Article

Strong Convergence of a System of Generalized Mixed Equilibrium Problem, Split Variational Inclusion Problem and Fixed Point Problem in Banach Spaces

Mujahid Abbas 1,2, Yusuf Ibrahim 3, Abdul Rahim Khan 4 and Manuel de la Sen 5,*

1 Department of Mathematics, Government College University, Katchery Road, Lahore 54000, Pakistan; abbas.mujahid@gmail.com
2 Department of Mathematics and Applied Mathematics University of Pretoria, Pretoria 0002, South Africa
3 Department of Mathematics, Sa’adatu Rimi College of Education, Kumbotso Kano, P.M.B. 3218 Kano, Nigeria; danustazz@gmail.com
4 Department of Mathematics and Statistics, King Fahad University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; arahim@kfupm.edu.sa
5 Institute of Research and Development of Processes, University of The Basque Country, Campus of Leioa (Bizkaia), 48080 Leioa, Spain

* Correspondence: manuel.delasen@ehu.eus

Received: 2 April 2019; Accepted: 21 May 2019; Published: 27 May 2019

Abstract: The purpose of this paper is to introduce a new algorithm to approximate a common solution for a system of generalized mixed equilibrium problems, split variational inclusion problems of a countable family of multivalued maximal monotone operators, and fixed-point problems of a countable family of left Bregman, strongly asymptotically non-expansive mappings in uniformly convex and uniformly smooth Banach spaces. A strong convergence theorem for the above problems are established. As an application, we solve a generalized mixed equilibrium problem, split Hammerstein integral equations, and a fixed-point problem, and provide a numerical example to support better findings of our result.

Keywords: split variational inclusion problem; generalized mixed equilibrium problem; fixed point problem; maximal monotone operator; left Bregman asymptotically nonexpansive mapping; uniformly convex and uniformly smooth Banach space

1. Introduction and Preliminaries

Let E be a real normed space with dual E^*. A map $B : E \to E^*$ is called:

(i) monotone if, for each $x, y \in E$, $\langle \eta - v, x - y \rangle \geq 0$, $\forall \, \eta \in Bx, \, v \in By$, where $\langle \cdot, \cdot \rangle$ denotes duality pairing,

(ii) ϵ-inverse strongly monotone if there exists $\epsilon > 0$, such that $\langle Bx - By, x - y \rangle \geq \epsilon \|Bx - By\|^2$,

(iii) maximal monotone if B is monotone and the graph of B is not properly contained in the graph of any other monotone operator. We note that B is maximal monotone if, and only if it is monotone, and $R(J + tB) = E^*$ for all $t > 0$, J is the normalized duality map on E and $R(J + tB)$ is the range of $(J + tB)$ (cf. [1]).
Let H_1 and H_2 be Hilbert spaces. For the maximal monotone operators $B_1 : H_1 \to 2^{H_1}$ and $B_2 : H_2 \to 2^{H_2}$, Moudafi [2] introduced the following split monotone variational inclusion:

$$\text{find } x^* \in H_1 \text{ such that } 0 \in f(x^*) + B_1(x^*),$$

$$y^* = Ax^* \in H_2 \text{ solves } 0 \in g(y^*) + B_2(y^*),$$

where $A : H_1 \to H_2$ is a bounded linear operator, $f : H_1 \to H_1$ and $g : H_2 \to H_2$ are given operators. In 2000, Moudafi [3] proposed the viscosity approximation method, which is formulated by considering the approximate well-posed problem and combining the non-expansive mapping S with a contraction mapping f on a non-empty, closed, and convex subset C of H_1. That is, given an arbitrary $x_1 \in C$, a sequence $\{x_n\}$ defined by

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S x_n,$$

converges strongly to a point of $F(S)$, the set of fixed point of S, whenever $\{\alpha_n\} \subset (0, 1)$ such that $\alpha_n \to 0$ as $n \to \infty$.

