A Single-Valued Neutrosophic Linguistic Combined Weighted Distance Measure and Its Application in Multiple-Attribute Group Decision-Making

Chengdong Cao, Shouzhen Zeng * and Dandan Luo

School of Business, Ningbo University, Ningbo 315211, China; 156001316@nbu.edu.cn (C.C.); nbuodandan@163.com (D.L.)
* Correspondence: zengshouzhen@nbu.edu.cn; Tel.: +86-15867202316

Received: 19 January 2019; Accepted: 15 February 2019; Published: 21 February 2019

Abstract: The aim of this paper is to present a multiple-attribute group decision-making (MAGDM) framework based on a new single-valued neutrosophic linguistic (SVNL) distance measure. By unifying the idea of the weighted average and ordered weighted averaging into a single-valued neutrosophic linguistic distance, we first developed a new SVNL weighted distance measure, namely a SVNL combined and weighted distance (SVNLCWD) measure. The focal characteristics of the devised SVNLCWD are its ability to combine both the decision-makers’ attitudes toward the importance, as well as the weights, of the arguments. Various desirable properties and families of the developed SVNLCWD were contemplated. Moreover, a MAGDM approach based on the SVNLCWD was formulated. Lastly, a real numerical example concerning a low-carbon supplier selection problem was used to describe the superiority and feasibility of the developed approach.

Keywords: single-valued neutrosophic linguistic set; distance measure; combined weighted average; MAGDM; low-carbon supplier selection

1. Introduction

Multiple-attribute group decision-making (MAGDM) is one of the most commonly used methods to rank and select potential alternatives based on the decision information of multiple decision-makers (or experts). In real MAGDM problems, the increasing uncertainties of objects make it increasingly difficult for people to precisely express judgments about their attributes during the process of decision-making. Indeed, this is related not only to the nature of the objects but also to the ambiguity of the underlying human intervention and cognitive thinking in general. Handling imprecision or vagueness effectively in these complex situations is a matter of great concern in MAGDM problems. Recently, a new tool for solving the uncertainty or inaccuracy of such information was introduced by Ye [1], namely the single-valued neutrosophic linguistic set (SVNLS). By unifying the features of single-valued neutrosophic sets (SVNS) [2,3] and linguistic terms [4], the SVNLS can eliminate both of their shortcomings, and has been proven to be suitable to measure a higher degree of uncertainty for subjective evaluations. As an effective extension of the linguistic terms and SVNS, the basic element of the SVNLS is the single-valued neutrosophic linguistic value (SVNLV), which makes it more effective for handling uncertain and imprecise information when contrasted with the existing fuzzy tools, such as the intuitionistic linguistic set [5] and the Pythagorean fuzzy set [6]. Following the latest research trend, the SVNLS has been widely applied to handle MAGDM problems under indeterminacy and complex environments. Ye [1] investigated the classic technique for order preference by similarity to an ideal solution (TOPSIS) method in SVNLS situation and studied its usefulness for decision-making problems. Ye [7] developed some neutrosophic linguistic operators and investigated
their applications in selecting a flexible manufacturing system. Wang et al. [8] extended the Macaulain
symmetric mean operator to aggregate SVNLS information. Chen et al. [9] developed a novel distance
measure for SVNLS based on the ordered weighted viewpoint. Ji et al. [10] proposed a combined
multi-attribute border approximation area comparison (MABAC) and the elimination and choice
translating reality (ELECTRE) approach for SVNLS and studied its application in selecting outsourcing
providers. Wu et al. [11] investigated the usefulness of the SVNLS in a 2-tuple environment of MAGDM
analysis. Kazimieras et al. [12] developed a new SVN decision-making model by applying the weighted
ggregated sum product assessment (WASPAS) method. Garg and Nancy [13] proposed several
prioritized aggregation operators for SVNLS to handle the priority among the attributes.

Distance measurement is one of the most widely used tools in MAGDM, and can be used to measure
the differences between the expected solutions and potential alternatives. Recently, a new distance
measurement method based on the ordered weighted viewpoint, i.e., the ordered weighted averaging
distance (OWAD) operator proposed by Merigó and Gil-Lafuente [14] has attracted increasing attention
from researchers. The essence of this distance operator is that it enables decision-makers to incorporate
their attitudinal bias into the decision-making process by imposing some weighting schemes to
the individual distances. To date, several OWAD extensions and their subsequent applications in
solving MAGDM problems have appeared in recent studies, such as the induced OWAD operator [15],
intuitionistic fuzzy OWAD operator [16], hesitant fuzzy OWAD operator [17], probabilistic OWAD
operator [18], Pythagorean fuzzy generalized OWAD operator [19], fuzzy linguistic induced Euclidean
OWAD operator [20], continuous OWAD operator [21] and the intuitionistic fuzzy weighted induced
OWAD operator [22]. More recently, Chen et al. [8] further presented a definition of the single-valued
neutrosophic linguistic OWAD (SVNLOWAD) operator, on the basis of which a modified TOPSIS
model was then proposed for MAGDM problems in a SVNLS situation.

