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Abstract: Recently, the task of validating the authenticity of images and the localization of tampered
regions has been actively studied. In this paper, we go one step further by providing solid evidence
for image manipulation. If a certain image is proved to be the spliced image, we try to retrieve the
original authentic images that were used to generate the spliced image. Especially for the image
retrieval of spliced images, we propose a hybrid image-retrieval method exploiting Zernike moment
and Scale Invariant Feature Transform (SIFT) features. Due to the symmetry and antisymmetry
properties of the Zernike moment, the scaling invariant property of SIFT and their common rotation
invariant property, the proposed hybrid image-retrieval method is efficient in matching regions with
different manipulation operations. Our simulation shows that the proposed method significantly
increases the retrieval accuracy of the spliced images.

Keywords: image splicing; localization; image retrieval; Zernike moment; SIFT

1. Introduction

Digital images, portable cameras, and photo-editing software have become increasingly popular
in the past decades. This popularization has enabled the easy manipulation of digital images even by
unpracticed users. Nowadays, image splicing, which copies one or more regions from the source image
and pastes them to the destination image, is one of the most popular image-manipulation methods.

In the image-splicing scenario, a spliced region might not be exactly the same as the original
region since it usually undergoes a sequence of postprocessing operations such as rotation, scaling,
edge softening, blurring, denoising, and smoothing for a better visual appearance. Therefore, human
beings may easily be deceived by spliced images.

In the literature, a large number of algorithms have been introduced to effectively detect image
splicing [1–6] and some algorithms achieved nearly perfect detection performance [2,3]. In recent
years, researchers have been focusing more on image-splicing localization and achieved promising
results [7] thanks to the advances in machine learning and deep learning [8–10]. Tampered regions of
grayscale images were localized by different image-authentication techniques [11,12]. In Reference [6],
a convolutional neural network (CNN)-based algorithm was proposed to extract features capturing
characteristic traces from different camera models. These features were then utilized as the input for
an iterative clustering algorithm to estimate the tampering mask. The difference between noise levels
of tampered and original regions was employed to find the splicing traces [8,13]. The noise level was
estimated using principal component analysis and then clustered by a k-means algorithm to localize
the spliced regions [13]. Nonlinear camera response function was individually used in Reference [14]
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or combined with noise-level function to exploit their strong relationship to localize the forged edges
using a CNN [8]. Gamma transformation was used to detect splicing forgery whilst spliced region
was localized based on the probabilities of overlapping blocks and pixels of the input image being
gamma-transformed [15]. In Reference [16], spatial structure on the boundary between spliced and
background regions was trained to localize splicing, copy-move, and removal manipulations.

In contrast to those abovementioned blind-splicing localization methods, context-based
search-and-compare approaches were proposed in References [17,18] to localize spliced regions.
Specifically, a spliced image was used as a query image in the problem of image retrieval among the
database of authentic images. Finally, the retrieved result then combined with the corresponding query
image to find the difference, which is the localization result. A novel deep CNN was developed to
compute the probability that one image had been spliced to another image, and then splicing masks were
localized in both images [9]. These approaches achieved high localization performance in comparison
with blind methods, but they can only be applied if the original authentic image dataset is given.

