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Abstract: Micro-expression is a spontaneous emotional representation that is not controlled by logic. 

A micro-expression is both transitory (short duration) and subtle (small intensity), so it is difficult 

to detect in people. Micro-expression detection is widely used in the fields of psychological analysis, 

criminal justice and human-computer interaction. Additionally, like traditional facial expressions, 

micro-expressions also have local muscle movement. Psychologists have shown micro-expressions 

have necessary morphological patches (NMPs), which are triggered by emotion. Furthermore, the 

objective of this paper is to sort and filter these NMPs and extract features from NMPs to train 

classifiers to recognize micro-expressions. Firstly, we use the optical flow method to compare the 

on-set frame and the apex frame of the micro-expression sequences. By doing this, we could find 

facial active patches. Secondly, to find the NMPs of micro-expressions, this study calculates the local 

binary pattern from three orthogonal planes (LBP-TOP) operators and cascades them with optical 

flow histograms to form the fusion features of the active patches. Finally, a random forest feature 

selection (RFFS) algorithm is used to identify the NMPs and to characterize them via support vector 

machine (SVM) classifier. We evaluated the proposed method on two popular publicly available 

databases: CASME II and SMIC. Results show that NMPs are statistically determined and contribute 

to significant discriminant ability instead of holistic utilization of all facial regions. 

Keywords: micro-expression; optical flow; LBP-TOP; necessary morphological patches (NMPs); 

random forest 

 

1. Introduction 

Facial expressions are a significant medium for people to express and detect emotional states [1]. 

Micro-expressions are characterized as rapid facial muscle movements that are involuntary and 

reveal a person’s true feelings [2]. Ekman et al. had suggested that micro-expressions can completely 

show the hidden emotions of a person, but due to their brief duration and subtle intensity [2], 

development of automatic micro-expression detection and recognition remains challenging. Hence 

in this scenario, Ekman proposed a facial expression coding system (FACS) [3], which decomposes 

facial muscles into multiple action units (AUs). Each micro-expression is composed of a set of 

combinations and functions of AUs [4]. Ekman also emphasized that micro-expressions can be 

categorized into six basic emotions: happiness, sadness, surprise, disgust, anger and fear [4]. 

Furthermore, Haggard first introduced the concept of “micro-expression” [5], and subsequently 

Ekman et al. defined rapid and unconscious spontaneous facial movements as micro-expressions. 

Since micro-expressions are brief and spontaneous expressions, these facial movements can express 

a person’s true emotional response [6]. Micro-expression recognition not only has high reliability 

amongst emotion recognition tasks [7], but also has great potential applications in many fields, such 

as emotion analysis, teaching evaluation and criminal detection. However, because of the short 

duration, subtle intensity and localized movements of a micro-expression, even well-trained 
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researchers can only achieve 40% recognition accuracy [8]. Due to limitations such as lack of 

professional training and high computational cost, micro-expression identifications are difficult to 

surpass in large-scale implementation [9,10]. As a result, an increasing demand for automatic micro-

expression recognition in recent years has driven research attention [11]. 

Facial expression (macro-expression) recognition is a frontier inter-discipline which involves 

professional knowledge in different fields. With the development of cognitive psychology, 

biopsychology and computer technology, the application and progress of macro-expression 

recognition has gradually penetrated into the field of artificial intelligence and achieved some 

innovative theoretical results. The earliest research on macro-expressions can be traced back to about 

150 years ago. Because of individual differences, the performance of facial expressions derived from 

emotional response varies among different people. In the 1960s, Ekman et al. [1] scientifically 

classified facial expressions into six corresponding emotional categories (happiness, surprise, disgust, 

anger, fear and sadness) according to the general law of commonality. In recent decades, numerous 

scholars have made fruitful achievements in the field of macro-expression recognition [12]. The truth 

is, deep learning has brought macro-expression recognition to a new stage and achieved remarkable 

results [13–16]. For example, Li et al. comprehensively studied most of macro-expression recognition 

technologies based on deep neural network and evaluated the algorithms on some widely used 

databases [13]. In addition, this paper compares the advantages and limitations of these methods on 

static image databases and dynamic video sequence databases. Deep learning relies on the powerful 

graphics computing ability of a computer to directly put massive data into the algorithm, and the 

system can automatically learn features from the data. However, the development of expression 

recognition based on deep network is facing a huge challenge: the amount of training data is 

exceedingly small. Kulkarni et al. established SASE-FE database to solve this problem [14]. 

Furthermore, the iCV-MEFED database which is built by Guo et al. also enrich the amount of data 

for facial expression recognition [15]. They also validated the emotional attributes of the image in the 

SASE-FE database. With the influx of a large number of macro-expression databases, deep network 

has made remarkable achievements in facial expression recognition [13]. The covariance matrices are 

exploited to encode the deep convolutional neural networks (DCNN) features for facial expression 

recognition by Otberdout [17]. The experimental result shows that the covariance descriptors 

computed on DCNN features are more efficient than the standard classification with fully connected 

layers and softmax, and the proposed approach achieves performance at the state of the art for facial 

expression recognition. Furthermore, researchers are also working on the emotional state conveyed 

by facial images. Some teams use macro-expression images to judge real versus fake expressed 

emotion classification [13,18]. In the literature [19], both visual modalities (face images) and audio 

modalities (speech) are utilized to capture facial configuration changes and emotional response. 

Macro-expression recognition reflects people’s emotional state by detecting their facial changes. 

Although this technology can judge people’s psychological emotions from the surface, it cannot 

reveal the emotions people are trying to hide. Micro-expression can represent the real emotional 

responses that people try to hide.  