Although the OWAD operator and its numerous extensions, such as the SVNLOWAD operator,
have shown their superiority in practical applications, they possess a defect in that they can integrate
only the special interests of the experts, while ignoring the importance of the attributes in the outcome
of a decision. To overcome this shortcoming, this study develops a combined weighted distance for
SVNLSs, called the single-valued neutrosophic linguistic combined weighted distance (SVNLCWD)
operator. The proposed combined weighted distance operator is superior in that it involves both
subjective information on the importance of the ordered attributes and the importance of specific
attributes. We further explored some of the key properties and particular cases of the proposed
operator. Finally, we applied the SVNLCWD operator to a MAGDM problem concerning low-carbon
supplier selection to verify its effectiveness and superiority.

2. Preliminaries

In this section, we will briefly review some of concepts we need to use in the following sections,
including the definition of the SVNLS, the OWAD and the SVNLOWAD operator.

2.1. Linguistic Set

Let $S = \{s_\alpha | \alpha = 1, \ldots, l\}$ be a finitely ordered discrete term set, where s_α indicates a possible
value for a linguistic variable (LV) and l is an odd number. For instance, taking $l = 7$, then a linguistic
term set S could be specified $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\} = \{extremely\ poor, very\ poor, poor, fair, good, very\ good, extremely\ good\}$. In this case, any two LVs $s_i, s_j \in S$ should satisfy rules (1)-(4) [23]:

1. $\text{Neg}(s_i) = s_{-i}$;
2. $s_i \preceq s_j \iff i \leq j$;
3. $\max(s_i, s_j) = s_j$, if $i \leq j$;
4. $\min(s_i, s_j) = s_i$, if $i \leq j$.

To minimize information loss in the operational process, the discrete term set S shall be extended
to a continuous set $\bar{S} = \{s_\alpha | \alpha \in \mathbb{R}\}$. Any two LVs $s_a, s_b \in \bar{S}$, satisfy the following operational rules [24]:
where the truth-membership function \(T(y) \), the indeterminacy-membership function \(I_p(y) \), and the falsity-membership function \(F_p(y) \) shall satisfy the following conditions:

\[
0 \leq T_p(y), I_p(y), F_p(y) \leq 1, \quad 0 \leq T_p(y) + I_p(y) + F_p(y) \leq 3. \tag{2}
\]

For convenience of calculation, we call the triplet \((T_p(y), I_p(y), F_p(y)) \) single-valued neutrosophic value (SVNV) and simply denote it as \(y = (T_y, I_y, F_y) \). Let \(y = (T_y, I_y, F_y) \) and \(z = (T_z, I_z, F_z) \) be two SVNVS, their mathematical operational laws are defined as follows:

1. \(y \oplus z = (T_y + T_z - T_y * T_z, I_y * T_z, F_y * F_z) \);
2. \(\lambda y = (1 - (1 - T_y)^\lambda, (I_y)^\lambda, (F_y)^\lambda), \lambda > 0; \)
3. \(y^\lambda = ((T_y)^\lambda, 1 - (1 - I_y)^\lambda, 1 - (1 - F_y)^\lambda), \lambda > 0. \)

2.2. Single-Valued Neutrosophic Set (SVNS)

The neutrosophic set was introduced for the first time by Smarandache in 1998 [2], while Ye introduced the linguistic neutrosophic set in 2015 [1] and Ye developed the single-valued neutrosophic set (SVNS) in 2013 [25].

Definition 1. Let \(y \) be an element in a finite set \(Y \). A SVNS \(P \) in \(Y \) can be defined as in (1):

\[
P = \{ \langle y, T_p(y), I_p(y), F_p(y) \rangle | y \in Y \}, \tag{1}
\]

where the truth-membership function \(T_p(y) \), the indeterminacy-membership function \(I_p(y) \), and the falsity-membership function \(F_p(y) \) shall satisfy the following conditions:

\[
0 \leq T_p(y), I_p(y), F_p(y) \leq 1, \quad 0 \leq T_p(y) + I_p(y) + F_p(y) \leq 3. \tag{2}
\]

2.3. Single-Valued Neutrosophic Linguistic Set (SVNLs)

On the basis of the SVNS, Ye gave the definition and operational laws of the single-valued neutrosophic linguistic set (SVNL), listed in the definitions 2–5.