In this paper, we go one step further by providing solid evidence for image manipulation.
If a certain image is proved to be the spliced image, the proposed method retrieves the original
authentic images that were used to generate the spliced image to yield a clue about the spliced
images. First of all, the proposed algorithm localizes tampered regions in the spliced image by using
one of the state-of-the-art localization algorithms [19]. Then, the proposed algorithm retrieves the
original authentic images using a Hamming Embedding (HE) encoding-based retrieval algorithm with
Zernike [20] and Scale Invariant Feature Transform (SIFT) [21] descriptors. In the literature, a few
studies were proposed to find the provenance of manipulated images. In Reference [22], the provenance
of spliced images was searched in two tiers using Speeded-Up Robust Features. The first tier was
responsible to find the host (target) images, and then the search was refined in the second tier to find the
donor (source) images. Provenance graph-construction methods were proposed in References [23,24]
to show the relationships among images with multiple manipulation operations, such as splicing,
spatial operations and enhancement. The experimental results in References [22–24] were performed
using only a small number of test images and the results show that their methods achieved moderate
retrieval performance for the source images. This paper aims to address the shortcomings of previous
works and provide a convincing provenance of spliced images. The rest of this paper is organized as
follows. Section 2 describes Zernike moment features and SIFT features, including their applications
in previous works. Then, the image-splicing localization method is presented in Section 3 and the
proposed retrieval algorithm is introduced in Section 4. In Section 5, we provide the comparative
experimental results of the proposed method. Finally, our conclusions are drawn in Section 6.

2. Related Work

In this Section, we give a brief overview of Zernike moment features [20,25] and SIFT features [21].
Given a continuous image function f (x, y), Zernike moments are the projection of the image function
onto a set of basis functions called Zernike polynomials. This set of complex polynomials is complete
and orthogonal over unit circle x2 + y2 = 1. Let us denote these polynomials as Vn

m(x, y), suppose that
m is a non-negative integer, and n is an integer satisfies that m− |n| is a non-negative even number.
Zernike polynomials are defined as follows:

Vn
m(x, y) = Vn

m(ρ, θ)

= Rn
m(ρ)exp(jnθ),

(1)

where (ρ, θ) represents the polar co-ordinates of (x, y), j is an imaginary unit number, and the radial
polynomial Rn

m(ρ) is given by:

Rn
m (ρ) =

m−|n|
2

∑
s=0

(−1)s (m− s)!ρm−2s

s!
(

m+|n|
2 − s

)
!
(

m−|n|
2 − s

)
!
. (2)
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Note that Rn
m = R−n

m . The Zernike moment with order m and repetition n for image f (x, y) that
vanishes outside the unit circle is defined as:

An
m =

m + 1
π

∫∫
x2+y2≤1

f (x, y)Vn
m(ρ, θ)dxdy, (3)

where z denotes the complex conjugate of z. It is clear that, since An
m = A−n

m , then |An
m| = |A−n

m |.
The symmetric and antisymmetric properties of Zernike moments help reduce their computational
complexity [26]. We replace integrals in Equation (3) with summations to obtain the formula for digital
image I(x, y) as follows:

An
m =

m + 1
π ∑

x
∑
y

I(x, y)Vn
m(ρ, θ), (4)

where x2 + y2 ≤ 1. The magnitudes of the Zernike moments,
∣∣An

m
∣∣, are used as the image features.

According to References [20,25–29], these values are invariant against rotation; hence, Zernike moment
features can handle well rotated spliced regions.

The SIFT keypoints are invariant to image rotation and scaling, and robust for noise and
illumination changes [21]. Such keypoints of input image I(x, y) are detected by finding the local
extrema of D(x, y, σ), which is the convolution of that image with a difference of Gaussian between
adjacent image scales kσ and σ:

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y), (5)

where ∗ denotes the convolution operation, k is the constant multiplicative factor, and Gaussian
function G(x, y, σ) at scale σ is calculated as follows:

G(x, y, σ) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
. (6)

As shown in Figure 1, the red pixel is marked as the keypoint if it is greater or smaller than all
of its 26 neighbors, including 8 neighbors in the same scale (yellow pixels) and 9 neighbors in the
corresponding positions of the scales above and below (green pixels). The corresponding descriptors
of all the keypoints are extracted by computing their gradient magnitudes and orientations to form the
features [21].