Micro-expressions are an involuntary facial muscle response, with a short duration that is 

typically between 1/25 and 1/5 s [3]. Because of their fleeting nature, micro-expressions can express a 

person’s real intentions. Moreover, psychologists have found that micro-expressions triggered by 

emotion or habit generally have local motion properties [8]; they are facial expressions with 

insufficient muscle contractions. The muscle movements of micro-expressions are usually 

concentrated in the eyes, eyebrows, nose or mouth areas [9]. Psychologists have also developed the 

theory of necessary morphological patches (NMPs) [9], which refers to some salient facial regions 

that play a crucial role in micro-expression recognition. Although these NMPs only involve a few of 

action units (AUs), they are necessary indications to judge whether a person is in an emotional state 

or not. For example, when the upper eyelid is lifted and exposes more iris, people are reflexively 

experiencing “surprise”. NMPs are always focused on the eye and eyebrow areas, and the NMPs of 

“disgust” are concentrated around the eyebrow and nasolabial fold. 
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As a typical pattern recognition task, micro-expression recognition can be roughly divided into 

two important parts. One is the feature extraction component, which extracts useful information from 

video sequences to describe micro-expressions. The other is classification, which designs a classifier 

based on the first stage to identify the micro-expression sequences. Many previous researchers have 

focused on the feature extraction of micro-expressions. For example, the local binary pattern from 

three orthogonal planes (LBP-TOP) was employed to detect micro-expressions and achieved good 

results [10,11]. Although the recognition rate of these algorithms was slightly higher than a human 

operation, it was still far from a high-quality micro-expression recognition method. Therefore, some 

researchers have developed many improved algorithms to enhance the accuracy [20‒22]. The 

spatiotemporal completed local quantized pattern (STCLQP) algorithm is an extension of completed 

local quantized pattern (CLQP) in a 3D spatiotemporal context [13]; its calculations resemble LBP-

TOP calculations, which extracted texture features in the XY plane, XT plane and YT plane 

respectively, and then cascaded them as STCLQP features. The advantage of STCLQP is that it 

considers more information for micro-expression recognition, but it inevitably introduces a higher 

number of dimensions. Wang et al. proposed the local binary pattern with six intersection points 

(LBP-SIP) algorithm [22], which reduces the dimensions of features. However, in most work [20–22], 

researchers mainly use the entire facial region to extract features, which greatly increases the number 

of features but reduces the recognition accuracy. In this paper, we firstly extract NMPs to improve 

the effectiveness of the features. 

In many macro-expression recognition tasks, researchers often divided the whole face into many 

active patches based on FACS and selected some salient patches as features [23–26]. For example, 

Happy et al. explained that the extraction of discriminative features from salient facial patches played 

a vital role in effective facial expression recognition [24]. Liu et al. developed a simplified algorithm 

framework using a set of fusion features extracted from the salient areas of the face [25]. Inspired by 

these studies, we attempted to extract some discriminative patches form the FACS and use them for 

micro-expression recognition. The proposed method inherits a basic concept of NMP theory, which 

uses these important patches to search through the whole facial region. Our work extends this 

research by reducing the features dimensions and extracting more effective features. 

This paper proposes a straightforward and effective approach to automatically recognize the 

micro-expressions. The contributions of this work are as follows: 

1. Introduces an automatic NMP extraction technique that combines both the FACS-based method 

and the features selection method. The FACS-based method tries to extract some regions that 

have intense muscle movements, called active patches of micro-expressions. To obtain the active 

areas, this work used the Pearson coefficient to determine the correlation between an expressive 

image and a neutral image [26]. Unlike macro-expressions, micro-expressions are subtle and 

brief, so it is highly misleading to use a correlation coefficient to define effective micro-

expression regions. To improve this defect, this paper uses an optical flow algorithm to calculate 

active patches of the micro-expression sequences. This method has a strong robustness to subtle 

muscle movements, which uses temporal variation and correlation pixel intensity to determine 

the motion of each pixel sequentially. 

2. The optical flow algorithm and LBP-TOP method are applied to describe the local textural and 

motion features in each active facial patches. 

3. A micro-expression is a unique category of facial expressions that only uses few facial muscles 

to perform a subconscious emotional state. In order to solve this problem and develop a more 

robust method, the random forest feature extraction algorithm is used to select the NMPs as the 

valid features. 

4. Extensive experiments on two spontaneous micro-expression databases demonstrate the 

effectiveness of only considering NMPs to recognize a micro-expression. 

The paper is organized as follows. Section 2 reviews related work on facial landmarks, feature 

representations and NMP selection. The proposed framework is shown in Figure 1. Section 3 

introduces the databases. Experimental results and discussion are provided in Section 4. Finally, 

Section 5 concludes the paper. 
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Figure 1. An illustration of the proposed framework. 

2. Related Work 

2.1. Facial Landmarks 

Automatically detecting facial landmarks was the first step in this paper [26]. This section 

reviews ways to detect a facial region and cut the micro-expression images into normal regions. This 

technology attempts to accurately locate the position of key facial features. The landmarks are 

generally focused on the eyes, eyebrows, nose, mouth and facial contours; by using facial landmark 

information, active patches can be accurately located, and the patches can be removed from the whole 

face to define possible NMPs. A 68-landmark technology was then used to locate some active patches 

of the micro-expression images [27], which uses a regression tree to learn a local binary feature. Then 

a linear regression method was used to train the model by locating the 68 landmarks on the human 

face. If we want to define an active patch, we need to normalize the facial region to a 240 × 280 patch. 

We also used the landmarks to align for a set of micro-expression sequences, as shown in Figure 1. 

2.2. Active Patches Definitude  

We know that the subtle muscle movements and short duration of micro-expression define the 

active expressive regions concentrated around the eyebrows, eyes, sides of the nose and mouth [5]. 