Definition 2. Let \(Y \) be a finite universe set, a SVNL \(Q \) in \(Y \) is defined as in (3):

\[
Q = \left\{ \langle y, s_{\theta(y)}(T_p(y), I_p(y), F_p(y)) \rangle | y \in Y \right\}, \tag{3}
\]

where \(s_{\theta(y)} \in \mathbb{S} \), the truth-membership function \(T_{\theta}(y) \), the indeterminacy-membership function \(I_{\theta}(y) \), and the falsity-membership function \(F_{\theta}(y) \) satisfy condition (4):

\[
0 \leq T_{\theta}(y), I_{\theta}(y), F_{\theta}(y) \leq 1, \quad 0 \leq T_{\theta}(y) + I_{\theta}(y) + F_{\theta}(y) \leq 3. \tag{4}
\]

For a SVNL \(Q \) in \(Y \), the SVNLV \(\left\langle s_{\theta(y)}, (T_p(y), I_p(y), F_p(y)) \right\rangle \) is simply denoted as \(y = \left\langle s_{\theta(y)}, (T_y, I_y, F_y) \right\rangle \) for computational convenience.

Definition 3. Let \(y_i = \left\langle s_{\theta(y_i)}, (T_{y_i}, I_{y_i}, F_{y_i}) \right\rangle (i = 1, 2) \) be two SVNLVs, then

1. \(y_1 \oplus y_2 = \left\langle s_{\theta(y_1) + \theta(y_2)}, (T_{y_1} + T_{y_2} - T_{y_1} * T_{y_2}, I_{y_1} * T_{y_2}, F_{y_1} * F_{y_2}) \right\rangle; \)
2. \(\lambda y_1 = \left\langle s_{\lambda \theta(y_1)}, (1 - (1 - T_{y_1})^\lambda, (I_{y_1})^\lambda, (F_{y_1})^\lambda) \right\rangle, \lambda > 0; \)
3. \(y_1^\lambda = \left\langle s_{\theta(y_1)^\lambda}, ((T_{y_1})^\lambda, 1 - (1 - I_{y_1})^\lambda, 1 - (1 - F_{y_1})^\lambda) \right\rangle, \lambda > 0. \)
Definition 4. The distance measure between the SVNLVs \(y_i = \left(s_{\theta y_i}, (T_{y_i}, I_{y_i}, F_{y_i}) \right) \) \((i = 1, 2)\) is defined as in (5):

\[
d(y_1, y_2) = \left[|\theta(y_1)T_{y_1} - \theta(y_2)T_{y_2}|^\lambda + |\theta(y_1)I_{y_1} - \theta(y_2)I_{y_2}|^\lambda + |\theta(y_1)F_{y_1} - \theta(y_2)F_{y_2}|^\lambda \right]^{1/\lambda}.
\]

If we assign different weights to the individual distances of the SVNLVs, we get the single-valued neutrosophic linguistic weighted distance (SVNLWD) measure [8].

Definition 5. Let \(y_j, y'_j \) \((j = 1, \ldots, n)\) be the two collections of SVNLVs, a single-valued neutrosophic linguistic weighted distance measure of dimension \(n \) is a mapping SVNLWD: \(\Omega^n \times \Omega^n \to R \), which has an associated weighting vector \(W \) with \(\sum_{j=1}^{n} w_j = 1 \), such that:

\[
SVNLWD((y_1, y'_1), \ldots, (y_n, y'_n)) = \sum_{j=1}^{n} w_j d(y_j, y'_j),
\]

The OWAD operator developed by Merigó and Gil-Lafuente [14] aims to aggregate individual distances as arguments on the basis of the ordered weighted averaging (OWA) operator [26]. Let \(A = \{a_1, a_2, \ldots, a_n\} \) and \(B = \{b_1, b_2, \ldots, b_n\} \) be two crisp sets, and the OWAD operator can be defined as follows.

Definition 6. An OWAD operator is defined as a mapping OWAD: \(R^n \times R^n \to R \) with the weighting vector \(W = \{ w_j \mid \sum_{i=1}^{n} w_j = 1, \quad 0 \leq w_j \leq 1 \} \), such that:

\[
OWAD((a_1, b_1), \ldots, (a_n, b_n)) = \sum_{j=1}^{n} w_j d_j,
\]

where \(d_j \) is the \(j \)-th largest number among \(|a_i - b_i| \).

On the basis of the OWAD operator, Chen et al. [9] introduced the SVNLOWAD operator to aggregate SVNL information.

Definition 7. Let \(y_j, y'_j \) \((j = 1, \ldots, n)\) be the two collections of SVNLVs. If

\[
SVNLLOWAD((y_1, y'_1), \ldots, (y_n, y'_n)) = \sum_{j=1}^{n} w_j d(y_j, y'_j),
\]

then the SVNLOWAD is called the single-value neutrosophic linguistic OWAD, where \(d(y_j, y'_j) \) represents the \(j \)-th largest value among the individual distances \(d(y_j, y'_j) \) (\(i = 1, \ldots, n \)) defined in Equation (5). \(w = (w_1, \ldots, w^n)^T \) is a weighting vector related to the SVNLOWAD operator, satisfying \(\sum_{j=1}^{n} w_j = 1 \) and \(w_j \in [0, 1] \).

