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Abstract: In this paper, we investigate the invariant properties of the coupled time-fractional
Boussinesq-Burgers system. The coupled time-fractional Boussinesq-Burgers system is established
to study the fluid flow in the power system and describe the propagation of shallow water waves.
Firstly, the Lie symmetry analysis method is used to consider the Lie point symmetry, similarity
transformation. Using the obtained symmetries, then the coupled time-fractional Boussinesq-Burgers
system is reduced to nonlinear fractional ordinary differential equations (FODEs), with Erdélyi-Kober
fractional differential operator. Secondly, we solve the reduced system of FODEs by using a power
series expansion method. Meanwhile, the convergence of the power series solution is analyzed.
Thirdly, by using the new conservation theorem, the conservation laws of the coupled time-fractional
Boussinesq-Burgers system is constructed. In particular, the presentation of the numerical simulations
of q-homotopy analysis method of coupled time fractional Boussinesq-Burgers system is dedicated.

Keywords: coupled time-fractional Boussinesq-Burgers system; Lie symmetry analysis; symmetry
reduction; explicit solutions; conservation laws

1. Introduction

Fractional differential equations (FDEs) come from the generalization of classical differential
equations of integer order. It is well known that fractional calculus was widely applied to describe
many complex nonlinear phenomena arising in the areas of heat transfer, diffusion, solid mechanics,
wave propagation and other topics. Therefore, the fractional partial differential equations play an
important role in describing physics, engineering and other scientific fields [1–4].

In 2009, Gazizov and Kasatkin [5] extended Lie symmetry approach to investigate several FDEs.
Based on the symmetry, many useful properties of FDEs, such as symmetry generators, similarity
transformation, explicit solutions and conservation laws which can be analyzed successively [6–20].
Komal and Gupta [21,22] extended the symmetry approach from single time fractional PDEs to
nonlinear systems of time fractional PDEs. The famous Noether theorem [23] established a connection
between Lie symmetries and conservation laws of differential equations. Recently, constructing
conservation laws via a new conservation Noether theorem to the FPDEs without Lagrangian has been
introduced [24,25]. In spite of the symmetry approach and conservation laws have made some progress
in FDEs, the research for coupled time fractional FDEs are not very well explored. There are still many
unknown results having not been reported before. The main aim of this paper is to investigate the Lie
point symmetry, similarity reduction and conservation laws under the definition of Riemann-Liouville
fractional differential. In addition, numerical results and verification of the correctness of the presented
method are presented. In this paper, the fractional Lie symmetry scheme and the new conservation
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Noether theorem are developed to research the coupled time-fractional Boussinesq-Burgers system,
that is [26] {

Dα
t u− 1

2 vx + 2uux = 0,

Dα
t v− 1

2 uxxx + 2(uv)x = 0,
(1)

where 0 < α ≤ 1, t > 0. ∂α f (x,t)
∂tα is the Riemann-Liouville partial fractional derivative, u(x, t) is the

horizontal velocity field and v(x, t) is the height of the water surface above a horizontal level at the
bottom. The coupled time-fractional Boussinesq-Burgers system is an interesting mathematical model
that arises in the study of fluids flow in a dynamic system and describes the propagation of shallow
water waves.

The organization of the paper is as follows. In Section 2, we recall some definitions of fractional
derivatives given in [27–38]; we highlight some steps for the Lie symmetry analysis of PDEs. In Section 3,
we obtain the Lie point symmetries and symmetry reductions of Equation (1). In Section 4, explicit
solutions of reduction equation for Equation (1) are obtained by using the power series expansion
method. In addition, the convergence of power series solution is analyzed. Section 5 deals with the
application of the proposed approach for investigating conservation laws for Equation (1). In Section 6,
the well-known q-homotopy analysis method is used to investigate numerical approximations for
the coupled time fractional Boussinesq-Burgers system. The concluding remarks are presented in the
last section.

2. Preliminaries

In this section, we discuss the main points of fractional Lie symmetry analysis of the coupled time
fractional PDEs. Consider a system of time fractional PDEs as follows:

∂αu
∂tα

= F1(x, t, u, v, ux, vx, uxx, vxx,···),

∂αv
∂tα

= F2(x, t, u, v, ux, vx, uxx, vxx,···),
(2)

where α > 0, subscripts represent partial derivatives.