There are two obvious drawbacks to using the whole face to extract features, which are: (1) the feature 

dimensions obtained from the whole face is larger and the training time is longer; and (2) most facial 

areas don’t contribute to emotional responses or devote very little to muscle movements of micro-

expressions. Introducing noise to these redundant regions can reduce the recognition accuracy. In 

this paper, we used two basic optical flow methods to extract a set of active patches, which could 

detect the subtle motions and relative movements of two adjacent frames. The six basic expressions 

represented by the apex frame of micro-expression detection were compared to a neutral face (the 

on-set frame) at the same location of the optical flow [28]. Since the optical flow contains motion 

information, the observer can use it to find active patches. In the micro-expression databases, the 

developers define on-set frames, apex frames and off-set frames, which are shown in Figure 2. The 

moment when a micro-expression sequence begins is called an on-set frame, and it can be used to 

illustrate neutral or trivial expressions. The peak frame represents the strongest expression of change 

and it can be used to show the overwhelming muscle movement of a micro-expression. 
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Figure 2. An example of image frames for a micro-expression of disgust from the CASME II. 

In this paper, we apply two concise algorithms to find the active micro-expression patches, 

which calculates the optical flow information by using the gradient of a gray image. Optical flow 

constraint equations are deduced by keeping the grayscale unchanged between the on-set frame and 

the apex frame as characterized below [29]. 

�(�, �, �) = �(� + ��, � + ��, � + ��) (1) 

Expanding the right-hand side of the Taylor function, it follows that: 

�(� + ��, � + ��, � + ��) = �(�, �, �) +
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where, ε is the higher-order term with respect to the image displacement dx, dy and dt. The higher-

order term is omitted and two sides of the Equation (2) are divided by dt. Then the optical flow 

constraint equation yields the equations as below. 
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= 0 (3) 

��� + ��� + �� = 0 (4) 

These equations reflect the corresponding relationship between the gray scale region and 

velocity. Ix, Iy and It can be obtained when the adjacent frames are known, but there are still two 

unknown variables u and v in Equation (4). Equation (4) requires additional constraints and different 

constraint conditions have been proposed by various scholars [28‒31]. 

(1) Lucas-Kanade’s (LK) optical flow algorithm is a widely used and was originally proposed by 

Bruce d. Lucas and Takeo Kanade [30]. This method assumes that optical flow is a constant in a 

neighborhood (of interest) surrounding the pixels; then a least-square method is used to solve an 

optical flow equation. 

According to Lucas-Kanade’s hypothesis, the following set of equations can be obtained. 

���
� + ���

� = −���
 

���
� + ���
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⋯ 

���
� + ���
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(5) 

Transforming the equations into matrix form, 

�� = � (6) 

Then let’s multiply both sides by �� , 

���� = ��� (7) 

� = (���)����� (8) 



Symmetry 2019, 11, 497 6 of 20 

 

Since AU = b is an overdetermined equation, ��� is reversible, 
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(2) The Horn-Schunck (HS) optical flow method has been widely used and is based on consistent 

brightness that uses smooth linear isotropic smooth terms [31]. The energy function of the HS 

algorithm can be characterized by, 

����, ��� = �[���� + ��� + ���
�

+ ��(��
� + ��

� + ��
� + ��

�)]���� (10) 

where u is optical flow in the horizontal direction, v is optical flow in the vertical direction, α is a 

control parameter for a fast convergence. 
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By minimizing the resulting energy function in the discrete form, we assume, 
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Thus, the HS model assumes that the optical flow field is consecutive and smooth, and then uses 

the smooth term to ensure that the optical flow field is also smooth.  

The Euler–Lagrange equations of system (13) are 

�
������ + ��� + ��� − ������ + ���� = 0

������ + ��� + ��� − ������ + ���� = 0
 (14) 

�
������ + ��� + ��� − ��∆� = 0

������ + ��� + ��� − ��∆� = 0
 (15) 

∆� is calculated as ∆� = �� − �, where ��  and �̅ are average values of u, v respectively at a 

neighborhood around a single pixel. 

⎩
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Obviously, the values of u and v in Equation (17) depend on their neighboring pixels, the 

iterative solution could be obtained. 

⎩
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 (17) 

The dynamic regions calculated by optical flow in the CASME II database are shown in Figure 

3. The result makes it clear that the active micro-expression patches are basically concentrated in the 

eyebrows, eyes, nasolabial groove and mouth. This experiment showed that the local motion 

characteristics suggested by Ekman [5]. For instance, arrows on the left corner of the mouth have an 
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upward motion trend when a person is in an emotional state “Happiness” as shown in Figure 3, 

which indicates the optical flow can well track the changes of active patches. To obtain the accurate 

active location of active patches, in this paper we normalized micro-expression images to 240 × 280 

and divided them into 12 × 14 patches. Then each piece was 20 × 20, and we calculated the optical 

flow for each active patch. In Table 1, we summarize the relationship between the active patches in 

CASME II database and the AUs, whereas Figure 4 illustrates the locations of the AUs on the face. 

Disgust Happiness Repression Surprise 

    

(a) An illustration of HS optical flow of micro-expressions. 

    

(b) HS optical flow. 

    

(c) LK optical flow. 

Figure 3. The optical flow of four micro-expressions in the CASME II database (Disgust, Happiness, 

Repression, Surprise). 

Table 1. Emotion description in terms of facial action units and active patches. 

Face Regions AU(s) Emotions 

Eye + Eyebrow 1, 2, 4, 7 Disgust, Repression, Surprise 

Nose 9 Disgust 

Cheek 6 Happiness 

Mouth 10, 12, 14, 15, 25 Disgust, Happiness, Surprise, Repression 

In this paper, we extracted 106 active patches that were mainly distributed in the eyes, eyebrows, 

cheek, nose and mouth regions, as shown in Figure 4. These patches were obtained via an optical 

flow computation, which has more drastic movements, as indicated by the experimental section. 

They were also empirically selected (according to the AUs) while the micro-expression occured. 
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Figure 4. Illustration of the active patches with action unit (AU) annotations. 