Zernike moments have a wide range of applications in different fields such as image recognition
and classification [20,25,27,28], copy-move-forgery detection [29–33], video-forgery detection [34],
watermark detection [35–37], and medical-image retrieval [38]. In the copy-move forgery-detection
problem, Zernike moment features-based methods notably showed impressive performances to
different kinds of transformations in comparison with other approaches [29–31]. On the other
hand, SIFT features were used extensively in image-retrieval studies [39–43] and copy-move-forgery
detection [32,44,45]. A coupled multi-index method was proposed in Reference [46] to exploit the
feature fusion of local color feature and SIFT feature where both kinds of descriptors are extracted for
all keypoints. In Reference [47], SIFT descriptors were quantized to descriptive and discriminative
bit-vectors, called binary SIFT, to avoid high computation cost. Further, SIFT-based methods,
CNN-based methods, and their connections were presented in Reference [10] to give a comprehensive
overview of recent image-retrieval studies.

However, in the image-splicing scenario, the straightforward application of the Zernike moment
features or the SIFT features is not efficient to retrieve spliced images because of the wide variety of
shapes, sizes, and textures of the spliced regions. Therefore, in this paper, we propose a hybrid method
that combines two advanced feature types, the Zernike moment features and the SIFT features, for
solving the image-splicing retrieval problem.
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Figure 1. Detecting SIFT keypoints in one scale by finding local maxima or minima.

3. Image-Splicing Localization

Suppose that a spliced image I(x, y) is composed of two authentic images, S(x, y) and T(x, y),
which are the source and target images, respectively. Here, one or more regions of the source image
can be copied and pasted to the target image to create the spliced image. Afterward, this resultant
image I(x, y) is usually edited by some postprocessing operations to make it look realistic and rational.
Given a set of spliced images, this study aims to retrieve their original-source images and target images.
In Sections 3 and 4, our proposed approach is presented to solve this problem. In Figure 2, we depict
the overall framework of the proposed method, which consists of two main stages: image-splicing
localization and image retrieval. In the first stage, we firstly segment the input spliced image I(x, y)
into the spliced regions (foreground) F(x, y) and the background region B(x, y). The detailed splicing
localization algorithm is described in Section 3. The segmented regions are subsequently utilized as
the input of the second stage. The proposed image-retrieval method is presented in Section 4, where
we query F(x, y) and B(x, y) to find S(x, y) and T(x, y), respectively.

Spliced image
I(x, y)

Splicing
localization

Foreground
F(x, y)

Background
B(x, y)

Hybrid feature based
image retrieval

Source image
S(x, y)

Target image
T(x, y)

Figure 2. General framework of the proposed method for image-splicing retrieval.

In order to retrieve all images that were used to compose the spliced image, we need to segment
the background and spliced regions of that spliced image to separately extract features. In this paper,
we adopted a fast and efficient splicing-localization algorithm introduced in Reference [19]. In their
proposed algorithm, the input image is firstly converted to YUV space, and each color component of
the image is divided into nonoverlapping 8× 8 blocks. These blocks of three color components are then
transformed to the Discrete Cosine Transform (DCT) domain. The histograms of DCT coefficients of all
blocks in different color channels are subsequently used to construct a block posterior probability map.
Afterward, a Support Vector Machine classifier utilizes this probability map as the feature to classify
whether the 8× 8 block is tampering or not. Note that we carry out some further postprocessing
operations, including median filtering, morphological erosion, and dilation, to remove noises and
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to bridge the gaps of the generated tampering map to localize the spliced regions. This tampering
image is detected in block level; hence, it is then upscaled to obtain the final localized splicing image.
To quantitatively evaluate the performance of splicing localization, we adopted two metrics for spliced
regions of a detected spliced image [31,44], precision MP and recall MR, which are defined as follows:

MP =
#correctly detected pixels

#all detected pixels
, (7)

and
MR =

#correctly detected pixels
#all spliced pixels

. (8)

There is a trade-off between precision and recall; consequently, to consider both these measures,
we computed their harmonic mean MF, called F1-score, as follows:

MF =
2MP MR

MP + MR
. (9)

In the proposed method, the localization of spliced regions is considered as a correct localization
if MF > 0.7. These correctly localized spliced regions and the corresponding background of the same
spliced images are then used for retrieval in the next stage. Examples of spliced images, segmentation
of spliced and background regions, and ground truth images are presented in Figures 3 and 4 .