Definition 1 ([29–38]). The Riemann-Liouville partial fractional derivative ∂α f (x,t)
∂tα is defined as follows:

Dα
t f (x, t) =

∂α f (x, t)
∂tα

=


1

Γ(n−α)
∂n

∂tn

∫ t
0 (t− s)n−α−1 f (x, s)ds, t > 0, n− 1 < α < n ∈ N,

∂n f (x,t)
∂tn , α = n ∈ N,

(3)

where Γ(α) is the Euler’s gamma function. According to the Riemann-Liouville partial fractional derivative
operators, we have

(Dα
t )
∗ = (−1)n In−α

c (Dn
t ) = (Dα

c )
C
t ,

In−α
c f (x, t) =

1
Γ(n− α)

∫ c

t

f (x, s)
(s− t)1+α−n ds. f or n = [α] + 1,

(4)
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where (Dα
t )
∗ is the adjoint operator for the Dα

t , and (Dα
c )

C
t is the right-sided Caputo operator [39,40]. Then we

consider the single parameter Lie group with infinitesimal transformation given by

x̃ = x + εξ(x, t, u, v) + o(ε2),

t̃ = t + ετ(x, t, u, v) + o(ε2),

ũ = u + εη(x, t, u, v) + o(ε2),

ṽ = v + εφ(x, t, u, v) + o(ε2),

∂αũ
∂t̃α

=
∂αu
∂tα

+ εηα,t(x, t, u, v) + o(ε2),

∂αṽ
∂t̃α

=
∂αv
∂tα

+ εφα,t(x, t, u, v) + o(ε2),

∂ũ
∂x̃

=
∂u
∂x

+ εηx(x, t, u, v) + o(ε2),

∂ṽ
∂x̃

=
∂v
∂x

+ εφx(x, t, u, v) + o(ε2),

∂2ũ
∂x̃2 =

∂2u
∂x2 + εηxx(x, t, u, v) + o(ε2),

∂2ṽ
∂x̃2 =

∂2v
∂x2 + εφxx(x, t, u, v) + o(ε2),

∂3ũ
∂x̃3 =

∂3u
∂x3 + εηxxx(x, t, u, v) + o(ε2),

∂3ṽ
∂x̃3 =

∂3v
∂x3 + εφxxx(x, t, u, v) + o(ε2),

(5)

here ξ, τ, η and φ are the infinitesimals operators, ηα,t, φα,t are the extended infinitesimal of order α and ηx, φx,
ηxx, φxx,ηxxx, φxxx are extended infinitesimals of integer-order. Consider the following vector fields:

X = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η(x, t, u, v)

∂

∂u
+ φ(x, t, u, v)

∂

∂v
. (6)

The αth order developed infinitesimal ηα,t has the following form

ηα,t = Dα
t (η) + ξDα

t (ux)− Dα
t (ξux) + Dα

t (Dt(τ)u)− Dα+1
t (τu) + τDα+1

t (u). (7)

Using the generalized Leibnitz rule and generalized chain rule [41–44], the final expression for αth order
developed infinitesimal ηα,t for system of fractional PDEs of the form Equation (2) can be calculated as follows:

ηα,t =
∂αη

∂tα
+ (ηu − ∂Dt(τ))

∂αu
∂tα
− u

∂αηu

∂tα
+ (ηv

∂αv
∂tα
− v

∂αηv

∂tα
) + µ1 + µ2 +

∞

∑
n=1

[

(
α

n

)
∂nηu

∂tn −(
α

n + 1

)
Dn+1

t (τ)]Dα−n
t (u) +

∞

∑
n=1

(
α

n

)
∂nηv

∂tn Dα−n
t (v)−

∞

∑
n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (ux),

φα,t =
∂αφ

∂tα
+ (φv − ∂Dt(τ))

∂αv
∂tα
− v

∂αφv

∂tα
+ (φu

∂αu
∂tα
− u

∂αφu

∂tα
) + µ3 + µ4 +

∞

∑
n=1

[

(
α

n

)
∂nφv

∂tn −(
α

n + 1

)
Dn+1

t (τ)]Dα−n
t (v) +

∞

∑
n=1

(
α

n

)
∂nφu

∂tn Dα−n
t (u)−

∞

∑
n=1

(
α

n

)
Dn

t (ξ)Dα−n
t (vx),

(8)
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where Dt represents the total derivative operator, µ1, µ2, µ3, µ4 are given by

µ1 =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n− α + 1)
(−u)r ∂m

∂tm (uk−r)
∂n−m+kη

∂tn−m∂uk ,

µ2 =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n− α + 1)
(−v)r ∂m

∂tm (vk−r)
∂n−m+kη

∂tn−m∂vk ,

µ3 =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n− α + 1)
(−u)r ∂m

∂tm (uk−r)
∂n−m+kφ

∂tn−m∂uk ,

µ4 =
∞

∑
n=2

n

∑
m=2

m

∑
k=2

k−1

∑
r=0

(
α

n

)(
n
m

)(
k
r

)
1
k!

tn−α

Γ(n− α + 1)
(−v)r ∂m

∂tm (vk−r)
∂n−m+kφ

∂tn−m∂vk .