2.3. Feature Extraction 

In the previous section, we used the optical flow to determine the facial active patches. We 

leveraged the optical flow features and the LBP-TOP descriptors to form a hybrid feature that 

indicates the motion and textural features needed for micro-expression recognition in the section. To 

identify the micro-expression, we needed to convert the optical flow into a set of corresponding 

features, therefore we divided the optical flow direction into 12 subspaces according to the size of the 

optical flow direction ((0, 30); (30, 60); (60, 90); (90, 120); (120, 150); (150, 180); (180, 210); (210, 240); 

(240, 270); (270, 300); (300, 330); (330, 360)). The frequency distribution of optical flow in all subspaces 

to generate an optical flow histogram is shown in Figure 5. 

 

Figure 5. The feature histogram of optical flow. 

Figure 5 illustrates the directional histogram of “Happiness”. The X-coordinate was used for the 

12 direction subspaces, while the Y-coordinate was for the corresponding proportion of the 12-feature 

dimensions. The extremely subtle optical flow does not cause muscle movement, so it was placed in 

the subspace of (0, 30). Other optical flows were placed in the corresponding subspaces according to 

their direction. As shown in Figure 5, the proportion of the first subspace (0, 30) was much higher 

than the others, which occured because most facial areas are hardly moved and were caused by the 

low-intensity micro-expressions. Only some specific regions such as the eyebrows, eyes, nose and 

mouth show significant changes. Nevertheless, the optical flow has defects that only consider the 

direction, so we use the LBP-TOP operator to supplement the textural features of micro-expressions. 

To extract the dynamical texture features of the micro-expression sequences, Zhao et al. [10]. 

proposed the LBP-TOP operator, which separates the spatio-temporal regions into 3 orthogonal 

planes: XY, XT, and YT. The LBP values were then calculated from the center pixels in the three 

planes, which were later cascaded them into the feature vector. 

If the video sequence has a low frame-rate and high-resolution, then the change of texture is 

more intense than the time change. Thus, we need to setup different radius parameters of space and 

time, as shown in Figure 6. The radius of the X, Y and T axis are represented by ��, ��, ��, while the 
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number of pixels in the XY, XT, YT planes are characterized ���, ���, ��� . The LBP-TOP histogram 

is now defined as: 

��,� = ∑ �{��(�, �, �) = �}�,�.�  i = 0,1,2, ⋯ , ���� � = 0,1,2 (18) 

where, j represents the numerical label assigned to the plane; j = 0 represents the XY plane, j = 1 

represents the XT plane, and j = 2 represents the YT plane. The term ��  is the number of binary modes 

generated by the LBP operator on the ��� plane, where the feature extraction is carried out via an 

uniform mode operator: ���(�,�)
�� , for �� = 59. Since the XY plane contains textural information, the 

XT plane and YT plane contain motion information of the time domain, so the LBP-TOP histogram, 

formed by XY, XT and YT histograms, reveals the dynamic texture information in the space and time 

domain. Because there are only 12 dimensions of the optical flow histogram, the description of the 

micro-expression motion is too broad. The improvement initiated by the potential LBP-TOP operator 

was limited. Thus, a combination of optical flow and LBP-TOP features were considered to 

compensate for the algorithm’s own weaknesses to improve recognition performance.  

 

(a) (b) (c) 

Figure 6. Expanded neighborhood of each plane (a) �� = �� = 3, ��� = 16; (b) �� = 3, �� = 1, ��� =

8; (c) �� = 3, �� = 1, ��� = 8. 

In this paper, the LBP-TOP operator cascade histogram of three directions (XY, XT and YT) was 

used, and the feature dimension was 3 × 59 = 177. Moreover, the optical flow histogram had only 12 

dimensions, so the description of motion was too broad and not detailed, and the improvement 

potential of LBP-TOP operator was limited. We considered combining optical flow histogram and 

LBP-TOP features to make up for their respective shortcomings, form a new feature, and further 

improve the recognition accuracy [32]. We used cascade histogram to combine optical flow features 

with LBP-TOP characteristics, as shown in Figure 7. The combined feature dimension is 177 + 12 = 

189, of which the first 177 dimensions are the LBP-TOP feature and the last 12 dimensions are optical 

flow feature. The overall dimension changes of this feature are in the acceptable range, and the joint 

histogram retains the respective characteristics of the two algorithms without missing information. 

 

Figure 7. The histogram of joint feature. 

2.4. NMP Extraction from the Active Patches 

We began by separating each micro-expression image into 12 × 14 patches [33]. Then, we 

extracted the joint histograms that combines the optical flow with the LBP-TOP features in the active 
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facial patches. Several active patches used for classification also affects speed and accuracy. There 

were up to 106 active patches with micro-expression that calculated by the proposed method. The 

dimension of a single image was up to 20,034 dimensions (i.e., 106 × (3 × 59 + 12) = 20,034 ). 

Moreover, the classification accuracy was decreased if the feature dimension was too high. The 

motion amplitude of every micro-expression was very small. Using all the active patches for micro-

expression recognition may add a lot of redundant information. Psychology research explains that 

micro-expressions are different from traditional expressions; only some special NMPs can recognize 

micro-expressions [9]. In this paper, a random forest feature selection (RFFS) method was used to 

choose the NMPs from 106 facial active patches for micro-expression recognition. 

The random forest (RF) algorithm is a machine learning method, where the basic idea is to 

extract K-sample sets from the original input training sets. The extraction process is realized by a 

random resampling technique called bootstrapping [34]. Furthermore, we also need to ensure the 

size of each sub-sample set is the same as that of the original training set, as shown in Figure 8. Next, 

we set-up a K-decision tree model for the sample sets to get K kinds of classification results. Lastly, 

the classifier with the most votes is our result. RF algorithms can analyze and identify the interaction 

features quickly (i.e., learning speed is fast). The importance of its variables can be used as a tool for 

feature selection. 

 

Figure 8. An illustration of bootstrap sampling. 

