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Abstract: To eliminate heavy noise and retain more scene details, we propose a structure-oriented 

total variation (TV) model based on data dependent kernel function and TV criterion for image 

denoising application. The innovative model introduces the weights produced from the local and 

nonlocal symmetry features involved in the image itself to pick more precise solutions in the TV 

denoising process. As a result, the proposed local and nonlocal steering kernel weighted TV model 

yields excellent noise suppression and structure-preserving performance. The experimental results 

verify the validity of the proposed model in objective quantitative indices and subjective visual 

appearance. 
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1. Introduction 

Image denoising is a vital preprocessing step for image based object detection, recognition, and 

tracking [1–6]. Since high frequency image details are mixed with noise in most cases, most of the 

existing image denoising methods have difficult preserving the edge and texture information while 

thoroughly eliminating the noise [7–12]. 

Many traditional image processing methods are exploited on the basis of the local structural 

regularity assumption present in natural images. The rationale of denoising algorithms is to make 

use of the structural patterns to regularize the ill-posed restoration problem and make the texture 

region less blurry and the flat region smoother [13–15]. The gradient based total variation (TV) is a 

state-of-the-art method that has been proven to restore real scenes from noisy images effectively 

[16]. However, the TV model tends to introduce staircase effect and texture loss. To surmount the 

inherent defects of TV regularization, some improved TV models with structure preserving 

performance are presented. By combining intensity into the definition of the distance between 

pixels, bilateral filtering [17] clearly relieves the blurring effect of the Gaussian filter and provides 

detail preserving performance. In view of this, the bilateral total variation (BTV) model [18] and 

non-local total variation (NLTV) model [19] are successively exploited to more precisely restore the 

details by fusing the idea of bilateral filtering and non-local means filtering [20] with TV criterion. 

However, the BTV model only considers the spatial distance but ignores the neighborhood 

similarity in obtaining the gradient of a pixel, which leads to the derogation of structure 

information in the recovered image. Moreover, the nonsymmetrical structure preserving ability of 

the NLTV model tends to be weakened with growing noise strength, which may result from 

neglecting the robust local structure constraints. 

Existing investigations have shown that feature descriptors using local steering kernel (LSK) 

are robust to noise interruption [21]. The reason lies in that LSK is exploited to solve image noise 

and uncertainty by estimating the local structure. Moreover, a patch containing a flat region, 
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textural clutter, and structural part have significant differences for LSK-based descriptors. In view 

of this, we encode the noise corrupting image patches using the LSK method [22] to robustly 

recover the original image structure and remove the noise disturbance. 

Inspired by the fact that the disconnected nonlocal components with spatial support provide 

more useful information in image restoration [23], we further combine the nonlocal self-similarity 

[24,25] with the local constraints of LSK to weight the respective measurements of TV, which 

enhances the structure preserving capability of the TV model in denoising application. In this way, 

our proposed local and nonlocal steering kernel weighted TV model for image denoising can 

robustly estimate the local structure of the image, as well as effectively remove the annoying noise. 

Obviously, it utilizes the redundancy of symmetrically similar patches in the corrupted image and 

the sensitivity of local feature description to implement the denoising task. 

The rest of this paper is structured as follows. Section 2 briefly reviews the related works of 

this study, Section 3 introduces the presented algorithm and discusses its mechanism, Section 4 

states experimental results and analysis, and Section 5 gives the conclusion of the paper. 

2. Related Works 

Consider a discrete noisy image 

Y X V   (1) 

where Y  denotes the observation, V  indicates the zero-mean additive white noise perturbation 

that is uncorrelated to the true image X . 

2.1. Regularization Based Denoising Framework 

For the image denoising problem, we need to solve the minimization problem as [26] 

  
ˆ

ˆ ˆ ˆmin
p

pX

X Arg Y X X     (2) 

where X̂  is the denoised image, ˆ
p

p
Y X  is the data fidelity item used to retain the original 

image characteristics and reduce the image distortion, the scalar   is used to properly balance the 

fidelity term ˆ
p

p
Y X  with the regularizer  X̂ , a smaller   increases the impact of fidelity 

item and provides stable convergence, while a larger   tends to enhance the influence of 

regularization term and induces fast tracking; 
p

p
  denotes the  1 2pL p   norm of residual. 