(9)

Equation (5) represents a point symmetry of Equation (2) as long as

Pα,i
r X(4) |4=0= 0, (10)

where i is the order of system Equation (5). The invariance condition should be held:

τ(x, t, u, v) |t=0= 0. (11)

3. Symmetry Analysis

3.1. Lie Symmetry Analysis

Let us consider the invariance of the group transformations (5). The invariance criterion takes the
following forms:

ηα,t
1 −

1
2

φx + 2(uηx + ηux) = 0,

ηα,t
2 −

1
2

ηxxx + 2(ηxv + uxφ + ηvx + uφx) = 0.
(12)

Then, substituting the values of prolongations and equating the coefficients of various linearly
independent variables to zero, we have:

ξ =
c1x
2

+ c2, τ =
c1t
α

, η = − c1

2
u, φ = −c1v, (13)

where c1, c2 are arbitrary constants.
Therefore, one infers the following corresponding infinitesimal generators of Lie algebra:

V1 =
x
2

∂

∂x
+

t
∂

∂

∂t
− 1

2
u

∂

∂u
− v

∂

∂v
, V2 =

∂

∂x
. (14)

It is easy to check that the vector fields (14) are closed under the Lie bracket, respectively

[V1, V1] = 0 = [V2, V2], [V1, V2] = −
1
2

V2 = −[V2, V1]. (15)

Considering the vector field V1, we can write the characteristic equations

dx
x
2

=
dt
t
α

=
du
− u

2
=

dv
−v

. (16)

Solving the above equations, the similarity solutions are given by

ω = xt−
α
2 , u(x, t) = t−

α
2 f (ω), v(x, t) = t−αg(ω). (17)
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3.2. Symmetry Reductions

In order to obtain the symmetry reductions of Equation (1), we apply the Erdélyi-Kober fractional
differential operator (ϕ

ξ,α
δ ).

Definition 2 ([45–47]).

(ϕ
ξ,α
δ h)(ω) = Πm−1

j=0 (ξ + j− 1
δ

w
d

dω
)(κξ+α,m−α

δ h)(ω), m =


[α] + 1, i f α 6∈ N,

α, i f α ∈ N,
(18)

where

(κξ,α
δ h)(ω) :=


1

Γ(α)

∫ ∞
1 (p− 1)α−1 p−(ξ+α)h(ωp

1
δ )dp, i f α > 0,

h(ω), i f α = 0,

(19)

is the Erdélyi-Kober fractional integral operator. To calculated ∂αu
∂tα , first let n− 1 < α < n (n = 1, 2, 3, · · · ),

with the help of similarity transformation u(x, t) = t−
α
2 f (ω), v(x, t) = t−αg(ω) and similarity variable

ω = xt−
α
2 , the definition of Riemann-Liouville fractional derivative (3) can be written as following:

∂αu
∂tα

=
∂n

∂tn [
1

Γ(n− α)

∫ t

0
(t− s)n−α−1s−

α
2 f (xs−

α
2 )ds]. (20)

Let p = t
s , then the above expression is converted to the following:

∂αu
∂tα

=
∂n

∂tn [
tn− 3

2 α

Γ(n− α)

∫ ∞

1
(p− 1)n−α−1 p−(n−

3
2 α+1) f (ωp

α
2 )dp]. (21)

Based on the definition of Erdélyi-Kober fractional integral operator, (21) can be written as

∂αu
∂tα

=
∂n

∂tn [t
n− 3

2 α(κ
1− α

2 ,n−α
2
α

f )(ω)]. (22)

Considering ψ(ω) = C1(0, ∞) for ω = xt−
α
2 , it holds that

t
∂

∂t
ψ(ω) = −α

2
ω

d
dω

ψ(ω). (23)

Hence, Equation (22) can be transformed as follows:

∂n

∂tn [t
n− 3

2 α(κ
1− α

2 ,n−α
2
α

f )(ω)]

=
∂n−1

∂tn−1 [
∂

∂t
(tn− 3

2 α(κ
1− α

2 ,n−α
2
α

f )(ω))]

=
∂n−1

∂tn−1 [(n−
3
2

α)tn− 3
2 α−1(κ

1− α
2 ,n−α

2
α

f )(ω) + tn− 3
2 α−1(−α

2
ω

d
dω

)(κ
1− α

2 ,n−α
2
α

f )(ω)]

=
∂n−1

∂tn−1 [t
n− 3

2 α−1(n− 3
2

α− α

2
ω

d
dω

)(κ
1− α

2 ,n−α
2
α

f )(ω)]

= t−
3
2 αΠn−1

j=0 (1−
3
2

α + j− α

2
ω

d
dω

)(κ
1− α

2 ,n−α
2
α

f )(ω)

= t−
3
2 α(ϕ

1− 3
2 α,α

2
α

f )(ω).