The properties of commutativity, monotonicity, boundedness and idempotency can easily be established for the SVNLOWAD operator. Based on the above analysis, we can find that, although the SVNLOWAD and SVNLWD operators have been widely used to solve MAGDM problems in SVNL environments, these two operators exhibit certain deficiencies. Next, we shall propose a combined weighted distance measure to alleviate these shortcomings.
3. SVNL Combined Weighted Distance (SVNLCWD) Operator

The SVNL combined weighted distance (SVNLCWD) operator unifies both the advantages of the SVNLWD and the SVNLOWAD operators in the same framework. Therefore, it is able to integrate the decision-makers’ attitudes using ordered weighted arguments as well as embedding the importance of alternatives based on the weighted average method. Moreover, it allows decision-makers to adjust the allocation ratio of the SVNLLOWAD and SVNLWD flexibly based on the needs of the particular problem or their interests. The SVNLCWD operator can be defined as follows.

Definition 8. Let \(y_i, y'_i \ (j = 1, \ldots, n) \) be the two collections of SVNLVs. If

\[
SVNLCDW((y_1, y'_1), \ldots, (y_n, y'_n)) = \sum_{j=1}^{n} \overline{w}_j D_j,
\]

then the SVNLCWD is called the single-value neutrosophic linguistic combined weighted distance operator, where \(D_j \) represents the \(j \)-th largest value among the individual distances \(d(y_i, y'_i)(i = 1, 2, \ldots, n) \) defined in Equation (5). There are two weights assigned to each distance \(D_j \): \(\omega_j \) is the weight for weighted averaging (WA) with \(\sum_{j=1}^{n} \omega_j = 1 \) and \(\omega_j \in [0, 1] \), and \(w_j \) is the weight for the OWA meeting \(\sum_{j=1}^{n} w_j = 1 \) and \(w_j \in [0, 1] \). The integrated weight \(\overline{w}_j \) is defined as:

\[
\overline{w}_j = \delta \omega_j + (1 - \delta) w_j,
\]

where \(\delta \in [0, 1] \) and \(\omega_j \) is indeed \(\omega_i \) re-ordered to be associated to \(d(y_i, y'_i)(i = 1, \ldots, n) \).

Based on the basic operational laws (i.e., ordered weighted and weighted average), the SVNLCWD operator can be decomposed linearly into a combination of the SVNLLOWAD and SVNLWD:

Definition 9. Let \(y_i, y'_i \ (j = 1, \ldots, n) \) be the two collections of SVNLNs. If

\[
SVNLCDW((y_1, y'_1), \ldots, (y_n, y'_n)) = \delta \sum_{i=1}^{n} \omega_i d(y_i, y'_i) + (1 - \delta) \sum_{j=1}^{n} w_j D_j,
\]

where \(D_j \) represents the \(j \)-th largest value among the individual distances \(d(y_i, y'_i)(i = 1, \ldots, n) \) defined in Equation (5), and \(\delta \in [0, 1] \). Obviously, the SVNLCWD is reduced to the SVNLLOWAD and SVNLWD, when \(\delta = 0 \) and \(\delta = 1 \), respectively.

Example 3.1. Let \(Y = (y_1, y_2, y_3, y_4, y_5) = (s_{2c}, (0.5, 0.3, 0.4)), (s_{3a}, (0.5, 0.2, 0.2)), (s_{4a}, (0.3, 0.3, 0.6)), (s_{2e}, (0.1, 0.4, 0.6)), (s_{7e}, (0.5, 0.8, 0.2)) \) and \(Y' = (y'_1, y'_2, y'_3, y'_4, y'_5) = (s_{5b}, (0.2, 0.9, 0.1)), (s_{3a}, (0.5, 0.7, 0.2)), (s_{4a}, (0.4, 0.4, 0.5)), (s_{3c}, (0.5, 0.7, 0.2)), (s_{3d}, (0.4, 0.2, 0.6)) \) be two SVNLs defined in set \(S = \{ s_{1c}, s_{2c}, s_{3a}, s_{4a}, s_{5b}, s_{7e} \} \). Let \(w = (0.15, 0.3, 0.2, 0.25, 0.1)^T \) be the weighting vector of SVNLCWD measure. Then, the aggregating process by the SVNLCWD can be displayed as follows:

1. Compute the individual distances \(d(y_i, y'_i)(i = 1, 2, \ldots, 5) \) (let \(\lambda = 1 \)) according to Equation (5):

\[
d(y_1, y'_1) = |2 \times 0.5 - 5 \times 0.2| + |2 \times 0.3 - 5 \times 0.9| + |2 \times 0.4 - 5 \times 0| = 4.7.
\]

Similarly, we get

\[
d(y_2, y'_2) = 2.4, \ d(y_3, y'_3) = 1.5, \\
d(y_4, y'_4) = 3.2, \ d(y_5, y'_5) = 7.7.
\]
(2) Sort the $d(y_i, y'_i) (i = 1, 2, \ldots, 5)$ in decreasing order:

\[
D_1 = d(y_5, y'_5) = 7.7, \\
D_2 = d(y_1, y'_1) = 4.7, \\
D_3 = d(y_4, y'_4) = 3.2, \\
D_4 = d(y_2, y'_2) = 2.4, \\
D_5 = d(y_3, y'_3) = 1.5.
\]