The well-known Tikhonov regularizer [27,28] is defined as 

 
2

2

ˆ ˆ
T X X    (3) 

where   represents the high-pass operator. It is clear that the Tikhonov regularization method 

tends to constrain the total energy of the image or implements spatial smoothing. 

Since the noise and image textures both contain abundant high frequency components, the 

regularization procedure easily remove both of them indiscriminately, and the corresponding result 

is that the denoised images lose most of their sharp edges and details. 

The popular edge preserving regularization strategy for image restoration applications is the 

TV method [16]. The TV criterion penalizes the 1L  norm of gradient amplitude that measures the 

total change of image and is expressed as 

 T V
1

ˆ ˆX X    (4) 

where   is the gradient operator. The advantage of TV criterion lies in that it can retain edges 

during refactoring without seriously penalizing the steep gradients [29,30]. 
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On the basis of TV criterion and bilateral filter, a spatially adaptive regularizer called bilateral 

total variation (BTV) that attempts to eliminate the staircase effect and detail the loss problem of the 

TV prior model is presented in [18]. The BTV regularizer is mathematically formulated as 

  m

BTV
1

0

0

ˆ ˆ ˆ
P P

l l m
x y

l Pm

l m

X X S S X 

 

 

  


 (5) 

where operators 
l
xS  and 

m
yS , respectively, implement l  pixel horizontal translation and m  

pixel vertical translation, so as to present multi-scale derivatives. P  indicates the radius of the 

search window. The scalar weight  0 1    is utilized to produce spatial decay for the 

regularization terms. Larger   provides a larger impact of neighbor pixels, but an exceeded   

generally blots out the scene details, as is the case with the TV prior, and results in over-smooth 

effects. On the contrary, a tiny   sharply attenuates the spread of weight with the increase of 

spatial distance, which decreases the noise suppression capability and leads to slower convergence. 

A proper selection of   plays an important role in balancing noise suppression and detail 

preservation. 

Local image structures are often repeated themselves within the image and across the image 

sequences. The redundant information contained in similar patches has a vital significance for 

solving most ill-posed image restoration problems. This is because similar patches are generally 

considered to be various observations of the same real scene. 

To overcome the performance decline of local derivative-based prior models in noise 

suppression, a self-similarity-based nonlocal prior model is employed in the regularized framework, 

which gives the nonlocal total variation (NLTV) regularizer as [19] 

       NLTV
1

ˆ ˆ ˆ,
i

NL
i j

X W i j X i X j
 

     
(6) 

where i  indicates any of the pixel in the image ˆ :X  , j  represents the pixels located in the 

R  sized search window around i  and denoted as i , the weight formula is represented as 

 
   

2
, exp

p

i j p

NL

N u N u
W i j



 
  
 
 
 

 (7) 

where  iN  and  jN  denote the r  sized square similarity patch surrounding pixel i  and j , 

respectively;   represents the filtering parameter that controls the smoothness. 

2.2. Local Steering Kernel 

Steering kernel regression (SKR) [21] depends on not only the position and intensity, but also 

the intrinsic local structure of the samples. Therefore, the size and shape of the regression kernel will 

significantly affect its spread and feature extraction characteristics [31,32]. The core of the SKR 

method is the local steering kernel (LSK) function, which estimates the local structures accurately, 

even in strong noise. 

Let coordinate vector 
1 2,

T

i i ix x x    represents the position of a certain pixel, and  ˆ
iX x  

denotes the intensity of the ix  pixel. The structural representation capability of LSK mainly relies 

on the so-called gradient covariance matrix or steering matrix [21]. Assume there exists a p  pixels 

involved patch 1( ) { ,..., ,... }i i pN x x x x  centered at ix , the structure adaptive steering kernel 

representation can be modeled as 
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 
   

2 2

det(C ) - C -
, exp

-2

T

j i j j i j

i j

x x x x
K x x

h h

 
  
 
 

 (8) 

where ( )j ix N x , the symmetric covariance matrix jC  is evaluated by the spatial gradient 

vectors surrounding jx  [33]. A good choice of jC  is vital for estimating the LSK and will expand 

the kernel weight along the local edges;  2 3 h h  is a global smoothing parameter. 