(24)
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According to the definition of Erdélyi-Kober fractional differential operator, it can be written as follows:

∂αu
∂tα

= t−
3
2 α(ϕ

1− 3
2 α,α

2
α

f )(ω). (25)

At the same time, the ∂αv
∂tα can be presented as

∂αv
∂tα

= t−2α(ϕ1−2α,α
2
α

g)(ω). (26)

In the case α = 1, 2, 3, · · · , ω = xt−
n
2 , we have the following:

∂αu
∂tα

=
∂n

∂tn (t
− n

2 f (ω)) =
∂n−1

∂tn−1 [
∂

∂t
(t−

n
2 f (ω))]

=
∂n−1

∂tn−1 [t
− n

2−1(−n
2
− α

2
ω

d
dω

) f (ω)]

= · · · = t−
3
2 nΠn−1

j=0 (1−
3
2

n + j− α

2
ω

d
dω

) f (ω)

= t−
3
2 n(ϕ

1− 3
2 n,n

2
n

f )(ω).

(27)

Similarly, for α = n = 1, 2, 3, · · · , we have ∂αv
∂tα = t−2n(ϕ1−2n,n

2
n

g)(ω). Hence, expressions (25) and (26)

hold for n− 1 < α ≤ n.
Therefore, the coupled time-fractional Boussinesq-Burgers system (1) is reduced to

(ϕ
1− 3

2 α,α
2
α

f )(ω)− 1
2

g′(ω) + 2 f (ω) f ′(ω) = 0,

(ϕ1−2α,α
2
α

g)(ω)− 1
2

f ′′′(ω) + 2 f (ω)g′(ω) + 2 f ′(ω)g(ω) = 0.
(28)

4. Power Series Solution

In what follows, we shall derive explicit solutions for system (1) by means of the power series
expansion method. To find the exact power series solutions of system (1), we let

f (ω) =
∞

∑
n=0

anωn,

g(ω) =
∞

∑
n=0

bnωn,
(29)

where an and bn are constants to be known later. Substituting Equation (29) into Equation (28),
we can obtain

∞

∑
n=0

Γ(2− α
2 + nα

2 )

Γ(2− 3α
2 + nα

2 )
anωn − 1

2

∞

∑
n=0

(n + 1)bn+1ωn + 2
∞

∑
n=0

anωn
∞

∑
n=0

(n + 1)an+1ωn = 0,

∞

∑
n=0

Γ(2− α + nα
2 )

Γ(2− 2α + nα
2 )

bnωn − 1
2

∞

∑
n=0

(n + 2)(n + 3)(n + 1)an+3ωn + 2
∞

∑
n=0

anωn
∞

∑
n=0

(n + 1)bn+1ωn

+ 2
∞

∑
n=0

bnωn
∞

∑
n=0

(n + 1)an+1ωn = 0.

(30)
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In view of Equation (30), comparing coefficients for n = 0, we get

b1 =2[
Γ(2− α

2 )

Γ(2− 3α
2 )

+ 2a0a1],

a3 =
1
3
[

Γ(2− α)

Γ(2− 2α)
b0 + 2a0b1 + 2b0a1].

(31)

When n ≥ 1, we have

bn+1 =
2

n + 1
[

Γ(2− α
2 + nα

2 )

Γ(2− 3α
2 + nα

2 )
an + 2

n

∑
k=0

(n + 1− k)akan+1−k],

an+3 =
2

(n + 3)(n + 2)(n + 1)
[

Γ(2− α + nα
2 )

Γ(2− 2α + nα
2 )

bn + 2
n

∑
k=0

ak(n + 1− k)bn+1−k

+ 2
n

∑
k=0

bk(n + 1− k)an+1−k].