(3) Let the weighting vector $\omega = (0.1, 0.15, 0.2, 0.35, 0.2)^T$ and $\delta = 0.4$, calculate the integrated weights w_j according to Equation (10):

\[
w_1 = 0.4 \times 0.2 + (1 - 0.4) \times 0.15 = 0.17, \\
w_2 = 0.4 \times 0.1 + (1 - 0.4) \times 0.3 = 0.22, \\
w_3 = 0.4 \times 0.35 + (1 - 0.4) \times 0.2 = 0.26, \\
w_4 = 0.4 \times 0.15 + (1 - 0.4) \times 0.25 = 0.21, \\
w_5 = 0.4 \times 0.2 + (1 - 0.4) \times 0.1 = 0.14.
\]

(4) Use the SVNLCWD measure defined in Equation (9) to perform the following aggregation:

\[
SVNLCWD(Y, Y') = 0.17 \times 7.7 + 0.22 \times 4.7 + 0.26 \times 3.2 + 0.21 \times 2.4 + 0.14 \times 1.5 \\
= 3.889
\]

We can also perform the aggregation process of the SVNLCWD using Equation (11):

\[
SVNLCWD(Y, Y') = 0.4 \times SVNLWD + (1 - 0.4) \times SVNLOWAD \\
= 0.4 \times 3.79 + 0.6 \times 3.955 \\
= 3.889
\]

Apparently, we obtain the same results using both methods. However, compared with the SVNLOWAD operator, the proposed SVNLCWD operator can not only incorporate decision-makers’ interests and biases according to the ordered weights, but also highlights the importance of the input arguments based on the weighted average tool.

Furthermore, by setting varied weighting schemes on the SVNLCWD operator, we can obtain a series of SVNL weighted distance measures:

- If $w_1 = 1, w_2 = \cdots = w_n = 0$, then max-SVNLWD (SVNLMaxD) is formed.
- If $w_1 = \cdots = w_{n-1} = 0, w_n = 1$, then the min-SVNLWD (SVNLMinD) is obtained.
- The step-SVNLCD operator is rendered by imposing $w_1 = \cdots = w_{k-1} = 0, w_k = 1$ and $w_{k+1} = \cdots = w_n = 0$.
- According to techniques used in the recent literature [27,28], we can create more special cases of the SVNLCWD, such as the Median-SVNLCWD, the Centered-SVNLCWD and the Olympic-SVNLCWD operators.

The SVNLCWD operator has the following desirable properties that all aggregation operators should ideally possess:

Theorem 1. (Commutativity–aggregation operator). Let $((x_1, x'_1), \ldots, (x_n, x'_n))$ be any permutation of the set of SVNLVs $((y_1, y'_1), \ldots, (y_n, y'_n))$, then

\[
SVNLCWD((x_1, x'_1), \ldots, (x_n, x'_n)) = SVNLCWD((y_1, y'_1), \ldots, (y_n, y'_n))
\]
The property of commutativity can also be demonstrated from the perspective of distance measure:

\[\text{SVNLCWD}((y_1, y'_1), \ldots, (y_n, y'_n)) = \text{SVNLCWD}((y'_1, y_1), \ldots, (y'_n, y_n)) \]

(13)

Theorem 2. (Monotonicity). If \(d(y_i, y'_i) \geq d(x_i, x'_i) \) for all \(i \), the following property holds

\[\text{SVNLCWD}((y_1, y'_1), \ldots, (y_n, y'_n)) \geq \text{SVNLCWD}((x_1, x'_1), \ldots, (x_n, x'_n)) \]

(14)

Theorem 3. (Boundedness). This feature shows that the aggregation result lies between the minimum and maximum arguments (distances) to be aggregated:

\[\min_i d(y_i, y'_i) \leq \text{SVNLCWD}((y_1, y'_1), \ldots, (y_n, y'_n)) \leq \max_i d(y_i, y'_i) \]

(15)

Theorem 4. (Idempotency). If \(d(y_i, y'_i) = D \) for all \(i \), then

\[\text{SVNLCWD}((y_1, y'_1), \ldots, (y_n, y'_n)) = D \]

(16)

Theorem 5. (Nonnegativity). In case distances are aggregated, the result of aggregation is positive:

\[\text{SVNLCWD}((y_1, y'_1), \ldots, (y_n, y'_n)) \geq 0 \]

(17)

Theorem 6. (Reflexivity). In case the two vectors involved in the aggregation coincide, the resulting variable is zero:

\[\text{SVNLCWD}((y_1, y_1), \ldots, (y_n, y_n)) = 0 \]

(18)

4. New MAGDM Method Using the SVNLCWD Operator

The SVNLCWD operator can be used in a wide range of environments, such as data analysis, financial investment and engineering applications [29–32]. Subsequently, a new approach was developed for MAGDM problems in SVNL situations. Suppose that \(C = \{C_1, C_2, \ldots, C_m\} \) is the set of schemes, and \(A = \{A_1, A_2, \ldots, A_n\} \) is a set of finite attributes.