Let    1 , , , , j j Mx x x x   represent the positions of the M  adjacent pixels surrounding 

jx . Natively, jC  can be directly estimated by 
T
j jG G , in which jG  is expressed as 

1 1( ) ( )

= ( ) (

)

ˆ ˆ

ˆ ˆ

ˆ ˆ

)

( ( )

h v

j h j v j

h M v M

x x

G x x

x

X X

X X

xX X

 
 
 
 
 
 
 
  

 

 

 (9) 

where ˆ ( )hX   and ˆ ( )vX  , respectively, indicate the first-order gradients in the horizontal and vertical 

direction. 

In order to enhance robustness and promote stability, the proposed method estimates the 

covariance matrix using a regularized parametric method. Based on the singular value 

decomposition (SVD) formula of jG , 

   1 2 1 2, ,
T

j j j j j j j
G U S V U diag s s u u   (10) 

we can obtain the singular values 1 2( , )s s  and the singular vectors 1 2( , )u u , which are further 

used to calculate the stable covariance matrix 

 1 2
1 1 2 2

T T
j

s s eps
C fu u gu u

M


 

  
 

 (11) 

where the amplification factor   and the constant eps  are set to 0.5 and 
710

, respectively. 

According to the intrinsic structure, we can regulate f  and g  to make the induced kernel be 

isotropic at the smooth area and uniform along the image contour ( g f ) as 

   1

2

0,  
s

f
s


 








 (12) 

   2

1

0  ,  
s

g
s


 







  (13) 

where   is a tuning parameter for controlling the kernel spread and is set to 1, which suppresses 

the noise, as well as decreases the detail loss;   and   are the eigen values of the structure tensor 

[34] that reflects the gradient strength along the direction of each eigenvector. 

3. Local and Nonlocal Steering Kernel Weighted Total Variation Model 

The local derivative-based models (such as TV and BTV) are sensitive to noise in the 

homogenous region, while the patch similarity-based models (such as NLTV) are not fit to deal with 

the noise in the cluttered texture region. In view of this, we incorporate the steering kernel 

[35]-based structure descriptor into the TV regularization framework and present an innovative 

regularizer. This local structure based regularizer can smooth out noise while preserving the details, 
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even in very noisy circumstances. The weight function based on the local steering kernel (LSK) can 

be defined as 

 

 

,

,

,

0

0

,
( )

,
 

 





l m
i il m

LSK P P
l m

i i
l Pm

l m

K x x
W i

K x x







 
(14) 

Furthermore, we consider both the nonlocal similarity and local structure properties and 

propose a joint local and nonlocal structural weight, which is then normalized in its neighborhood to 

prevent the nonuniform weight in various patches, and is characterized by 

   

   

, ,

,

, ,

0

0

, ,
( )

, ,

l m l m
NL i i i il m

NLSK P P
l m l m

NL i i i i
l Pm

l m

W x x K x x
W i

W x x K x x
 

 






 

 



 
(15) 

where 
,l m

ix


 is a pixel located in the patch that shifts l  and m  pixels from ix  in the horizontal 

and vertical direction. For ix , either of the 
, ( )l m

LSKW i  calculated by (14) or 
, ( )l m

NLSKW i  calculated 

by (15) can be used to form the weight matrix uniformly represented by 
,l mW . 

In order to compare the spread characterization of different kernels, Figure 1 shows the 

subjective visual representation of the steering kernel for different local structures (texture, strong 

edge) in the “House” image on the noisy and noiseless cases. Seeing the weight map of LSK, the 

shape and orientation of its footprints elongate along the edge to realize edge preservation and 

noise smoothing. The weight map of non-local kernel (NLK) is strewn according to the nonlocal 

similarity but neglects the influence of local structure. In contrast, the weight map of non-local 

steering kernel (NLSK )contains both neighborhood similarity and local spatial support, and 

assigns large weights to the locally and structurally similar pixels along with the central pixels of 

nonlocal similar patches. Specifically speaking, the weight map of NLSK spread closer than other 

kernels in the direction perpendicular to edges, which adaptively reduces the blurriness with 

respect to the local feature of the image. Moreover, we can easily find that all of the kernels show a 

rapid decline for spread characterization in the noisy condition and NLSK is still the most precise 

structure descriptor. 
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Figure 1. Comparison of local weight map produced by LSK, NLK, and NLSK in the edge area and 

the texture area. (a) The original image. (b) The noisy image with Gaussian noise (σ = 25). 