(32)

Then, we can write

f (ω) =a0 + a1ω + a2ω2 +
1
3
[

Γ(2− α)

Γ(2− 2α)
b0 + 2a0b1 + 2b0a1]ω

3

+
∞

∑
n=1

2
(n + 3)(n + 2)(n + 1)

[
Γ(2− α + nα

2 )

Γ(2− 2α + nα
2 )

bn

+ 2
n

∑
k=0

ak(n + 1− k)bn+1−k + 2
n

∑
k=0

bk(n + 1− k)an+1−k]ω
n+3,

g(ω) =b0 + 2[
Γ(2− α

2 )

Γ(2− 3α
2 )

+ 2a0a1]ω +
∞

∑
n=1

2
n + 1

[
Γ(2− α

2 + nα
2 )

Γ(2− 3α
2 + nα

2 )
an

+ 2
n

∑
k=0

(n + 1− k)akan+1−k]ω
n+1.

(33)

Hence, the explicit solution of Equation (1) is

u(x, t) =a0t−
α
2 + a1xt−α + a2x2t−

3α
2 +

1
3
[

Γ(2− α)

Γ(2− 2α)
b0 + 2a0b1 + 2b0a1]x3t−2α

+
∞

∑
n=1

2
(n + 3)(n + 2)(n + 1)

[
Γ(2− α + nα

2 )

Γ(2− 2α + nα
2 )

bn + 2
n

∑
k=0

(n + 1− k)akbn+1−k

+ 2
n

∑
k=0

(n + 1− k)bkan+1−k]xn+3t−
(n+4)α

2 ,

v(x, t) =b0t−α + 2[
Γ(2− α

2 )

Γ(2− 3α
2 )

+ 2a0a1]xt−
3α
2 +

∞

∑
n=1

2
n + 1

[
Γ(2− α

2 + nα
2 )

Γ(2− 3α
2 + nα

2 )
an

+ 2
n

∑
k=0

(n + 1− k)akan+1−k]xn+1t−
(n+3)α

2 .

(34)

(see Figure 1).
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(a) α = 0.2 (b) α = 1

(c) α = 0.2 (d) α = 1

Figure 1. Panels (a,b) represent the 3-dimensional plots for u(x, t) with a0 = a1 = a2 = b0 = b1 = b2 = 1.
Panels (c,d) represent the 3-dimensional plots for v(x, t) with a0 = a1 = a2 = b0 = 1.

Convergence Analysis

In this part, the convergence of the power series solution of Equation (29) for Equation (28) will
be investigated. Consider Equation (32) such that

| bn+1 |≤ [
| Γ(2− α

2 + nα
2 ) |

| Γ(2− 3α
2 + nα

2 ) |
| an | +4

n

∑
k=0
| ak || an+1−k |],

| an+3 |≤ [
| Γ(2− α + nα

2 ) |
| Γ(2− 2α + nα

2 ) | | bn | +
n

∑
k=0
| ak || bn+1−k | +

n

∑
k=0
| bk || an+1−k |].

(35)

It is known that |Γ(n)||Γ(m)| < 1, for arbitrary n and m. Thus Equation (35) becomes

| bn+1 |≤ M[| an | +
n

∑
k=0
| ak || an+1−k |],

| an+3 |≤ N[| bn | +
n

∑
k=0
| ak || bn+1−k | +

n

∑
k=0
| bk || an+1−k |],

(36)

where M = max{e1, 4e2}, N = max{e3, e4, e5}, ei(i = 1, 2, · · · , 5) are arbitrary constants. Then, we
introduce another power series

R(ω) =
∞

∑
n=0

rnωn,

Q(ω) =
∞

∑
n=0

qnωn,
(37)
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by ri =| ai |, qi =| bi |, i = 0, 1, 2, · · · . Then we can have

rn+1 ≤ M(rn +
n

∑
k=0

rkrn+1−k),

qn+3 ≤ N(qn +
n

∑
k=0

rkqn+1−k +
n

∑
k=0

qkrn+1−k).
(38)

Thus it is easily seen that | rn |≤ an, | qn |≤ bn, n = 0, 1, 2, · · · . In addition, the series R(ω) =

∑∞
n=0 rnωn and Q(ω) = ∑∞

n=0 qnωn are majorant series of Equation (40). By some calculation, we have

R(ω) = r0 + r1ω + r2ω2 + r3ω3 + N
∞

∑
n=0

qnωn+3 + N
∞

∑
n=0

n

∑
k=0

rkqn+1−kωn+3

+ N
∞

∑
n=0

n

∑
k=0

qkrn+1−kωn+3,

Q(ω) = q0 + q1ω + M
∞

∑
n=0

rnωn+1 + M
∞

∑
n=0

n

∑
k=0

rkrn+1−kωn+1.