Step 1: Let each decision-maker (DM) \(\epsilon_k (k = 1, 2, \ldots, t) \) (whose weight is \(\epsilon_k \), meeting \(\epsilon_k \geq 0 \) and \(\sum_{k=1}^{t} \epsilon_k = 1 \)) provide his/her evaluation on the attributes expressed by the SVNLS, and then form the individual matrix \(Y^k = (y_{ij}^{(k)})_{m \times n} \).

Step 2: Aggregate all evaluations of the individual DMs into a collective one, and then construct the group matrix:

\[Y = (y_{ij})_{m \times n} = \begin{pmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & \ddots & \vdots \\ y_{m1} & \cdots & y_{mn} \end{pmatrix}, \]

(19)

where the SVNLN \(y_{ij} = \sum_{k=1}^{t} \epsilon_k y_{ij}^{(k)} \).

Step 3: Construct the ideal levels for each attribute to establish the ideal scheme (see Table 1).
Symmetry 2019, 11, 275

Table 1. Ideal scheme.

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>···</th>
<th>Aₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>ỹ₁</td>
<td>ỹ₂</td>
<td>···</td>
<td>ỹₙ</td>
</tr>
</tbody>
</table>

Step 4: Utilize the SVNLCWD to compute the distances between the ideal scheme I and the different alternatives Cᵢ (i = 1, 2, 3, 4).

Step 5: Sort all alternatives and identify the best alternative(s) according to the results derived from Step 4.

5. An Illustrative Example: Low-Carbon Supplier Selection

We will focus on a numerical example of the low-carbon supplier selection problem provided by Chen et al. [9]. Three experts are invited to evaluate and prioritize a suitable low-carbon supplier as a manufacturer, with respect to the four potential suppliers Cᵢ (i = 1, 2, 3, 4) using the attributes: low-carbon technology (A₁), risk factor (A₂), cost (A₃) and capacity (A₄). The preference presented by the experts regarding these four attributes is formed into three individual SVNL decision matrices under the linguistic term set $S = \{s₁ = \text{extremely poor}, s₂ = \text{very poor}, s₃ = \text{poor}, s₄ = \text{fair}, s₅ = \text{good}, s₆ = \text{very good}, s₇ = \text{extremely good}\}$, as listed in Tables 2–4.

Table 2. SVNL decision matrix $Y¹$.

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>$s₁^{(1)}$, (0.7, 0.0, 0.1)</td>
<td>$s₄^{(1)}$, (0.6, 0.1, 0.2)</td>
<td>$s₃^{(1)}$, (0.3, 0.1, 0.2)</td>
<td>$s₅^{(1)}$, (0.6, 0.1, 0.2)</td>
</tr>
<tr>
<td>C₂</td>
<td>$s₆^{(1)}$, (0.6, 0.1, 0.2)</td>
<td>$s₄^{(1)}$, (0.6, 0.1, 0.2)</td>
<td>$s₃^{(1)}$, (0.5, 0.2, 0.2)</td>
<td>$s₅^{(1)}$, (0.6, 0.2, 0.4)</td>
</tr>
<tr>
<td>C₃</td>
<td>$s₆^{(1)}$, (0.3, 0.2, 0.3)</td>
<td>$s₄^{(1)}$, (0.5, 0.2, 0.3)</td>
<td>$s₃^{(1)}$, (0.5, 0.3, 0.1)</td>
<td>$s₅^{(1)}$, (0.3, 0.5, 0.2)</td>
</tr>
<tr>
<td>C₄</td>
<td>$s₆^{(1)}$, (0.4, 0.2, 0.3)</td>
<td>$s₄^{(1)}$, (0.4, 0.2, 0.3)</td>
<td>$s₃^{(1)}$, (0.3, 0.2, 0.5)</td>
<td>$s₅^{(1)}$, (0.5, 0.3, 0.3)</td>
</tr>
</tbody>
</table>

Table 3. SVNL decision matrix $Y²$.