In [4,5], the viscosity approximation method for split variational inclusion and the fixed point problem in a Hilbert space was presented as follows:

$$u_n = J_{B_1}^{\lambda}(x_n + \gamma_n A^*(J_{B_2}^{\lambda} - I)Ax_n);$$

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T^n(u_n), \forall n \geq 1, \quad (1)$$

where B_1 and B_2 are maximal monotone operators, $J_{B_1}^{\lambda}$ and $J_{B_2}^{\lambda}$ are resolvent mappings of B_1 and B_2, respectively, f is the Meir Keeler function, T a non-expansive mapping, and A^* is the adjoint of A, $\gamma_n, \alpha_n \in (0, 1)$ and $\lambda > 0$.

The algorithm introduced by Schopfer et al. [6] involves computations in terms of Bregman distance in the setting of p-uniformly convex and uniformly smooth real Banach spaces. Their iterative algorithm given below converges weakly under some suitable conditions:

$$x_{n+1} = \Pi_C^{-1}(f x_n + \gamma A^* (P Q - I)Ax_n), \forall n \geq 0, \quad (2)$$

where Π_C denotes the Bregman projection and P_C denotes metric projection onto C. However, strong convergence is more useful than the weak convergence in some applications. Recently, strong convergence theorems for the split feasibility problem (SFP) have been established in the setting of p-uniformly convex and uniformly smooth real Banach spaces [7–10].

Suppose that

$$F(x, y) = f(x, y) + g(x, y)$$

where $f, g : C \times C \to \mathbb{R}$ are bifunctions on a closed and convex subset C of a Banach space, which satisfy the following special properties $(A_1) - (A_4), (B_1) - (B_3)$ and (C):
\begin{align}
\begin{cases}
(A_1) & f(x, y) = 0, \forall x \in C; \\
(A_2) & f \text{ is maximal monotone}; \\
(A_3) & \forall x, y, z \in C \text{ and } t \in [0, 1] \text{ we have } \limsup_{n \to 0^+} (f(tx + (1-t)y) \leq f(x, y)); \\
(A_4) & \forall x \in C, \text{the function } y \mapsto f(x, y)\text{is convex and weakly lower semi-continuous}; \\
(B_1) & g(x, x) = 0 \; \forall \; x \in C; \\
(B_2) & g \text{ is maximal monotone, and weakly upper semi-continuous in the first variable}; \\
(B_3) & g \text{ is convex in the second variable}; \\
(C) & \text{for fixed } \lambda > 0 \text{ and } x \in C, \text{there exists a bounded set } K \subset C \\
\text{and } a \in K \text{ such that } f(a, z) + g(z, a) + \frac{1}{\lambda}(a - z, z - x) < 0 \; \forall x \in C \setminus K.
\end{cases}
\end{align}

The well-known, generalized mixed equilibrium problem (GMEP) is to find an \(x \in C \), such that
\[
F(x, y) + (Bx, y - x) \geq 0 \; \forall \; y \in C,
\]
where \(B \) is nonlinear mapping.

In 2016, Payvand and Jahedi \cite{11} introduced a new iterative algorithm for finding a common element of the set of solutions of a system of generalized mixed equilibrium problems, the set of common fixed points of a finite family of pseudo contraction mappings, and the set of solutions of the variational inequality for inverse strongly monotone mapping in a real Hilbert space. Their sequence is defined as follows:
\begin{align}
&g_i(u_{n,i}, y) + (C_i u_{n,i} + S_{n,i} x_n, y - u_{n,i}) + \theta_i(y) - \theta_i(u_{n,i}) \\
&+ \frac{1}{\tau_i}(y - u_{n,i}, u_{n,i} - x_n) \geq 0 \; \forall y \in K, \forall j \in I, \\
&y_n = \alpha_n u_n + (1 - \alpha_n (1 - f)) P_k (\sum_{j=0}^{\infty} \delta_{n,j} u_{n,j} - \lambda_n A \sum_{j=0}^{\infty} \delta_{n,j} u_{n,j}), \\
x_{n+1} = \beta_n x_n + (1 + \beta_n) (\gamma_0 + \sum_{j=1}^{\infty} \gamma_j T_j) P_k (y_n - \lambda_n A y_n) n \geq 1,
\end{align}
where \(g_i \) are bifunctions, \(S_i \) are \(\epsilon \)-inverse strongly monotone mappings, \(C_i \) are monotone and Lipschtz continuous mappings, \(\theta_i \) are convex and lower semicontinuous functions, \(A \) is a \(\Phi \)-inverse strongly monotone mapping, and \(f \) is an \(t \)-contraction mapping and \(\alpha_n, \delta_{n,j}, \beta_n, \lambda_n, \gamma_0 \in (0, 1) \).