MP = 0.6614
MR = 0.9940
MF = 0.7943

MP = 0.8440
MR = 0.9887
MF = 0.9106

MP = 0.7880
MR = 0.9759
MF = 0.8720

MP = 0.6265
MR = 0.9846
MF = 0.7657

MP = 0.7299
MR = 0.9690
MF = 0.8326

MP = 0.9242
MR = 0.9981
MF = 0.9598

Figure 3. Image-splicing localization example. Spliced images are shown in the top row, and their
corresponding spliced masks and ground truth images are presented in the second row and the third
row, respectively. Finally, precision, recall, and F1-score of each localized splicing image are given.
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MP = 0.8150
MR = 0.9651
MF = 0.8837

MP = 0.8680
MR = 0.9964
MF = 0.9278

MP = 0.5495
MR = 0.9706
MF = 0.7017

MP = 0.6955
MR = 1.0000
MF = 0.8204

MP = 0.5516
MR = 0.9995
MF = 0.7109

MP = 0.6814
MR = 0.9963
MF = 0.8093

Figure 4. Image-splicing localization example. Spliced images are shown in the top row, and their
corresponding spliced masks and ground truth images are presented in the second row and the third
row, respectively. Finally, precision, recall, and F1-score of each localized splicing image are given.

4. Image-Splicing Retrieval

Rotation and scaling are two operations that affect the shape and direction of spliced regions.
Therefore, we take advantage of the rotation invariant property of the Zernike moment features and
the rotation scale invariant property of the SIFT features to trace spliced regions. Whereas the SIFT
features-based method (the SIFT method) effectively extracts features in textured regions, it usually
fails in smooth regions. The Zernike moment features-based method (the Zernike method), in contrast,
successfully addressed the shortcomings of the SIFT method. In addition, the Zernike moment
features extraction is a block-based method, while SIFT features extraction is a keypoint-based method.
For those reasons, in the proposed method, the Zernike moment features and the SIFT features are
independently extracted to handle different situations in the spliced-image retrieval problem.

4.1. Bag-of-Features-Based Image-Retrieval Using Hamming Embedding

In image retrieval, images are represented by descriptive features, which are used to
evaluate similarity or dissimilarity between a pair of images. Since the splicing operation
may rotate, scale, translate the forged regions, the extracted features of the images should be
invariant to these transformations. The features generated from Zernike moments and SIFT
have such noteworthy characteristics. In this Section, we present the HE encoding [40,48] and
bag-of-features-based [49–51] image-retrieval method. Suppose that query region Q is described
by a set of n local descriptors, XQ =

{
xQ

1 , xQ
2 , . . . , xQ

n

}
. All these descriptors are mapped into a visual

vocabulary set W = {w1, w2, . . . , wk} by a k-mean vector quantizer q. In other words, q maps xQ
i to

a visual word where q(xQ
i ) ∈W. It is worthwhile to note that, in the proposed design, both the spliced

region and the background region could be the query region. We define a set of index of descriptors
in XQ that are assigned to a particular visual word w as IQ

w =
{

i
∣∣∣q (xQ

i

)
= w

}
. In order to match

different descriptors, each descriptor is represented as a binary signature [40]. We define d as the
number of bits used for descriptor representation, i.e., b

(
xQ

i

)
=
(

b1

(
xQ

i

)
, b2

(
xQ

i

)
, . . . , bd

(
xQ

i

))
is

a binary signature of descriptor xQ
i . The Hamming distance between the binary signatures of two

descriptors, u and v, is computed as follows:

h
(

b(u), b(v)
)
=

d

∑
i=1

∣∣∣bi(u)− bi(v)
∣∣∣. (10)
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Let us denote Mw(XQ, XD) as a function between two sets of descriptors XQ and XD assigned to
the same visual word w as:

Mw

(
XQ, XD

)
= ∑

i∈IQ
w

∑
j∈ID

w

f
(

h
(

b(xQ
i ), b(xD

j )
))

, (11)

where weighting function f is calculated as a Gaussian function [40]:

f (h) =

{
e−16h2/d2

, if h ≤ 3d/8,

0, otherwise.
(12)

Finally, the similarity between two images, Q and D, is defined as:

sim (Q, D) =

∑
w∈W

cw Mw
(
XQ, XD

)
√(

∑
w∈W

cw Mw
(
XQ, XQ

))(
∑

w∈W
cw Mw (XD, XD)

) , (13)

where constant cw is the inverse document frequency [52] of visual word w in W.

4.2. Hybrid Features-Based Image Retrieval

In this paper, we propose a hybrid image retrieval method exploiting Zernike and SIFT features.
In order to effectively combine these two methods in the retrieval process, we evaluate their retrieval
performance separately. Figure 5 illustrates clusters of spliced regions, which are correctly retrieved
by either the Zernike method, the SIFT method or both methods. Two measurements of spliced
regions, the extent and the smoothness, are represented by the number of pixels and the number of
SIFT keypoints, respectively. The Zernike method correctly retrieves the higher number of images in
comparison with the SIFT method. In addition, for small and smooth regions, the former also shows
a better performance than the latter. Therefore, at first, the proposed method performs image retrieval
using the Zernike moment features of the query regions. Subsequently, based on the intermediate
retrieval results, the proposed method decides whether the SIFT features need to be utilized to improve
the retrieval performance.

We introduce a method to effectively utilize two kinds of features in image retrieval. Firstly,
we apply the localization algorithm [19] to the spliced image I(x, y) to segment foreground (spliced
region) and background, say F(x, y) and B(x, y), respectively. These regions are sequentially used
as the queries for image retrieval process. Assume that the current query region is F(x, y). Then,
the proposed method extracts the Zernike moment features of F(x, y) and evaluates the certainty
score of the top-hit retrieval image using extracted features. We define s as the certainty score in
Equation (15). If the score is positive, the top-hit retrieval image is considered as the source image
S(x, y), which was used for image splicing. In contrast, if the certainty score s is smaller than or equal to
0, the SIFT features are subsequently used to retrieve the original source image of spliced region F(x, y).
Figure 6 shows the pipeline of the proposed spliced image retrieval method for F(x, y). Similarly, if
the background region B(x, y) is queried, the target image of image splicing, T(x, y), is retrieved.

In the first stage of the proposed image-retrieval process using the Zernike moment features,
each retrieved image has a score that represents the similarity of that image with the input image.
Suppose that I1 and I2 are the first and second top-hit retrieval images of the input image with voting
scores s1 and s2, respectively. It is worth pointing out that, in the spliced image retrieval problem,
the top-hit retrieved image should be the only correct result for each query. We consider I1 as the
correctly retrieved image if the ratio s1/s2 is greater than a specific value in different intervals of s1.
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In contrast, the SIFT features are taken into account in the second stage of the proposed method if one
of the following conditions happens:

s1 < α1,

α1 < s1 < α2 and s1/s2 < λ1,
...

αN < s1 < αN+1 and s1/s2 < λN ,

(14)

where we use αi (i = 1, 2, . . . , N) as bounds of different intervals for top-hit score s1 and
λi (i = 1, 2, . . . , N) as thresholds for s1/s2 in each corresponding interval of s1. Since s1 is a positive
integer, in the experiments, we avoid setting αi (i = 1, 2, . . . , N) as integer numbers. We define s
as the certainty score for the top-hit image in the first retrieval stage, which is calculated based on
Equation (14) as follows:

s =
N

∑
i=0

⌊
e−(s1−αi)(s1−αi+1)

⌋
(s1 − λis2), (15)

where we define 2 more parameters for this general formula, λ0 = 0 and α0 ∈
(
bα1c , α1

)
. If s is

positive, I1 is considered as the correct retrieval of the query image region; otherwise, the proposed
method does the retrieval process again using SIFT features.