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>$s₆^{(3)}$, (0.6, 0.1, 0.2)</td>
<td>$s₄^{(3)}$, (0.5, 0.2, 0.2)</td>
<td>$s₃^{(3)}$, (0.4, 0.1, 0.1)</td>
<td>$s₅^{(3)}$, (0.7, 0.2, 0.1)</td>
</tr>
<tr>
<td>C₂</td>
<td>$s₆^{(3)}$, (0.5, 0.2, 0.3)</td>
<td>$s₄^{(3)}$, (0.7, 0.2, 0.2)</td>
<td>$s₃^{(3)}$, (0.7, 0.2, 0.1)</td>
<td>$s₅^{(3)}$, (0.4, 0.6, 0.2)</td>
</tr>
<tr>
<td>C₃</td>
<td>$s₆^{(3)}$, (0.5, 0.1, 0.3)</td>
<td>$s₄^{(3)}$, (0.6, 0.1, 0.3)</td>
<td>$s₃^{(3)}$, (0.6, 0.2, 0.1)</td>
<td>$s₅^{(3)}$, (0.3, 0.6, 0.2)</td>
</tr>
<tr>
<td>C₄</td>
<td>$s₆^{(3)}$, (0.5, 0.2, 0.3)</td>
<td>$s₄^{(3)}$, (0.6, 0.2, 0.4)</td>
<td>$s₃^{(3)}$, (0.2, 0.1, 0.6)</td>
<td>$s₅^{(3)}$, (0.5, 0.2, 0.3)</td>
</tr>
</tbody>
</table>

Table 4. SVNL decision matrix $Y³$.

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>$s₆^{(2)}$, (0.8, 0.1, 0.2)</td>
<td>$s₄^{(2)}$, (0.7, 0.2, 0.3)</td>
<td>$s₃^{(2)}$, (0.4, 0.2, 0.2)</td>
<td>$s₅^{(2)}$, (0.6, 0.3, 0.3)</td>
</tr>
<tr>
<td>C₂</td>
<td>$s₆^{(2)}$, (0.7, 0.2, 0.3)</td>
<td>$s₄^{(2)}$, (0.7, 0.2, 0.3)</td>
<td>$s₃^{(2)}$, (0.6, 0.2, 0.2)</td>
<td>$s₅^{(2)}$, (0.5, 0.4, 0.2)</td>
</tr>
<tr>
<td>C₃</td>
<td>$s₆^{(2)}$, (0.4, 0.2, 0.4)</td>
<td>$s₄^{(2)}$, (0.6, 0.3, 0.4)</td>
<td>$s₃^{(2)}$, (0.6, 0.1, 0.3)</td>
<td>$s₅^{(2)}$, (0.4, 0.4, 0.1)</td>
</tr>
<tr>
<td>C₄</td>
<td>$s₆^{(2)}$, (0.4, 0.3, 0.4)</td>
<td>$s₄^{(2)}$, (0.5, 0.1, 0.2)</td>
<td>$s₃^{(2)}$, (0.3, 0.1, 0.6)</td>
<td>$s₅^{(2)}$, (0.7, 0.1, 0.1)</td>
</tr>
</tbody>
</table>
Assume that the weights of the experts are $\varepsilon_1 = 0.37$, $\varepsilon_2 = 0.30$ and $\varepsilon_3 = 0.33$, respectively. Then we can aggregate the individual opinion and form the group SVNL decision matrix, which is listed in Table 5.

Table 5. Group SVNL decision matrix R.

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>$\langle s_{1.3.7} (0.714, 0.000, 0.155) \rangle$</td>
<td>$\langle s_{1.3.7} (0.611, 0.155, 0.229) \rangle$</td>
<td>$\langle s_{1.3.7} (0.365, 0.128, 0.163) \rangle$</td>
<td>$\langle s_{1.3.7} (0.633, 0.180, 0.186) \rangle$</td>
</tr>
<tr>
<td>C_2</td>
<td>$\langle s_{1.3.7} (0.611, 0.155, 0.258) \rangle$</td>
<td>$\langle s_{1.3.7} (0.666, 0.155, 0.229) \rangle$</td>
<td>$\langle s_{1.3.7} (0.602, 0.200, 0.162) \rangle$</td>
<td>$\langle s_{1.3.7} (0.514, 0.350, 0.258) \rangle$</td>
</tr>
<tr>
<td>C_3</td>
<td>$\langle s_{1.3.7} (0.399, 0.163, 0.330) \rangle$</td>
<td>$\langle s_{1.3.7} (0.566, 0.186, 0.330) \rangle$</td>
<td>$\langle s_{1.3.7} (0.566, 0.185, 0.144) \rangle$</td>
<td>$\langle s_{1.3.7} (0.335, 0.491, 0.159) \rangle$</td>
</tr>
<tr>
<td>C_4</td>
<td>$\langle s_{1.3.7} (0.432, 0.229, 0.330) \rangle$</td>
<td>$\langle s_{1.3.7} (0.450, 0.159, 0.286) \rangle$</td>
<td>$\langle s_{1.3.7} (0.271, 0.129, 0.561) \rangle$</td>
<td>$\langle s_{1.3.7} (0.578, 0.185, 0.209) \rangle$</td>
</tr>
</tbody>
</table>

According to their objectives, the experts carry out a similar analysis to determine the ideal scheme, which represents the optimal results that a supplier should have. The resulting vector (Table 6) further serves as a reference point.

Table 6. Ideal scheme.