In this paper, inspired by the above cited works, we use a modified version of (1), (2) and (4) to approximate a solution of the problem proposed here. Both the iterative methods and the underlying space used here are improvements and extensions of those employed in \cite{2,6,7,9–11} and the references therein.

Let \(p, q \in (1, \infty) \) be conjugate exponents, that is, \(\frac{1}{p} + \frac{1}{q} = 1 \). For each \(p > 1 \), let \(g(t) = t^{p-1} \) be a gauge function where \(g : R^+ \to R^+ \) with \(g(0) = 0 \) and \(\lim_{t \to \infty} g(t) = \infty \). We define the generalized duality map \(J_p : E \to 2^{E^*} \) by
\[
J_{g(t)}(x) = \{ x^* \in E^*; \langle x, x^* \rangle = \| x \| \| x^* \| , \| x^* \| = g(\| x \|) = \| x \|^{p-1} \}.
\]

In the sequel, \(a \vee b \) denotes \(\max \{a, b\} \).

\textbf{Lemma 1} \cite{12}. \textit{In a smooth Banach space } \(E \), the Bregman distance \(\Delta_p \) of \(x \) to \(y \), with respect to the convex continuous function \(f : E \to R \), such that \(f(x) = \frac{1}{p} \| x \|_p \), is defined by
\[
\Delta_p(x, y) = \frac{1}{q} \| x \|_p^q - \langle J_p(x), y \rangle + \frac{1}{p} \| y \|_p^p,
\]
for all \(x, y \in E \) and \(p > 1 \).
A Banach space E is said to be uniformly convex if, for $x, y \in E, 0 < \delta_E(e) \leq 1$, where \(\delta_E(e) = \inf\{1 - \frac{1}{2}\|x + y\| : \|x\| = \|y\| = 1, \|x - y\| \geq e, \text{ where } 0 \leq e \leq 2\} \).

Definition 1. A Banach space E is said to be uniformly smooth, if for $x, y \in E$, \(\lim_{r \to 0} \left(\frac{\rho_E(r)}{r}\right) = 0 \) where \(\rho_E(r) = \frac{1}{\epsilon} \sup \{ \|x + y\| + \|x - y\| - 2 : \|x\| = 1, \|y\| \leq r; 0 \leq r < \infty \text{ and } 0 \leq \rho_E(r) < \infty \} \). It is shown in [12] that:

1. ρ_E is continuous, convex, and nondecreasing with $\rho_E(0) = 0$ and $\rho_E(r) \leq r$
2. The function $r \mapsto \frac{\rho_E(r)}{r}$ is nondecreasing and fulfills $\frac{\rho_E(r)}{r} > 0$ for all $r > 0$.

Definition 2 ([13]). Let E be a smooth Banach space. Let Δ_p be the Bregman distance. A mapping $T : E \to E$ is said to be a strongly non-expansive left Bregman with respect to the non-empty fixed point set of T, $F(T)$, if $\Delta_p(T(x), v) \leq \Delta_p(x, v) \forall x \in E$ and $v \in F(T)$.

Furthermore, if $\{x_n\} \subset C$ is bounded and $\lim_{n \to \infty} (\Delta_p(x_n, v) - \Delta_p(Tx_n, v)) = 0$, then it follows that $\lim_{n \to \infty} \Delta_p(x_n, Tx_n) = 0$.

Definition 3. Let E be a smooth Banach space. Let Δ_p be the Bregman distance. A mapping $T : E \to E$ is said to be a strongly asymptotically non-expansive left Bregman with $\{k_n\} \subset [1, \infty)$ if there exists non-negative real sequences $\{k_n\}$ with $\lim_{n \to \infty} k_n = 1$, such that $\Delta_p(T^n(x), T^n(v)) \leq k_n \Delta_p(x, v), \forall (x, v) \in E \times F(T)$.

Lemma 2 ([14]). Let E be a real uniformly convex Banach space, K a non-empty closed subset of E, and $T : K \to K$ an asymptotically non-expansive mapping. Then, $I - T$ is demi-closed at zero, if $\{x_n\} \subset K$ converges weakly to a point $p \in K$ and $\lim_{n \to \infty} \|Tx_n - x_n\| = 0$, then $p = Tp$.