(39)

Then we consider the implicit function system with respect to the independent variable ω

R(ω, R) = R(ω)− r0 − r1ω− r2ω2 − r3ω3 − N
∞

∑
n=0

qnωn+3 − N
∞

∑
n=0

n

∑
k=0

rkqn+1−kωn+3

− N
∞

∑
n=0

n

∑
k=0

qkrn+1−kωn+3 = 0,

Q(ω, Q) = Q(ω)− q0 − q1ω−M
∞

∑
n=0

rnωn+1 −M
∞

∑
n=0

n

∑
k=0

rkrn+1−kωn+1 = 0,

(40)

since R and Q are analytic in a neighborhood of (0, r) and (0, q), where R(0, r) = 0, Q(0, q) = 0
and ∂

∂R (R(0, r)) 6= 0, ∂
∂Q (Q(0, q)) 6= 0. Then by the implicit function theorem [48], we reach

the convergence.

5. Conservation Laws

The method of constructing conservation laws for fractional partial equations has been given
in many papers [12,15,16,19–24]. In this section, we will study the conservation laws of the coupled
time-fractional Boussinesq-Burgers system (1) by using the adjoint equation and symmetries of
Equation (1). A formal Lagrangian for Equation (1) can be written in the following form:

L = p(x, t)(
∂αu
∂tα
− 1

2
vx + 2uux) + q(x, t)(

∂αv
∂tα

+ 2(uv)x), (41)

where p(x, t) and q(x, t) are the new dependent variables. For Equation (1), the adjoint equation has
the form

δL
δu

= F∗1 = (Dα
t )
∗p− 2upx − 2qxv +

1
2

qxxx,

δL
δv

= F∗2 = (Dα
t )
∗q +

1
2

px − 2uqx.
(42)

Contenting Ξi 6= 0 with at least one i(i = 1, 2), that is

δL
δu

= λ1(
∂αu
∂tα
− 1

2
vx + 2uux) + λ2(

∂αv
∂tα

+ 2(uv)x −
1
2

uxxx),

δL
δv

= λ3(
∂αu
∂tα
− 1

2
vx + 2uux) + λ4(

∂αv
∂tα

+ 2(uv)x −
1
2

uxxx),
(43)
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where λi(i = 1, · · · , 4) are undetermined coefficients. Using

p = Ξ1(x, t, u, v), q = Ξ2(x, t, u, v), (44)

and their derivatives, system (43) have the following form:

(Dα
t )
∗Ξ1 − 2uΞ1,x − 2uΞ1,uux − 2uΞ1,vvx − 2vΞ2,x − 2vΞ2,uux − 2vΞ2,vvx

+
1
2
[Ξ2,xxx + 6Ξ2,uvxuxvx + 3Ξ2,uuvvxu2

x + 3Ξ2,uuuxuxx + 3Ξ2,uvvuxv2
x

+ 3Ξ2,uv(uxvxx + vxuxx) + 3Ξ2,vvvxvxx + 3Ξ2,xxvvx + 3Ξ2,xxuux + 3Ξ2,xuuxx

+ 3Ξ2,xvvxx + Ξ2,uuxxx + Ξ2,vvxxx + 3Ξ2,xuuu2
x + 3Ξ2,xvvv2

x + Ξ2,uuuu3
x + Ξ2,vvvv3

x]

= λ1(uα
t −

1
2

vx + 2uux) + λ2(vα
t + 2(uv)x −

1
2

uxxx),

(Dα
t )
∗Ξ2 +

1
2
(Ξ1,x + Ξ1,uux + Ξ1,vvx)− 2u(Ξ2,x + Ξ2,uux + Ξ2,vvx)

= λ3(uα
t −

1
2

vx + 2uux) + λ4(vα
t + 2(uv)x −

1
2

uxxx).

(45)

Equating the coefficients of various derivatives and powers of u, v in Equation (45) and thereafter
solving simultaneously, we obtain

λ1 = λ2 = λ3 = λ4 = 0,

Ξ1(x, t, u, v) = p(x, t) = A,

Ξ2(x, t, u, v) = q(x, t) = B,

(46)

where A and B are arbitrary constants. Hence, Equation (1) is nonlinearly self-adjoint. Subsequently,
the character functions have the form:

W1
1 = −u

2
− x

2
ux −

t
α

ut,

W2
1 = −v− x

2
vx −

t
α

vt,

W1
2 = −ux,

W2
2 = −vx.

(47)

Using (46) and setting A = B = 1, the conserved vectors are given as follows.
The x-components Cx

i corresponding to Vi(i = 1, 2) are given as follows:

Cx
1 = −(u

2
+

x
2

ux +
t
α

ut)(2u + 2v)− (v +
x
2

vx +
t
α

vt)(2u− 1
2
),

Cx
2 = −ux(2u + 2v)− vx(2u− 1

2
).