27 28 29 210 211 212 213 214 215 216

22

23

24

25

26

27

28

29

210

Number of pixels

N
um

be
r

of
SI

FT
ke

yp
oi

nt
s

Zernike method only
SIFT method only

Both methods

Figure 5. Illustration of spliced regions that are correctly retrieved by Zernike-based, SIFT-based,
or both methods. The number of pixels of spliced regions and the number of SIFT keypoints in the
corresponding regions are presented.
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F(x, y) Zernike feature
extraction Retrieval s > 0?

SIFT feature
extraction Retrieval

S(x, y)
Yes

No

Figure 6. Hybrid features method for spliced image retrieval.

5. Experimental Evaluation

5.1. Dataset and Experimental Setup

There exist several benchmarking datasets for evaluating the performance of image-splicing
algorithms. In our simulations, we used CASIA v2.0, a realistic and challenging dataset introduced
in Reference [53]. In this dataset, there are 7491 authentic, 1849 spliced, and 3274 copy-move color
images with various sizes from 240× 160 to 900× 600 pixels. However, due to the lack of ground truth
images of this dataset, we generate the ground truth images for spliced regions for the evaluation of
localization algorithm (Equations (7)–(9)). The ground truth dataset was contributed to the research
community, available online at https://github.com/namtpham/casia2groundtruth. In the retrieval
testing set, we randomly chose 225 spliced images whose spliced regions are correctly localized in all
the categories defined in the dataset, such as animal, architecture, character, plant, nature, indoor, and
texture. The diversity of characteristics of spliced regions is depicted in Figure 5. Finally, 225 query
images, which are equivalent to 450 query regions, are retrieved in 7491 database authentic images.
We trained 100, 000 visual words for the experiments.

The parameters in Equation (15) were empirically set as presented in Table 1. We carried out the
simulations by independently querying spliced regions and background regions. In each case, we
performed the image retrieval of the Zernike method and the SIFT method, separately, to compare
with the proposed method.

Table 1. Parameters used in the proposed hybrid method.

N λ0 λ1 λ2 λ3 λ4

4 0 1.4 1.25 1.2 1.15

α0 α1 α2 α3 α4 α5

6.4 6.5 11.5 18.5 30.5 1000.5

5.2. Evaluation Measures

In regular image-retrieval problems, a set of images, which are visually similar to the query image,
are considered as the correct retrieval results. On the contrary, in the image-splicing retrieval problem
of this paper, there is only one correct source image and one correct target image when we query
a spliced image. Therefore, we defined a metric quantity TPi@N as the correctness of the retrieval of
i-th query. If the original image of i-th query is retrieved in top N results, then TPi@N = 1; otherwise,
TPi@N = 0. The number of correct retrieved images in top N retrieval results is defined as follows:

TP@N =
#Q

∑
i=1

TPi@N, (16)

where #Q is the total number of queries. The recall at top N retrieval is computed as follows:

R@N =
TP@N

#Q
. (17)

https://github.com/namtpham/casia2groundtruth
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5.3. Image-Splicing Retrieval Results

Table 2 shows the number of query spliced images whose original source and target images are
retrieved in the top 1, 10, 50, and 100. As can be seen from the table, the Zernike method performs
better than the SIFT method when each of them is independently used for retrieval. The proposed
method, a hybrid algorithm of these two features, notably improved the performance of spliced
region retrieval and achieved 84.89% accuracy in comparison with 59.56% and 76.44% of the SIFT
and the Zernike methods, respectively. Additionally, the proposed method correctly retrieved all the
background regions.

Table 2. Spliced-image retrieval results.

