 9 13 4 11 126 556 728 38 306 126 571 722 38 307.8 1.8 86 43.9

4 0 1 7 6 11 13 12 2 10 5
3 9 8 4 14 129 594 752 91 335.2 129 594 752 91 335.2 0 73 36.5

5 4 6 9 0 2 5 12 7 8 3 10
13 1 14 11 123 611 698 49 313.4 123 611 692 49 312.2 1.2 71 36.1

6 10 11 12 9 2 0 4 5 14 3
8 13 7 1 6 136 554 828 87 343.3 136 552 822 86 341.4 1.9 95 48.45

average 324.46 324.15 0.91 73.83 37.37

Let us compare all the simulations carried out by the HMOIA II. The best schedule for dealing
with the disruption (the best value of FFry*) was achieved in the first simulation for affthres = 80.
The best basic schedule was obtained by the HMOIA II (Figure 5).

Better basic schedules were also achieved for affthres = 80 taking into account the average values
of FFry*. The same conclusion can be given taking into account the average values of FFy for
basic schedules.
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5.3. Discussion

The following research point was investigated in this paper—which construction of
proactive algorithms achieves better solutions: proactive-reactive (proactive without prediction) or
predictive-reactive (proactive with prediction). The first construction consists of repeating the closed
loop: the task sequences population is randomly selected, trained and evaluated measuring the effects
of the disturbance on quality robustness QR and solution robustness SR. Proactive-reactive (proactive
without prediction) simulations were run using the HMOIA II. The second construction consists
of repeating the closed loop: a population of the task sequence is generated, and the sequence is
rebuilt using the MIDOS rule in order to make the schedule more robust. Next, the schedules were
trained and evaluated separately taking into account the effects of the disturbance on QR and SR.
Predictive-reactive (proactive with prediction) simulations were run using the HMOIA III.

After the comparison analysis of proactive methods, the following conclusion can be given.
The proactive-reactive approach achieves less robust schedules than the predictive-reactive approach.
The predictive-reactive approach achieves better schedules for the weighted sum of SR and QR.
The average value of the weighted sum of SR and QR obtained in the predictive-reactive approach
FFrx* equals 13.71 (for affthres = 8) and 12.49 (for affthres = 80). The average value of the weighted sum
of SR and QR obtained in the proactive-reactive approach FFry* equals 45.03 (for affthres = 8) and 37.37
(for affthres = 80).

The presented approaches were compared in order to select a better method of production
organization that reduces costs and waste due to machine failure. Both criteria QR and SR are used
in order to compute the operational efficiency of the production system in the event of disruption.
Any cost criterion can be added to the QR in order to measure losses due to a machine failure.
The proactive-reactive approach achieves better schedules for the QR criterion. The average value of
QR equals 0.91 (for affthres = 80) (Table 4).

The SR criterion measures a number of changes necessary to adopt the production schedule to
a new situation (after the machine failure). Additional energy is consumed by adapting of a shop
floor in accordance with the schedule changes. Additional set-up operations are carried out for
machines. Additional organizational changes of human resources and raw material requirements are
also necessary. The predictive-reactive approach achieves better schedules for SR criterion. The average
value of SR equals 22.08 (for affthres = 80) (Table 2).

The predictive-reactive approach is better in the process of seeking a compromise solution for the
two criteria SR and QR.

The proactive-reactive approach presented in this paper can be compared with the approach
based on the tabu search algorithm (TSA) [25]. “TSA accepts the value of parameters generating the
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most robust schedules. The scheduling algorithm consists of two parts, i.e. a sequence generator and
a sequence evaluator. TSA is applied to effective scanning of the solution space.” [25]. The average
slack method (ASM) “is applied to evaluate a reactive schedule using the same criterion as the criteria
used for the basic schedule evaluation. However, in this case this criterion is increased by the value
of deterioration of the criterion due to a disturbance.” [25]. The best basic schedule was generated
according to the rule of {2 5 8 14 1 0 4 6 7 10 11 12 3 9 13}. The quality of the reactive schedule is FFr2* =
90.5 with the components of QR = 3 and SR = 178. The quality of this schedule is also measured using
Cmax, F, I and T. The quality of the basic schedule is Cmax = 117, F = 516, I = 638 and T = 0, and Cmax =
117, F = 507, I = 632 and T = 0 after rescheduling. The average values of FFry* for obtained schedules
equals 132.25.

The following conclusion can be given taking into account the average values of FFry* and the
best schedule achieved using the TSA. The proactive-reactive approach presented in this paper is
better than the approach based on the TSA. The proactive-reactive approach presented in this paper
achieves more stable and robust schedules. However, the proactive-reactive approach presented in [25]
achieves schedules with non-delayed jobs even after disruption.