In this paper, to train the RF algorithm, we extract 106 active patches form each micro-expression 

and calculate the joint histogram integrated by the optical flow feature and LBP-TOP operator of each 

patch. Ultimately, they form the 106-feature histogram vectors as shown in Equation (19). 

⎩
⎨

⎧
������������ = [��, ��, ⋯ ���]

����� = [���, ���, ⋯ ���]
������ = [���, ���, ⋯ ���]

������ = [���, ���, ⋯ ����]

 (19) 

The feature input of an RF method is V = ��������� � ���, ������, �����, ������� = [��, ��, ⋯ ����], 

and the feature selection process is as follows: 

Input: The training samples (N) and feature vectors (M) (where M = 1,2, ⋯, 106) 

Output: The F features with the most importance 

Step 1: The Gini index is used to measure the segmentation effect of a feature in a decision tree 

by randomly sampling N and M; 

Step 2: Repeating Step 2 to make K trees to constitute the forest; 

Step 3: Calculating the classification error of the out-of-bag data of each tree: 

error����, error����, ⋯ , error���� ; 

Step 4: Randomly changing the value ��  (where ��  is the ���  attribute of the feature vectors), 

and re-calculating the out-of-bag data: error����
�, error����

�, ⋯ , error����
�; 

Step 5: Calculating the importance of feature vector ��: ����� =
∑ ∑ ���������

�
�∑ ���������

�
���

�
���

�
���

�
 

Step 6: Repeating Step 5 to get the importance of all the features, then selecting the most 

indispensable features. Figure 8 shows the relationship between the number of features and the 

classification accuracy. 
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Figure 9 shows that the use of features from all 106 patches can classify every expression with a 

recognition rate of 62.03 percent or greater. Thus, the use of appearance-based features of a single 

active patch can discriminate between each expression efficiently and has a recognition rate of 50.9 

percent. This implies that the use of the rest of the features from other patches contribute minimally 

towards the discriminative features. Thus, we see that the more patches are used, the larger the size 

of the feature vector. This increases the computational burden. Therefore, instead of using all the 

facial patches, we relied on some salient facial patches for expression recognition. This improved the 

computational complexity as well as the robustness of the features, which is especially true when a 

face is partially occluded. In our experiments, the recognition rate increased generally with the 

increasing number of active patches; it reached the highest level in the 60-th patch. Then the 

classification accuracy gradually declined as the unimportant features increase. This is mainly 

because the uncorrelated and redundant features reduce the performance of the classifier. As shown 

in Table 2, we summarized the NMPs numbers of the five areas (eyebrows, eyes, nose, cheeks and 

mouth) where micro-expressions are most intense and their corresponding emotional states. 

 

Figure 9. Recognition accuracy (%) of numbers of active patches. 

Table 2. Necessary morphological patches (NMPs) of micro-expression in the CASME II database. 

Facial Regions Emotion Number of the NMPs The Total 

Eye + Eyebrow Surprise, Disgust 1–18, 22–39 24 

Nose Disgust 49, 50, 53–64 14 

Cheek Happiness 66, 67, 69, 70, 74, 75, 77, 78 8 

Mouth Surprise, Repression, Happiness 85–88, 92–97, 101–104 14 

2.5. Classifier Design 

In this study, we used the support vector machine (SVM) as a classifier for micro-expression 

recognition [3]. However, micro-expression recognition is a multi-classification problem. There are 

two common methods to solve this problem: one-versus-rest (OVR) and one-versus-one (OVO). In 

this paper, we used OVO SVMs. The goal was to design an SVM between any two samples classes; 

thus, we needed to design k(k − 1)/2 SVMs. Next, when classifying an unknown sample, the sample 

used will determine the class with the largest number of votes. The advantage of this method is that 

it does not need to retrain all the SVMs, but only needs to retrain and add classifiers related to the 

samples. Additionally, we also needed to use a kernel function to map the sample from the original 

space to a higher-dimensional feature space, to ensure that the sample is linearly separable in this 

feature space. The kernel functions include a linear kernel, polynomial kernel, and Radial Basis 

Function (RBF). In this work, an RBF kernel, characterized by k��� , ��� = exp (−
�������

�

��� ) is used as 

our classifier. 
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3. Databases Processing and Experimental Settings 

Micro-expression data acquisition is difficult, and it is difficult for non-professionals to identify 

micro-expressions too. Therefore, the collection and selection of micro-expression datasets is very 

important. There are two popular spontaneous micro-expression datasets to make experiment: the 

CASME II and SMIC databases [11,35]. This paper experimented on these two databases and 

describes the experimental setup and some details. 

3.1. CASME II 

The CASME II database [35] was published in 2014 as an upgraded version of the CASME 

database [36]. The time resolution of the new database changed from 60 fps to 200 fps, while the 

spatial resolution increased to a 280 × 340. The onset frame, the frame with the greatest variation 

(apex frame) and the offset frame of these micro-expression samples are coded. In addition, their 

facial motion units are marked and their emotional attributes are determined. These micro-

expressions are grouped into two groups because of their different environmental configurations and 

different cameras used. Group A was taken by BenQ M31 camera at 200 fps and in natural light. 

Group B was shot by a Point Grey GRAS-03K2C camera at 200 fps. Group B was shot in a room with 

two LED lights. This dataset consists of five classes of emotions: happiness (32 samples), disgust (60 

samples), surprise (25 samples), repression (27 samples) and tense (102 samples). 

3.2. SMIC 

The Spontaneous Micro-Expression Database (SMIC) was designed by the Zhao team at the 

Machine Vision Research Center of the University of Oulu, Finland [11]. The SMIC database included 

164 micro-expression video clips from 16 participants (mean age 28, 6 women, 10 men, 8 Caucasians 

and 8 Asians). All the fragments are from HS data group, and there are 71 fragments from 8 

participants of VIS and NIR data group. These micro-expressions were recorded in the interrogation 

room where threatening criminals were punished. Only a few emotional fragments containing high 

intensity were intercepted, and high intensity of emotional fluctuations prompted participants to 

suppress their facial expressions. Each micro-expression has a maximum total duration of 0.5 s and 

the longest video sequence contains 50 frames. There are three main emotion categories: positive 

(happiness; 51 samples), negative (sad, fear, and disgust; 70 samples), and surprise (43 samples). 