Query Region Features TP@1 TP@10 TP@50 TP@100 R@1

Foreground
(Spliced region)

Zernike 172 183 201 203 76.44%
SIFT 134 170 184 189 59.56%

Hybrid 191 200 213 218 84.89%

Background
Zernike 222 225 225 225 98.67%

SIFT 221 223 225 225 98.22%
Hybrid 225 225 225 225 100%

The performance of the image-retrieval methods in terms of R@N for background and spliced
query regions is given in Figure 7.

1 10 20 30 40 50 60 70 80 90 100

98

98.5

99

99.5

100

N

R
@

N
(%

)

(a)

1 10 20 30 40 50 60 70 80 90 100

60

70

80

90

100

N

(b)

Zernike method SIFT method Proposed method

Figure 7. R@N values of image-retrieval methods for querying (a) background regions;
(b) spliced regions.

5.4. Analysis of Top-Hit Retrieved Source Image

Image-retrieval methods succeed in finding target images, whereas their performance of
spliced-region retrieval is much lower. To evaluate the efficiency of these retrieval algorithms on
spliced regions, we classified 225 spliced images into 5 categories based on the ratio between total
area of all spliced regions in one spliced image to the area of that image. These ratios of 225 images
ranged from 0.21% to 67.60%, and 84% of the testing images have small spliced regions that account
for less than 20% of the whole image in term of area. Figure 8 shows the superiority of the proposed
method over the SIFT method and the Zernike method in all the above-mentioned categories by giving
the numbers of correctly retrieved spliced regions (TP@1). In general, the accuracy of retrieving tiny
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spliced regions, whose areas are less than 5% of the corresponding spliced images, is lower than that
of bigger spliced regions.

Figure 9 gives four examples of spliced regions retrieval of the three methods, the Zernike method,
the SIFT method, and the proposed hybrid method. In the first two cases, both the Zernike method and
the SIFT method failed to retrieve the source image. On the other hand, the hybrid method correctly
retrieved the images in both cases. All methods correctly retrieved the source image in the third case.
In contrast, in the last example, all methods retrieved the wrong source image where the Zernike
method found the correct spliced region (the houses) from another authentic image, which was taken
of the same scene as the source image but from a different view.
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Number of queries
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Figure 8. Comparison of number of top-hit retrieved images for querying spliced regions. 225 spliced
images are divided into five categories according to the ratios of total area of spliced region in one
image to the area of that image. The five categories of the ratios are 0.2%–2.5%, 2.5%–5%, 5%–10%,
10%–20%, and 20%–70%.

(a) (b) (c) (d) (e) (f)

Figure 9. Examples of spliced region retrieval. (a) Spliced images; (b) spliced region masks; (c–e)
Top-hit images retrieved for spliced-region queries by the Zernike method, the SIFT method, and the
proposed hybrid method, respectively; (f) source images.
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5.5. Image-Splicing Validation

An example of image-splicing validation is presented in Figure 10. Two different spliced images
were segmented spliced and background regions. Subsequently, these regions were queried by the
hybrid image-retrieval algorithm to find their source and target images. The result shows that they were
created by copying different regions in the source image and pasting to the target image. Therefore,
the two input images were verified to not be authentic.

Foreground

Background

Foreground

Background

Source image

Target image

Figure 10. Example of two images verified as spliced images, where the same source image and the
same target image were retrieved.

6. Conclusions

This paper solved a problem that seeks original authentic images that were used to compose
the spliced images. Prior to the image-retrieval stage, we segmented the spliced images into the
spliced regions and background regions in the image-splicing localization stage in order to improve
retrieval accuracy. These segmented regions were then separately queried to find the provenance
of the spliced image. We proposed a hybrid method that can effectively employ Zernike moment
features and SIFT features for image retrieval. Since the former is invariant to rotation and the latter
is invariant to scaling and rotation, the proposed method can handle different splicing operations to
find the matching features. By retrieving the source and the target images of the spliced images with
high accuracy, the proposed method can validate the authenticity of the spliced images with more
certainty (see Figure 10). In future works, we will extend our research on improving the performance
of image-splicing localization and the retrieval of small and smooth spliced regions.
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