The predictive-reactive approach presented in this paper can be compared with the approach
based on the multi-objective immune algorithm (MOIA) and the clonal selection algorithm (CSA) [6,24].
In the MOIA, two steps are distinguished: the exogenous and endogenous activations that imitate the
immune system. The CSA imitates the affinity maturation process. The MOIA and CSA are applied
to the same JS system. Basic solutions are evaluated using criteria Cmax, F, I and T. To get the best
predictive schedules, the MIDOS rule for the best basic solutions is used. Reactive schedules are
generated by the use of rescheduling policies. After disruption, the performance of the job shop system
is investigated using the rule of MIROS. The influence of the disruption is evaluated using SR and QR.
The predictive schedule generated by the MIDOS and the priority rule obtained by the CSA absorbs
the influence of the disruption more efficiently. The best basic solution was obtained according to the
priority rule of {10 14 2 5 3 1 0 4 7 8 9 6 11 12 13}. The quality of the reactive solution is FFr3* = 5.5 with
the sub-functions of QR = 4 and SR = 7. The quality of the basic solution is: Cmax = 116, F = 613, I = 622
and T = 11, and Cmax = 116, F = 608, I = 619 and T = 11 after disruption. The average value of FFrx*
equals 12.25 for the two best schedules obtained using the MOIA. The average value of FFrx* equals
2.75 for the two best schedules obtained using CSA.

The following conclusion can be given taking into account the average values of FFrx* achieved
using the MOIA and CSA. The predictive-reactive approach presented in this paper achieves similar
solutions as the approach based on the MOIA [24]. The predictive-reactive approach presented in
this paper achieves worse solutions compared to the approach based on the CSA [24]. The following
conclusion can be given taking into account the best schedule achieved using the MOIA and CSA.
The predictive-reactive approach presented in this paper achieved the most stable and robust schedule.

6. Conclusions

This paper presents a comparison of methods of dealing with uncertainty in scheduling problems.
The paper is a response to the need for “sustainable manufacturing”. Researchers are searching for
opportunities to organize production systems that save energy and natural resources. Preventive
maintenance (PM) is essential for the efficient use of machines and energy saving. Any rework due
to a machine failure consumes additional energy, human resources, equipment, spare parts and raw
materials. Criteria QR and SR are used in order to compute the operational efficiency of the production
system in the event of disruption. The presented approaches were compared in order to select a better
method of production organization that reduces costs and waste due to machine failure.

Two proactive approaches were compared: predictive-reactive (proactive with prediction) and
proactive-reactive (proactive without prediction). In the predictive-reactive approach, the time of PM
is predicted and a predictive schedule is built. Next, the influence of disturbance on the predictive
schedule using robustness measures is examined. In the proactive-reactive approach the proactive
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schedule is achieved for the best sequence of idle times between jobs taking advantage of the simulation
process. Next, the influence of disturbance on the proactive schedule using robustness measures is
examined. This paper presents the results of computer simulations for the above approaches. The main
conclusions based on the study presented are:

• comparing two approaches, predictive-reactive and proactive-reactive, the first method provides
more compromise schedules for mean weighted values of QR and SR functions;

• the presented predictive-reactive approach achieved the best quality schedule for the stability
and robustness criteria, SR and QR.

The predictive schedules obtained in the results of computer simulations indicate that the
scheduling method based on meta-heuristic (immune algorithm) is suitable for application in actual
production processes. The results of the study were achieved in short time. In addition, the criteria
used to evaluate schedules, Cmax, F, I and T, are the most popular not only in academic practice.
Gantt charts present the assignment of tasks to machines in a transparent manner and are easy to
analyze taking into account the evaluation criteria.

Practitioners want a schedule to be more robust for actual events regarding production systems.
Therefore, the anticipated failure-free time of a machine is included in the schedule. The failure-free
time is estimated by using the method based on probability theory. Incorporation of the historical
failure-free times of machines into the prognostic process makes the prognosis more accurate. The risk
of inconsistent prediction of machine failure time is minimized by assigning the most flexible operations
to the period of higher probability of failure. The MIDOS rule assigns operations that introduce the
smallest number of changes into the schedule during a high probability of machine failure.

The forecast of failure-free time can be updated after every equal period of time, for example,
every 8, 16 or 24 h. The update prevents errors resulting from inconsistency between the anticipated
failure-free time and the actual failure time. The schedule can be updated after each failure or after an
equal time.

The author of this paper intends to develop the existing research by comparing methods of
predicting the failure-free time of a machine, that is, the maximum likelihood, empirical moments and
a method based on renewal theory. The purpose of the comparison is to determine for which method it
is possible to obtain more accurate predictions. Accurate predictions are the key to reliable scheduling.