3.3. CAS(ME)2 

The Chinese Academy of Science Macro- and Micro-expression (CAS(ME)2) dataset [37] was 

established by the Chinese Academy of Science. In this dataset, 22 participants (13 females and 9 

males) were asked to give response to nine chosen elicitation videos under two light-emitting diode 

(LED) lights. The dataset contains 300 macro-expressions and 57 micro-expressions, and also 

provides four different emotional labels: positive, negative, surprise and others. The expression 

samples in these dataset were selected from more than 600 elicited facial movements and were coded 

with the onset, apex, and offset frames, with AUs marked and emotions labeled [37]. In our 

experiments, all 357 video clips are used. 

3.4. Experimental Settings 

The micro-expression sequences, captured by a high-speed camera, are different from frame-to-

frame. If the different frame numbers of each subject are used to extract and classify the micro-

expressions, the recognition rate will degrade. Thus, we used the time interpolation model (TIM) to 

normalize all the frames of micro-expression sequences [38]. Table 3 shows the relationship between 

the number of frames, the experimental time and accuracy. The frames of all samples were 

normalized to 10 (as in Table 3). 
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Table 3. Relationship between time interpolation model (TIM) length with time and accuracy. 

TIM Length no TIM 8 10 20 30 40 

time (s) 87.8 16.7 22.1 49.6 77.2 104.9 

accuracy 54.84% 57.15% 59.05% 57.80% 57.40% 56.93% 

We used the facial landmark method in literature [27] to locate micro-expressions. The model is 

based on a mixtures of trees with a shared pool of parts; it models every facial landmark as a part 

and uses global mixtures to capture topological changes due to viewpoint. The experimental result 

shows that tree-structured models are surprisingly effective at capturing global elastic deformation, 

while being easy to optimize, unlike dense graph structures. We used this method to track all micro-

expression sequences in three databases (CASME II, SMIC and CAS(ME)2). The experimental results 

are shown in Table 4. 

Table 4. The accuracy of landmark algorithm. 

Parameter CASME II 
SMIC 

CAS(ME)2 

HS VIS NIR 

Sequence number 255 164 71 71 357 

alignment number 249 160 71 70 348 

accuracy rate  97.65% 97.56% 100% 98.59% 97.48% 

In order to test the accuracy of the optical flow algorithm, we compared the average error and 

computational density of Horn-Schunck optical flow and Lucas-Kanade optical flow. The average 

error is the angle difference arcos (1 + �� × V) between the calculated optical flow field �� = (��
� , ��

� ) 

and the measured optical flow field V = (��, ��). Computational density is the proportion of the 

pixels involved in the calculation. A larger computational density means that a more complete optical 

flow field can be provided. The calculation density is related to the average error. In the calculation, 

we chose a better optical flow algorithm based on these two calculation indexes. 

From the results in Table 5, it can be seen that the classical Horn-Schunck and Lucas-Kanade 

optical flow algorithms are not suitable for dealing with large displacement, but they have good 

descriptive ability for small relative motion. This characteristic is very consistent with the muscle 

movement characteristics of micro-expressions. 

Table 5. Accuracy list of optical flow. 

Database 
Average Error/(%) Computational Density/(%) 

Horn-Schunck Lucas-Kanade Horn-Schunck Lucas-Kanade 

CASME 13.88 11.74 100 92 

SMIC 12.93 11.24 100 90 

CAS(ME)2 14.23 11.98 100 93 

In this paper, we used two cross-validation methods to evaluate the prediction performance of 

this model, which can alleviate the detrimental effects brought about by the over-fitting problem and 

can obtain as much effective information as possible from the limited data. The micro-expression 

dataset can be divided into three parts: the training set, the validation set and the test set. The training 

set is used to train the model, the verification set is used to configure the parameters, and the test set 

is the unknown data used to development the model, which is also used to evaluate the 

generalization ability of the algorithm. The leave one sample out cross validation (LOSOCV) method 

and the 10-Fold Cross Validation method were used to demonstrate the RF algorithm. 

We used the SVM classifier to judge the recognition rate of NMPs. In the process of SVM 

classification and recognition, three important parameters need to be selected and adjusted. One is 

the selection of the kernel function. As shown in Table 6, in the experiment, we used all 106 valid 

regions to test and selected the kernel function and get the result with the highest recognition 

accuracy. The second is the penalty coefficient C, which is tolerance of errors. It can be used to 

compromise the minimization of training errors and the complexity of the model. The higher C shows 
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that errors cannot be tolerated; it is easy to over-fit. The smaller C is, the easier it is to under-fit. The 

third is the gamma parameter, which is a parameter of RBF function when it is selected as kernel. The 

width of RBF will affect the range of action of each support vector corresponding to Gauss, thus 

affecting the generalization ability. In this paper, two cross-validation methods are used to predict 

the classification performance of machine learning model and the corresponding experimental results 

are given. 

Table 6. Recognition rate of different kernel functions on Chinese Academy of Science Macro- and 

Micro-expression (CASME II) and Spontaneous Micro-Expression (SMIC) databases (%). 

Kernel Function 
CASME II SMIC CAS(ME)2 

LOSOCV 10-Fold LOSOCV 10-Fold LOSOCV 10-Fold 

SVM (polynomial) 59.53 61.09 57.28 58.04 59.87 62.20 

SVM (linear) 58.05 60.76 55.68 57.39 59.05 61.52 

SVM (RBF) 60.58 62.03 58.48 59.56 62.37 64.07 

4. Results and Discussion 

In this chapter, the NMPs definition of micro-expressions was proposed, and we also designed 

the corresponding experiments to verify their correctness and effectiveness. 