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$\langle s_{1.7} (0.9, 0, 0) \rangle$</td>
<td>$\langle s_{1.7} (1.0, 0.1) \rangle$</td>
<td>$\langle s_{1.7} (0.9, 0, 0.1) \rangle$</td>
<td>$\langle s_{1.7} (0.9, 0.1, 0) \rangle$</td>
</tr>
</tbody>
</table>

Assume that the weight vectors of the attributes and the SVNLCWD are $\omega = (0.25, 0.40, 0.20, 0.15)^T$ and $\omega = (0.2, 0.15, 0.3, 0.35)^T$, respectively. Considering the available information, we can employ the developed SVNLCWD (without loss of generality, let $\delta = 0.5$) to compute the distances between the ideal scheme I and the different alternatives $C_i (i = 1, 2, 3, 4)$:

$$SVNLCWD(I, C_1) = 5.176, \quad SVNLCWD(I, C_2) = 5.660,$$

$$SVNLCWD(I, C_3) = 6.544, \quad SVNLCWD(I, C_4) = 6.641.$$

Note that smaller values of distances show preferable alternatives. Thus, the ranking of the alternatives through the values of $SVNLCWD(I, C_i) (i = 1, 2, 3, 4)$ yields:

$$A_1 \succ A_2 \succ A_3 \succ A_4.$$

The results show that A_1 had the smallest distance from the ideal scheme, which means it was the most desirable alternative.

To better reflect the superiority of the SVNLCWD, we used the SVNLWD and the SVNLOWAD to measure the relative performance of the ideal scheme to all alternatives. For the SVNLWD measure, we obtained:

$$SVNLWD(I, C_1) = 5.249, \quad SVNLWD(I, C_2) = 5.669,$$

$$SVNLWD(I, C_3) = 6.621, \quad SVNLWD(I, C_4) = 6.789.$$

For the SVNLOWAD operator, we obtained:

$$SVNLOWAD(I, C_1) = 5.103, \quad SVNLOWAD(I, C_2) = 5.652,$$

$$SVNLOWAD(I, C_3) = 6.466, \quad SVNLOWAD(I, C_4) = 6.492.$$

It is easy to see that the most desirable alternative was A_1 for both the SVNLWD and SVNLOWAD operators, which coincides with the results derived using the proposed SVNLCWD operator. Moreover, the comparison of the SVNLWD and SVNLOWAD operators indicates that the SVNLCWD operator was able to account for the degrees of pessimism or optimism of the attitudes of decision-makers, and the different values of importance assigned to the various criteria during the process of aggregation. Furthermore, this method has more flexibility as it can execute the selection procedure by assigning different parameter values for the operator.
6. Conclusions

In this paper, we proposed a new combined weighted distance measure for SVNLSs, i.e., the SVNL combined weighted distance operator, to overcome the drawbacks of the existing method. Given that the developed combined weighted distance measure for SVNLSs involves both the SVNL weighted average and SVNL ordered weighted models, it takes into account both the attitudes toward separate criteria, as well as toward positions in the ordered array. Moreover, the SVNL-CWD operator generalizes different types of SVNL aggregation operators, such as the SVNLmaxD, the SVNLminD, the SVNlowD, and the step-SVNLCWD operators. Thus, it provides a further generalization of previous methods by presenting a more general model to deal with the complex environments in a more flexible and efficient manner.

The illustrative example dealt with a selection problem of a low-carbon supplier. We conducted the sensitivity analysis to verify the robustness of the results by means of the changes in the aggregation rules (implemented by switching to different aggregation operators) and the changes in the relative importance of the ordered weights and arithmetic weights. Therefore, the proposed methodology can simulate different degrees of pessimism or optimism displayed by the decision-makers and account for the relative importance imposed on the various criteria in the aggregation process.

In future research, we will propose some methodological extensions and applications of the SVNLCWD with other decision-making approaches, such as induced aggregation and moving averaging.

Author Contributions: S.Z. and D.L. revised the manuscript and conceived the MAGDM framework. C.C. drafted the initial manuscript and analyzed the data.

Funding: This paper was funded by the National Natural Science Foundation of China (No. 71671165), Zhejiang Province Natural Science Foundation (No. LY18G010007), Major Humanities and Social Sciences Research Projects in Zhejiang Universities (No. 2018QNJ058), Cooperation Project between Ningbo City and Chinese Academy of Social Sciences (No. NZKT201711), Key SRIP Project of Ningbo University (No. 2018SRIP0109) and K. C. Wong Magna Fund in Ningbo University.

Conflicts of Interest: The authors declare no conflict of interest.

References

7. Ye, J. Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making. *SpringerPlus* 2016, 5, 67. [CrossRef]

17. Xu, Z.; Xia, M. Distance and similarity measures for hesitant fuzzy sets. *Inf. Sci.* 2011, 181, 2128–2138. [CrossRef]

22. Li, Z.; Sun, D.; Zeng, S. Intuitionistic Fuzzy Multiple Attribute Decision-Making Model Based on Weighted Induced Distance Measure and Its Application to Investment Selection. *Symmetry* 2018, 10, 261. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).