Rather than defining the weight by local intensity or nonlocal similarity, we, respectively, 

introduce the LSK and NLSK prior to weight for the neighboring gradient according to the nonlocal 

and intrinsic structure of the image itself. On the basis of TV criterion and LSK or NLSK prior, we 

uniformly define the noise tolerant LSKTV and NLSKTV regularizer as 

,

1
0

0

ˆ ˆ ˆ( ) ( )
P P

l m l m
x y

l Pm

l m

X W X S S X
 

 

   


 (16) 

Combining the above presented idea, we propose an innovative structure feature-guided cost 

function for the denoising problem as 

2
,

,
21ˆ 0

0

ˆ ˆ ˆArgMin
2

P P
l m

l m
X l Pm

l m

X W X X Y


 

 

 
 

    
 
 




 (17) 

where ,
ˆ ˆ ˆ   l m

l m x yX X S S X . 

Considering the equivalent constrained problem to (17), such that ,
, ,

ˆ l m
l m l mW X d , we can 

get the unconstrained version and solve it by using the split Bregman algorithm [36,37] given by 

2 2
1 1 ,

, , , , ,
2 1 2, 0

0

1 , 1 1
, , , ,

ˆ ˆ ˆ( ,d ) ArgMin
2 2

ˆ=b ( d )

  

 

 

  

   
            



   




P P
k k k k k l m k k

l m l m l m l m l m
u d l Pm

l m

k k l m k k
l m l m l m l m

X X Y d d W X b

b W X

 (18) 

where 0   is a constant. 

Following (18), we solve the equations using the Gauss-Seidel iteration written as 

 1
, 1, 1, , 1 , 1 , , 1, , , , , , , 1 , , , ,

0

0

ˆ ˆ ˆ ˆ ˆ
4 4

P P
k k k k k k k k k
i j i j i j i j i j l m i j l m i j l m i j l m i j i j

l Pm

l m

X X X X X d d b b Y
 

   


     
 

 

 
 

         
  

 

 


 

(19) 

At the boundaries of the domain, one-sided finite differences are used instead of the centered 

finite differences. We get 
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1 , 1
, , ,

1ˆ( , )


   k l m k k
l m l m l md shrink W X d  (20) 

The whole algorithm procedure is presented in Algorithm 1. 

Algorithm 1: Proposed image denoising algorithm 

Input: noisy observation Y . 

1. Initialization: 

0X̂ Y , 
0 0
, , 0l m l md b   

2. Iteration: 

While 2 2
1

2 2

ˆ ˆ ˆk k kX X X     do 

Calculate the normalized weight 
,l m

kW  by Equation (15) 

Update 
1ˆ kX 

 according to Equation (19) 

1 , 1
, , ,

ˆ( ,1/ )   k l m k k
l m l m l md shrink W X d  

1 , 1
, , ,

ˆ( ,1/ )   k l m k k
l m l m l mb shrink W X b  

1 k k  

end While 

Output: desired image X  

4. Experimental Results and Analysis 

In this section, we will contrast the performance of the presented method with the previous 

variational denoising methods on artificially degraded samples that are generated by adding 

Gaussian noise with zero mean and standard deviation of 10, 25, and 40 to the 512 512  sized 

standard bitmap(BMP) format test images. In the following experiments, the parameter sensitivity 

will be firstly discussed for finding a tune strategy to obtain balanced and higher performance. It is 

worthy to note that the parameters selected according to the advice of original documents are 

employed to pursue the best performance. In the following experiments, the stopping criteria   

of the proposed local steering kernel total variation (LSKTV) and non-local steering kernel total 

variation (NLSKTV) algorithm is set to 
-31 10  to guarantee stable convergence. 