4.1. Defined Active Patches and Feature Extraction 

First, an automated learning-free facial landmark detection technique (proposed in [27]) was 

used to locate the facial region of each micro-expression sequence. Then the facial area was cropped 

according to a set of 68 landmarks. Ultimately, we normalized all the micro-expression images into 

240 × 280-pixels and divided them into a set of 12 × 14 patches, each with 20 × 20 pixels, as shown in 

Figure 10, which also illustrates the location of the active patches and their associated emotional 

states. 

 

Figure 10. The Illustration of active patches and emotional state. 

The optical flow method was used to define the facial active patches of the micro-expressions, 

which the histograms were used as direction features to identify the micro-expression sequences. In 

this experiment, we analyzed the recognition rate of HS and LK optical flow algorithm on the CASME 

II database and chose the HS method with higher accuracy combined with LBP-TOP operators to 

form the ultimate micro-expression feature. 

The recognition rate of optical flow features is low, as shown in Figure 11, and the proportion of 

erroneous decisions for each emotional category is high. There are two reasons for this problem: (1) 

the images in the database cannot (strictly) satisfy the assumption that the illumination remains 

unchanged, even if the appropriate experimental environment is set-up, thus, the brightness changes 

in the facial region are not complete eliminated; and (2) micro-expressions are subtle movements, 

which easily lead to over-smoothness and confuse some useful information. 
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Figure 11. Comparison of recognition accuracies between LK and HS (%). 

To make-up for the deficiencies, LBP-TOP operators are calculated to cascade with optical flow 

features. An LBP-TOP operator has two important parameters: radius and neighborhood points. In 

this article, we write LBP − TOP��,��,��,���,���,���
 as ��, ��, �� ; ��� = ��� = ��� = �  for 

convenience. 

Comparing the information in Table 7, the recognition rate of �� = �� = 3, �� = 1; ��� = ��� =

��� = 8 is the highest. This is due to the high resolution of the micro-expression images and short 

inter-frame space. Thus, we need a larger spatial domain. �� and ��, a smaller time domain �� that 

embodies local textural properties and spatial-temporal motion information. Moreover, the 

neighboring points will also affect the accuracy of recognition. If P is too small, the feature dimensions 

are insufficient, lack of sufficient information; if P is too large, it will produce high-dimensional 

features that will confuse the distinction between classes and significantly increase the number of 

calculations. 

Table 7. Recognition accuracies of different parameters (%). 

��, ��, ��, P Accuracy ��, ��, ��, P Accuracy ��, ��, ��, P Accuracy 

111, 4 46.20 111, 8 47.85 111, 16 47.02 

331, 4 49.50 331, 8 50.33 331, 16 47.85 

333, 4 45.37 333, 8 47.03 333, 16 47.68 

4.2. NMPs Defined and Result Comparison 

In the experiments discussed in Section 4.1, we extracted 106 active facial patches to represent 

the muscle motion profile of micro-expressions. We then extracted the features based on the 

combination of optical flow features and LBP-TOP operators of these patches. If all active patches are 

used for micro-expression recognition, this will not only cause high-dimension features but will also 

fail to show the necessary emotional state of micro-expressions. So, we used the RFFS method to 

measure the importance of these active patches and select the NMPs with the most discriminant 

ability to recognize micro-expressions. We conducted experiments in the facial area, the active 

patches and the NMPs. The results are shown in Tables 8–10.  

Table 8. Recognition rate in different regions of micro-expressions in the CASME II database (%). 

Method 
Optical Flow LBP-TOP Fusion Feature 

LOSOCV 10-Fold LOSOCV 10-Fold LOSOCV 10-Fold 

whole face 39.56 41.08 50.33 51.83 58.12 59.46 

Activepatch (106) 41.29 43.00 53.67 54.24 60.58 62.03 

NMPs 45.73 46.89 57.09 58.90 72.08 73.51 

Table 9. Recognition rate in different regions of micro-expressions in the SMIC database (%). 

Method 
Optical Flow LBP-TOP Fusion Feature 

LOSOCV 10-Fold LOSOCV 10-Fold LOSOCV 10-Fold 

whole face 37.14 38.24 48.97 49.33 55.01 57.00 
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Activepatch (106) 40.06 42.05 52.00 53.41 58.48 59.56 

NMPs 43.98 44.78 55.82 56.90 69.37 70.02 

Table 10. Recognition rate in different regions of micro-expressions in the CAS(ME)2 database (%). 

Method 
Optical Flow LBP-TOP Fusion Feature 

LOSOCV 10-Fold LOSOCV 10-Fold LOSOCV 10-Fold 

whole face 38.96 40.62 50.97 52.70 58.67 61.00 

Activepatch (106) 42.59 43.97 53.93 56.84 64.09 65.56 

NMPs 45.02 47.08 58.14 58.04 72.96 74.73 

As a feature selection algorithm, RF can evaluate the importance of each patch on the 

classification problem. This paper also used other feature selection methods to select the NMPs for 

micro-expression recognition and to obtain the corresponding accuracy. The experimental results are 

shown in Table 11. 

Table 11. Accuracy rate and NMPs numbers of different feature selection algorithms. 

NMP Number Pearson Coefficients Mutual Information Lasso Model RF 

eye + eyebrow 22 20 27 24 

nose 4 3 15 10 

cheek 0 0 10 12 

mouth 13 10 15 14 

Recognition rate 57.37% 55.09% 65.10% 73.51% 

By comparing the data in the table, several NMPs in the eyes, eyebrows and mouth regions 

(selected by each algorithm) are essentially equivalent, while the NMPs in the cheek and nose regions 

are different. This is because the muscle movement of micro-expressions are mainly concentrated in 

the eyes, eyebrows and mouth regions. There are few AUs for the cheek and nose regions, while the 

micro-expressions are restrained movements, which are very subtle and easily overlooked. In some 

regions, the correlation of motion is very small, so the Pearson Coefficient is insensitive and 

misleading. Mutual information as a feature selection method is not convenient. It is not a 

measurement method, nor can it be normalized, and the results on different data sets cannot be 

compared. The Lasso model is also very unstable, when the data changes slightly, the model changes 

drastically. The proposed method is robust and useful, and the experimental results show that the 

NMPs selected by this method are basically in-line with the most representative facial muscle motion 

patches developed by psychologists. 