(48)

The t-component Ct
i are given as follows:

Case I: when α ∈ (0, 1), the conserved vectors are

Ct
1 = −1

2
(I1−α

t (u) + I1−α
t (v))− x

2
(I1−α

t (ux) + I1−α
t (vx))−

1
α
(I1−α

t (tut) + I1−α
t (tvt)),

Ct
2 = −I1−α

t (ux)− I1−α
t (vx).

(49)
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Case II: when α ∈ (1, 2), the conserved vectors are

Ct
1 = −1

2
(Dα−1

t (u) + Dα−1
t (v))− x

2
(Dα−1

t (ux) + Dα−1
t (vx))−

1
α
(Dα−1

t (tut) + Dα−1
t (tvt)),

Ct
2 = −Dα−1

t (ux)− Dα−1
t (vx).

(50)

6. Numerical Simulation and Discussion

This section is dedicated to the presentation of the numerical simulations of q-homotopy analysis
method (q-HAM) of Equation (1) [49]. The Equation (1) is taken as Caputo sense of 0 < α ≤ 1.

Definition 3. The fractional derivative in the Caputo’s sense is defined as [49]

Dα
t f (t) = Im−αDn f (t) =

1
Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (n)(τ)dτ, (51)

where n− 1 < α ≤ n, n ∈ N, t > 0. For α = 1, the exact solutions of Equation (1) are given by [50]

u(x, t) =
ck
2
+

ck
2

tanh(
ck2t− kx

2
),

v(x, t) = − k2

8
sech2(

kx− ck2t
2

).
(52)

For simplicity, we choose special parameters c = 1, k = 2. Consider Equation (1) with initial
conditions [50]

u(x, t) = 1− tanh(x),

v(x, t) = −1
2

sech2(x).
(53)

In order to get the series solution of Equation (1), we use the linear operators

L[ϕ(x, t; q)] = Dα
t ϕ(x, t; q),

L[ψ(x, t; q)] = Dα
t ψ(x, t; q),

(54)

with the specific property L[r] = 0, where r is a constant. The nonlinear operators is defined as

Φ[ϕ(x, t; q), ψ(x, t; q)] =
∂α ϕ(x, t; q)

∂tα
− 1

2
ψ(x, t; q) + 2ϕ(x, t; q)

∂ϕ(x, t; q)
∂x

,

Φ[ϕ(x, t; q), ψ(x, t; q)] =
∂αψ(x, t; q)

∂tα
− 1

2
∂3 ϕ(x, t; q)

∂x3 + 2ϕ(x, t; q)
∂ψ(x, t; q)

∂x

+ 2ψ(x, t; q)
∂ϕ(x, t; q)

∂x
.

(55)

Based on the theorem in [50], the nonlinear operators can be written as

Φ[ϕ(x, t; q), ψ(x, t; q)] =t1−α ∂α ϕ(x, t; q)
∂tα

− 1
2

ψ(x, t; q)
∂x

+ 2ϕ(x, t; q)
∂ϕ(x, t; q)

∂x
,

Φ[ϕ(x, t; q), ψ(x, t; q)] =t1−α ∂αψ(x, t; q)
∂tα

− 1
2

∂3 ϕ(x, t; q)
∂x3 + 2ϕ(x, t; q)

∂ψ(x, t; q)
∂x

+ 2ψ(x, t; q)
∂ϕ(x, t; q)

∂x
.

(56)

Therefore, the zero-order deformation equations are given by

(1− nq)L[ϕ(x, t; q)− u0(x, t)] = qhM[ϕ(x, t; q), ψ(x, t; q)],

(1− nq)L[ψ(x, t; q)− v0(x, t)] = qhM[ϕ(x, t; q), ψ(x, t; q)],
(57)
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choosing M(x, t) = 1, the mth-order deformation equations can be given by

L[um(x, t)− χ∗mum−1(x, t)] = hRm,1(um−1, vm−1),

L[vm(x, t)− χ∗mvm−1(x, t)] = hRm,2(um−1, vm−1),
(58)

where

χ∗m =


0, m ≤ 1,

n, otherwise,
(59)

Rm,1(um−1, vm−1) =t1−α ∂um−1(x, t)
∂t

− 1
2

∂vm−1(x, t)
∂x

+ 2
m−1

∑
n=0

un(x, t)
∂um−1−n

∂x
,

Rm,2(um−1, vm−1) =t1−α ∂vm−1(x, t)
∂t

− 1
2

∂3um−1(x, t)
∂x3 + 2

m−1

∑
n=0

un(x, t)
∂vm−1−n(x, t)

∂x

+ 2
m−1

∑
n=0

vn(x, t)
∂um−1−n(x, t)

∂x
.