In order to facilitate quantitative comparison, Peak Signal-to-Noise Ratio (PSNR) and Structure 

Similarity index (SSIM) [38] are employed to objectively assess the performance of various 

denoising methods. The PSNR is defined as 

 
    

2

2

0 0

255
PSNR , 10 log

1 ( ) , ,
 

 
  

H W

i j

x y
H W x i j y i j

 (21) 

where H  and W  indicate the height and width of the image, respectively. 

In addition, the SSIM index can be calculated by 

 
  

  
1 2

2 2 2 2
1 2

2 2
,

x y xy

x y x y

c c
SSIM x y

c c

  

   

 


  
 (22) 

where  x  and  y  stand for the mean value of x  and y , x  and y  indicate the variance 

of x  and y , xy  denotes the covariance of x  and y . The constants 1c  and 2c  are, 

respectively, set to 6.5025 and 58.6225 to stabilize the division with the weak denominator. 
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4.1. Parameter Sensitivity Analysis 

As for the proposed NLSK weight, appropriate window size is crucial for precisely measuring 

the local and nonlocal structure, which will directly affect the final restoration effect and 

subsequent parameter adjustment. In view of this, we select different sizes of similar windows and 

search windows, and then implement the proposed denoising method upon the same simulated 

image on three noise strengths. For ease of comparison, we uniformly symbolize the search window 

size of NLK, LSK, and NLSK weight with 2 1 2 1   R l m . The PSNR curves of the iterative 

denoising process for different parameter configurations are shown in Figure 2. Through 

comparison, we can find that the size of similar window r and search window R  should be aptly 

raised with the increase of noise level to effectively utilize redundant information in the 

neighborhood for high precision and stable convergence. However, extremely large similar 

windows and search windows may remove the image details and cause image over-smoothness 

effect, which instead results in performance degradation. 

 
(a) =10  

 
(b) =25  

 
(c) =40  

0 5 10 15 20 25 30 35 40 45 50
Iterations

20

21

22

23

24

25

r=7,R=7

r=7,R=9

r=7,R=11

r=9,R=9

r=9,R=11
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Figure 2. Comparisons of PSNR for different similar window radius (r) and search window radius 

(R) at different noise levels. 

The learning rate   is the key impact factor to control the convergence property of the 

proposed method [39,40]. As can be seen from the Figure 3, the increase of   promotes the 

convergence rate, but if   is too large it will interrupt the convergence process. The reason lies in 

that a larger   is beneficial for accelerating the process to reach maximum PSNR, but excessive   

will produce non-convergence issues, which instead depresses the PSNR. As for higher noise level, 

the learning rate   should be set larger to ensure the algorithm can effectively remove noise and 

improve convergence speed. 

 
(a) =10  

 
(b) =25  

 
(c) =40  

Figure 3. Comparisons of PSNR for different learning rate (  ) at different noise levels. 
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Considering the smoothing parameter h  in the steering kernel, we will further find the 

optimal selection of h  is beneficial to achieve higher restoration precision. As can be seen from 

Figure 4, h  should be raised with the increase of noise strength on the premise of stable 

convergence. A larger h  is helpful to smooth out noise and promote PSNR, but if h is too large it 

will lead to over-smoothness effect and destroy the intrinsic structure of images, which instead 

depresses the PSNR. 

 
(a) =10  

 
(b) =25  

 
(c) =40  

Figure 4. Comparisons of PSNR for different smoothing parameters ( h ) at different noise levels. 

4.2. Performance Comparisons 

Figure 5 shows the PSNR for the denoised “Zebra” image of TV, BTV, TGV [41], NLTV, and the 

proposed algorithms on variant noise strength. Obviously, the proposed NLSKTV and LSKTV 

method achieve an expanded leading advantage in PSNR with the increase of noise strength   

0 5 10 15 20 25 30 35 40 45 50

Iterations

17

18

19

20

21

22

23

h=2

h=2.5

h=3

h=3.5
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when compared to TV, BTV, TGV, and NLTV method. As for the highest noise strength 40  , 

NLSKTV can still reach 27.56 dB (the input PSNR is only 16.08 dB at that time), which is 2.56 dB, 1.64 

dB, 1.72 dB, 1.29 dB, and 0.09 dB higher than TV, BTV, TGV, NLTV, and LSKTV, respectively. This 

phenomenon indicates that the proposed NLSKTV and LSKTV deal with the strong noise more 

effectively. 