This method can also reduce the dimensionality of features. Compared with other traditional 

methods, our proposed method can select some features with strong descriptions and improved 

discrimination ability. Table 12 shows the experimental results of the comparison between our 

method and the traditional dimensional reduction methods used on the CASME II database. 

Table 12. Comparison of recognition accuracies between different feature dimension methods (%). 

Method 
Recognition Rate 

LOSOCV 10-Fold 

fusion feature algorithm + PCA 64.23 65.81 

fusion feature algorithm + LDA 65.15 66.09 

the proposed method 72.08 73.51 

The traditional feature reduction method only maps hybrid features, extracted from active 

patches, from the high-dimensional space to a new low-dimensional space. However, because the 

motion amplitudes of micro-expressions are very small, the traditional methods that don’t consider 

target variables in the process of dimensionality reduction are likely to remove features with key 

motion information. This will affect the accuracy of the classifier. In this paper, the RF algorithm was 

used to screen out the NMPs for micro-expression recognition. This algorithm is designed and 

implemented according to the experimental purpose of the article. The NMPs that have the greatest 

likelihood for micro-expressions were also highly-targeted and accurate. Thus, we needed to evaluate 
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the importance of each active patch to select the most representative necessary areas. In addition, this 

algorithm can eliminate some irrelevant and redundant features to reduce the feature dimensions, 

improve the model accuracy and reduce the running time. 

We compared the accuracy between the proposed method and the other micro-expression 

recognition algorithms [39‒50]. The final results are shown in Tables 13 and 14. The tables show that 

our algorithm has better recognition performance on the two databases. 

Table 13. Micro-expression recognition rates (%) in the CASME II Database. 

Method Task Recognition Rate 

TICS [39] happiness, surprise, disgust, repression, others 61.76 

CUDA based DCNN [40] happiness, surprise, disgust, repression, others 64.90 

HIGO-TOP [42] happiness, surprise, disgust, repression, others 55.87 

HOG-TOP [42] happiness, surprise, disgust, repression, others 57.49 

DTSCNN [44] happiness, surprise, disgust, repression, others 66.67 

CNN-Net [45] happiness, surprise, disgust, repression, others 75.57 

RoI-Selective (LBP-TOP) [46] happiness, surprise, disgust, repression, others 46.00 

Hierarchical STLBP-IP + KGSL [47] happiness, surprise, disgust, repression, others 63.97 

FMBH [48] happiness, surprise, disgust, repression, others 69.11 

Sparse MDMO [49] happiness, surprise, disgust, repression, others 66.95 

Apex-frame (Bi-WOOF) [50] happiness, surprise, disgust, repression, others 62.55 

The proposed method happiness, surprise, disgust, repression, others 73.51 

Table 14. Micro-expression recognition rates (%) in the SMIC Database. 

Method Recognition Rate 

CNN + SFS [41] 53.60 

HIGO-TOP [42] 57.93 

HGO-TOP [42] 59.15 

FDM [43] 54.88 

NMFL [43] 62.33 

RoI-Selective (LBP-TOP) [46] 54.00 

Hierarchical STLBP-IP + KGSL [47] 60.37 

FMBH [48] 71.95 

Sparse MDMO [49] 70.51 

Apex-frame (Bi-WOOF) [50] 68.29 

The proposed method 70.02 

As shown in Table 12, both of the methods produce different accuracy in the CASME II database, 

while the proposed method in this paper and CNN-Net method take a better recognition rate. 

Although the other methods find some useful features for micro-expression, they sometimes fail to 

consider the psychological mechanisms involved to emotional state of micro-expression, especially 

on the NMPs. The CNN-Net algorithm [45] achieves higher accuracy from experimental results, but 

it has a fatal flaw: the uninterpretability of deep neural networks. However, the research of micro-

expression recognition is still very immature and its mechanism is very unstable. Most micro-

expression researchers focus on how to better understand the principle of micro-expression 

generation and the deeper emotional state behind it by means of machine learning. The 

uninterpretability of deep learning is inconsistent with the purpose of these studies, so in this paper 

we did not choose deep network as a learning tool for micro-expression recognition. 

5. Conclusions 

The main contribution of this paper is the analysis and determination of the NMPs for micro-

expression recognition. Previously, only psychologists suggested that micro-expressions have 

specific NMPs and have the crucial ability to describe micro-expressions. This paper first applied the 

psychological concept to the field of computer recognition; it used related techniques to extract these 

important (feature) patches. We compared the optical flow between the on-set frame and the apex 

frame in this study. We then defined the regions that are full of muscle movements as potential facial 

active patches of the micro-expression sequences. The optical flow direction histograms and the LBP-
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TOP operators in these patches were cascaded into the joint features of micro-expressions. The 

random forest feature selection technique was used to select NMPs with discriminant ability. Finally, 

we tested the effectiveness of the proposed method via two famous spontaneous micro-expression 

databases. The experiments showed that NMPs can describe the muscle movement of micro-

expressions better than using the whole facial region for recognition. It also eliminates several 

redundant features, reducing the feature dimension and improving the recognition accuracy. 

In this paper, the NMPs of micro-expressions were automatically extracted. Some related 

psychological research shows that every emotion has its own specific necessary patches. Thus, in 

future studies, we will focus on analyzing the specific NMPs of each emotion and apply these patterns 

to automatic micro-expression recognition. 
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