(60)

According to the simple transformation of Equation (58), we obtain

um(x, t) = χ∗mum−1(x, t) + hL−1[Rm,1(um−1, vm−1)],

vm(x, t) = χ∗mvm−1(x, t) + hL−1[Rm,2(um−1, vm−1)].
(61)

Thus we get the solutions

u1 = (
3
2

sech2(x)tanh(x)− 2sech2(x))
htα

Γ(1 + α)
,

v1 = 2sech2(x)tanh(x)
htα

Γ(1 + α)
,

(62)

and

u2 =(
3
2

sech2(x)tanh(x)− 2sech2(x))
h(n + h)tα

Γ(1 + α)
+ (−18sech2(x)tanh2(x)

+ 6sech2(x) + 2sech2(x)tanh(x) + 12tanh3(x)sech2(x))
h2t2α

Γ(1 + 2α)
,

v2 =2sech2(x)tanh(x)
h(n + h)tα

Γ(1 + α)
+ (10sech2(x)− 57sech2(x)tanh2(x)

+ 45sech2(x)tanh4(x) + 8sech2(x)tanh(x)− 8sech2(x)tanh3(x)

+
15
2

sech4(x)tanh2(x)− 8sech4(x)tanh(x)− 3
2

sech4(x))
h2t2α

Γ(1 + 2α)
.

(63)

In the same way, um(x, t), vm(x, t) for m = 3, 4, 5, · · · can be obtained by using Maple. Then the series
solution expression by q-HAM can be written as follows

u(x, t; n; h) = 1− tanh(x) +
∞

∑
i=1

ui(x, t; n; h)(
1
n
)i,

v(x, t; n; h) = −1
2

sech2(x) +
∞

∑
i=1

vi(x, t; n; h)(
1
n
)i,

(64)

u and v are appropriate solutions to the problem Equation (1) in terms of convergence parameter h and n.
Now we give numerical results to prove the effectiveness of q-HAM. The following figure shows the q-HAM and
exact solutions of Equation (1) for different values of α.
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Remark 1. Using the first two terms of the q-HAM series in Equation (64), when n = 2, we choose appropriate
h = 1 to get

u(x, t; n; h) = 1− tanh(x) + (
3
2

sech2(x)tanh(x)− 2sech2(x))
4tα

Γ(1 + α)
,

v(x, t; n; h) = −1
2

sech2(x) + 8sech2(x)tanh(x)
tα

Γ(1 + α)
.

(65)

Thus, we get exact solution to the Equation (1) given by just two terms of the series.

Remark 2. Figure 2 displays the solution plot of the coupled time-fractional Boussinesq-Burgers system obtained
by the q-HAM, while Figure 3 displays the exact solutions for the same equation when α = 0.4, α = 0.6,
α = 0.8, respectively. It should be noted that only three terms of the q-HAM series solution are used for the plot.
The results match comparatively with results of other analytical methods. It is easy to observe that the amplitude
of u and v increase with the increase of α.

(a) α = 0.4 (b) α = 0.6

(c) α = 0.8 (d) α = 0.4

(e) α = 0.6 (f) α = 0.8

Figure 2. Profiles of the q-HAM series solution for the Equation (1) with the same parameters α = 0.4,
α = 0.6, α = 0.8, respectively. (a–c) three dimensional plot of u. (d–f) three dimensional plot of v.
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(a) α = 0.4 (b) α = 0.6

(c) α = 0.8 (d) α = 0.4

(e) α = 0.6 (f) α = 0.8

Figure 3. Profiles of the exact solution for the Equation (1) with the same parameters α = 0.4, α = 0.6,
α = 0.8, respectively. (a–c) three dimensional plot of u. (d–f) three dimensional plot of v.

7. Conclusions

In this paper, the fractional Lie symmetry analysis to the coupled time-fractional
Boussinesq-Burgers system has been performed. Based on the fractional Lie symmetry analysis
approach, we have determined vector fields and reduced it to the system of FODEs. We have solved the
reduced system of FODEs by using the power series expansion method. Meanwhile, the convergence of
power series solution is analyzed. Especially, by using the new conservation theorem, the conservation
laws of Equation (1) have also been constructed on the basis of the obtained symmetries. Finally, the
approximate analytical solution was studied by employing the q-homotopy analysis method under
the background of Caputo fractional differential. This method has achieved good results in practical
application and could be easily applied to fractional fluid problem such as the Boussinesq-Burgers
system and other fractional order nonlinear evaluation problems.
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