 

Figure 5. Comparison of PSNR for denoising result of the “Zebra” image at different noise strengths. 

In order to intuitively observe the visual effect, we implement the denoising with different 

algorithms. We can see clearly from Figure 6 that TV and TGV methods generate over-smoothed 

details and produce staircase effect in varying degrees. Furthermore, there are partial noise residuals 

and texture distortions in the results of BTV and NLTV method. Obviously, the noise suppression 

ability of the proposed LSKTV and NLSKTV are superior to others. It is worth noting that the 

presented NLSKTV method preserves more details for its special local structure and nonlocal 

similarity balanced weight. 

To quantitatively evaluate the precision of the abovementioned denoising methods, we carry 

out comparisons of PSNR and SSIM on different test images respectively corrupted by additive 

Gaussian noise with 10, 25, 40  . The results summarized in Table 1 indicate that the PSNR and 

SSIM of the proposed LSKTV is better than that of TV, BTV, total generalized variation (TGV), and 

NLTV in most cases; furthermore, its superiority becomes increasingly significant with the 

increasing noise strength. Note that NLSKTV constantly achieves the best performance by fusing 

additional nonlocal self-similarity to describe the image structure on the basis of LSKTV. In 

summary, the proposed method effectively preserves the image details and removes the noise 

simultaneously. 
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Figure 6. Comparison of visual effects for various denoising methods. Images from top to bottom 

raw are standard test images, noisy images (σ = 25), results of TV, BTV, TGV, NLTV, LSKTV, and 
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NLSKTV method. The first four columns are the dollar and its partial enlargement and zebra and its 

partial enlargement, respectively. The last column is pixel test images. 

Table 1. PSNR and SSIM of denoised images for different denoising methods. 

Method 
Zebra Boat Barbara Dollar Lighthouse House 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