Funding: This research was funded from the statutory grant of the Faculty of Mechanical Engineering of the
Silesian University of Technology: 10/990/BK18/0099.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Wang, S.; Yu, J. An effective heuristic for flexible job-shop scheduling problem with maintenance activities.
Comput. Ind. Eng. 2010, 59, 436–447. [CrossRef]

2. Rajkumar, M.; Asokan, P.; Vamsikrishna, V. A GRASP algorithm for flexible job-shop scheduling with
maintenance constraints. Int. J. Prod. Res. 2010, 48, 6821–6836. [CrossRef]

3. Liu, L.; Gu, H.Y.; Xi, Y.G. Robust and stable scheduling of a single machine with random machine breakdowns.
Int. J. Adv. Manuf. Technol. 2007, 31, 645–656. [CrossRef]

4. Herroelen, W.; Leus, R. Project scheduling under uncertainity: Survey and research potentials. Eur. J.
Oper. Res. 2005, 165, 289–306. [CrossRef]

5. Hasan, S.M.K.; Sarker, R.; Essam, D. Genetic algorithm for job-shop scheduling with machine unavailability
and breakdowns. Int. J. Prod. Res. 2011, 49, 4999–5015. [CrossRef]

6. Paprocka, I.; Kempa, W.M. Searching for a Method of Basic Schedules Generation which influences over
the Performance of Predictive and Reactive Schedules. In Information Systems Architecture and Technology,
Proceedings of the 37th International Conference on Information Systems Architecture and Technology–ISAT 2016–Part
IV, Karpacz, Poland, 18–20 September 2016; Advances in Intelligent Systems and Computing; Springer:
New York, NY, USA, 2016; Volume 524, pp. 233–242.

http://dx.doi.org/10.1016/j.cie.2010.05.016
http://dx.doi.org/10.1080/00207540903308969
http://dx.doi.org/10.1007/s00170-005-0237-0
http://dx.doi.org/10.1016/j.ejor.2004.04.002
http://dx.doi.org/10.1080/00207543.2010.495088


Sustainability 2019, 11, 65 18 of 18

7. Paprocka, I. The model of maintenance planning and production scheduling for maximizing robustness.
Int. Prod. Res. 2018. [CrossRef]

8. Cui, W.W.; Lu, Z.; Pan, E. Integrated production scheduling and maintenance policy for robustness in a
single machine. Comput. Oper. Res. 2014, 47, 81–91. [CrossRef]

9. Cui, W.W.; Lu, Z.; Li, C.; Han, X. A proactive approach to solve integrated production scheduling and
maintenance planning problem in flow shops. Comput. Ind. Eng. 2018, 115, 342–353. [CrossRef]

10. Xia, T.; Jin, X.; Xi, L.; Ni, J. Production-driven opportunistic maintenance for batch production based on
MAM-APB scheduling. Eur. J. Oper. Res. 2015, 240, 781–790. [CrossRef]

11. Zhang, L.; Gao, L.; Li, X. A hybrid genetic algorithm and tabu search for multi-objective dynamic job shop
scheduling problem. Int. J. Prod. Res. 2013, 51, 3516–3531. [CrossRef]

12. Lei, D. Scheduling fuzzy job shop with preventive maintenance through swarm-based neighborhood search.
Int. J. Adv. Manuf. Technol. 2011, 54, 1121–1128. [CrossRef]

13. Bali, N.; Labdelaoui, H. Optimal Generator Maintenance Scheduling Using a Hybrid Metaheuristic Approach.
Int. J. Comput. Intell. Appl. 2015, 14, 1550011. [CrossRef]

14. Mokhtari, H.; Mozdgir, A.; Abadi, I.N.K. A reliability/availability approach to joint production and
maintenance scheduling with multiple preventive maintenance services. Int. J. Prod. Res. 2012, 50, 1–20.
[CrossRef]

15. Bajestani, M.A.; Banjevic, D.; Beck, J.C. Integrated maintenance planning and production scheduling with
Markovian deteriorating machine conditions. Int. J. Prod. Res. 2014, 52, 7377–7400. [CrossRef]

16. Sobaszek, Ł.; Gola, A.; Świć, A. Predictive scheduling as a part of intelligent job scheduling system. Adv. Intell.
Syst. Comput. 2018, 637, 358–367.

17. Kempa, W.M.; Paprocka, I.; Kalinowski, K.; Grabowik, C. Estimation of reliability characteristics in a
production scheduling model with failures and time-changing parameters described by Gamma and
exponential distributions. Adv. Mater. Res. 2014, 837, 116–121. [CrossRef]

18. Skołud, B.; Wosik, I.; Wosik, I. Multi-objective genetic and immune algorithms for batch scheduling problem
with dependent setups. Recent Dev. Artif. Intell. Methods 2007, 185–196.

19. Skołud, B.; Wosik, I. The development of IA with local search approach for multi-objective Job shop
scheduling problem. In Virtual Design and Automation; Publishing House of Poznań University of Technology:
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