σ = 10 

TV 31.84/0.8053 31.45/0.8204 29.90/0.7998 28.69/0.8235 30.58/0.8287 35.23/0.8567 

BTV 33.13/0.8825 32.37/0.8598 30.96/0.8690 29.73/0.8816 31.26/0.8633 36.54/0.9303 

TGV 33.36/0.8771 32.81/0.8688 31.42/0.8797 29.54/0.8750 31.54/0.8661 36.77/0.9466 

NLTV 34.06/0.8952 32.85/0.8692 32.26/0.9091 30.60/0.9296 31.84/0.8743 37.24/0.9392 

LSKTV 33.73/0.8891 32.87/0.8701 31.91/0.8983 29.88/0.9021 32.04/0.8729 37.39/0.9347 

NLSKTV 34.18/0.8955 32.97/0.8745 32.60/0.9139 30.80/0.9329 32.20/0.8852 37.76/0.9394 

σ = 25 

TV 27.30/0.6553 27.30/0.6810 24.98/0.6568 22.72/0.6566 25.89/0.6721 31.15/0.7583 

BTV 28.35/0.8143 28.10/0.7392 25.64/0.7079 23.52/0.7236 26.30/0.6982 32.46/0.8842 

TGV 28.45/0.7724 28.24/0.7399 25.71/0.6876 23.17/0.6974 26.32/0.6788 32.63/0.8512 

NLTV 28.70/0.8288 28.19/0.7477 26.02/0.7368 23.57/0.7474 26.25/0.7133 32.64/0.8705 

LSKTV 29.72/0.8345 28.73/0.7543 26.72/0.7642 24.15/0.7767 27.71/0.7297 33.47/0.8783 

NLSKTV 30.21/0.8495 29.31/0.7737 27.37/0.8043 24.73/0.8455 28.03/0.7505 34.05/0.8938 

σ = 40 

TV 25.00/0.5862 25.45/0.6064 23.55/0.5869 20.54/0.5633 23.90/0.5824 29.06/0.7064 

BTV 25.92/0.7640 26.20/0.6682 23.77/0.6238 21.05/0.6072 24.04/0.6024 30.44/0.8540 

TGV 25.84/0.7340 26.19/0.6670 24.00/0.5995 20.80/0.5753 24.01/0.5683 30.34/0.8232 

NLTV 26.27/0.7405 26.26/0.6653 24.52/0.6756 21.75/0.7101 24.50/0.6220 29.99/0.7834 

LSKTV 27.47/0.7735 26.75/0.6801 24.53/0.6626 21.90/0.6805 25.67/0.6476 31.18/0.8255 

NLSKTV 27.56/0.8092 26.83/0.6937 24.74/0.6980 22.60/0.7420 25.74/0.6604 31.31/0.8498 

4.3. Image Deblurring Application 

In this section, we will validate the deblurring performance of the proposed method with the 

existing TV, BTV, TGV, and NLTV methods on standard test image “cameraman”. Following the 

blurring degradation model in [42], the test image is blurred by a 9 × 9 Gaussian kernel with 

standard deviation 5 and 10 and corrupted with Gaussian noise with standard deviation 10. The 

PSNR and SSIM results of different methods are shown in Table 2. It is apparent that the LSKTV 

and NLSKTV achieve higher PSNR and SSIM than TV, BTV, TGV, and NLTV. 

Figure 7 shows the visual effects of different deblurring methods. It is obvious that other 

competitive methods, such as TV, BTV, TGV, and NLTV, tend to generate staircase effects in flat 

regions and zigzag effect on edges, which reduces the structural similarity significantly. In contrast, 

the proposed LSKTV and NLSKTV preserve sharp edges and recover high frequency details, as 

well as yield visually pleasant results. In summary, the quantitative and qualitative results indicate 

that the proposed local and nonlocal steering kernel-weighted total variation regularizer is a good 

candidate for image deblurring application. 

Table 2. PSNR and SSIM of the deblurring results for different methods. 

Method 
TV BTV TGV NLTV LSKTV NLSKTV 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

5h   24.68/0.7574 24.67/0.7698 24.74/0.7666 24.88/0.7719 24.98/0.7887 25.14/0.7923 

10h   23.67/0.6385 23.75/0.6827 23.91/0.6693 24.01/0.6986 24.37/0.7506 24.53/0.7550 
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(a) Original image (b) Blurred image (c) TV method (d) BTV method 

    
(e) TGV method (f) NLTV method (g) LSKTV method (h) NLSKTV method 

Figure 7. Visual effects of various deblurring methods on blurring level 5h  . 

4.4. Runtime Comparisons 

In order to compare the computation complexity of different methods, we perform the 

simulation on various sized test images and list the corresponding runtime in Table 3. These results 

are implemented in MATLAB (R2017a) on a computer with Intel (R) Core(TM) i5-4590@3.3GHz 

CPU. As can be seen from Table 3, the proposed LSKTV and NLSKTV demand more computational 

load than others to calculate the steering kernel weight, which is the price for their outstanding 

denoising performance. As the computing of the steering kernel has larger parallelism, the LSKTV 

and NLSKTV will be further accelerated by the specially designed parallel hardware, such as 

Graphics Processing Unit (GPU) and Field Programmable Gate Array (FPGA). 

Table 3. Runtime(s) of different methods for various sized images. 

Image Size TV BTV TGV NLTV LSKTV NLSKTV 

128 × 128 0.001 0.033 0.032 0.118 0.485 0.753 

256 × 256 0.051 0.112 0.089 0.423 1.356 1.975 

512 × 512 0.175 0.451 0.338 2.024 4.122 6.771 

5. Conclusions 

Noise suppression and detail preservation are generally difficult to balance for most of the 

existing TV model-based image denoising methods. In view of this, we proposed an innovative 

structure-oriented TV model that incorporates the local structural regularity of local steering kernel 

(LSK) as well as nonlocal self-similarity of nonlocal kernel (NLK) to achieve a more precise 

denoising effect. Experimental results demonstrated that the presented LSKTV and NLSKTV model 

is conducive to simultaneously restoring the image structures and eliminating the noise disturbance, 

which is validated by the remarkable objective performance assessment and the favorable subjective 

visual effect. 
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