Lemma 3 ([12]). In a smooth Banach space E, let $x_n \in E$. Consider the following assertions:

1. $\lim_{n \to \infty} \|x_n - x\| = 0$
2. $\lim_{n \to \infty} \|x_n\| = \|x\|$ and $\lim_{n \to \infty} \langle J^p(x_n), x \rangle = \langle J^p(x), x \rangle$
3. $\lim_{n \to \infty} \Delta_p(x_n, x) = 0$.

The implication $(1) \implies (2) \implies (3)$ are valid. If E is also uniformly convex, then the assertions are equivalent.

Lemma 4. Let E be a smooth Banach space. Let Δ_p and V_p be the mappings defined by $\Delta_p(x, y) = \frac{1}{2}\|x\|^p - \langle J^p(x), y \rangle + \frac{1}{2}\|y\|^p$ for all $(x, y) \in E \times E$ and $V_p(x, x) = \frac{1}{2}\|x\|^q - \langle x, x \rangle + \frac{1}{2}\|x\|^p$ for all $(x, x^*) \in E \times E^*$. Then, $\Delta_p(x, y) = V_p(x, y)$ for all $x, y \in E$.

Lemma 5 ([12]). Let E be a reflexive, strictly convex, and smooth Banach space, and J^p be a duality mapping of E. Then, for every closed and convex subset $C \subset E$ and $x \in E$, there exists a unique element $\Pi_C^p(x) \in C$, such that $\Delta_p(x, \Pi_C^p(x)) = \min_{y \in C} \Delta_p(x, y)$; here, $\Pi_C^p(x)$ denotes the Bregman projection of x onto C, with respect to the function $f(x) = \frac{1}{p}\|x\|^p$. Moreover, $x_0 \in C$ is the Bregman projection of x onto C if $\langle J^p(x_0 - x), y - x_0 \rangle \geq 0$

or equivalently

$\Delta_p(x_0, y) \leq \Delta_p(x, y) - \Delta_p(x, x_0)$ for every $y \in C$.

Lemma 6 ([15]). In the case of a uniformly convex space, E, with the duality map J^q of E^*, $\forall x^*, y^* \in E^*$ we have

$\|x^* - y^*\|^q \leq \|x^*\|^q - q(J^q(x^*), y^*) + \sigma_q(x^*, y^*)$, where
\[\sigma_q(x^*, y^*) = qG_q \int_0^1 \left(\frac{\|x^* - ty^*\|}{t} \right) \rho_{E^*} \left(\frac{\|y\|}{2(\|x^* - ty^*\| + \|y\|)} \right) dt \]

and \(G_q = 8 \vee 64c_kq^{-1} \) with \(c, k_q > 0 \).

Lemma 7 ([12]). Let \(E \) be a reflexive, strictly convex, and smooth Banach space. If we write \(\Delta_q^*(x, y) = \frac{1}{q} \|x^*\|^q - (f_q^*, x^* + y^*) + \frac{1}{q} \|y^*\|^q \) for all \((x^*, y^*) \in E^* \times E^*\) for the Bregman distance on the dual space \(E^* \) with respect to the function \(f_q^* (x^*) = \frac{1}{q} \|x^*\|^q \), then we have \(\Delta_p(x, y) = \Delta_q^*(x^*, y^*) \).

Lemma 8 ([16]). Let \(\{a_n\} \) be a sequence of non-negative real numbers, such that \(a_{n+1} \leq (1 - \beta_n)a_n + \delta_n \), \(n \geq 0 \), where \(\{\beta_n\} \) is a sequence in \((0, 1)\) and \(\{\delta_n\} \) is a sequence in \(R \), such that

1. \(\lim_{n \to \infty} \beta_n = 0, \sum_{n=1}^{\infty} \beta_n = \infty \);
2. \(\limsup_{n \to \infty} \frac{\delta_n}{\beta_n} \leq 0 \) or \(\sum_{n=1}^{\infty} |\delta_n| < \infty \).

Then, \(\lim_{n \to \infty} a_n = 0 \).

Lemma 9. Let \(E \) be reflexive, smooth, and strictly convex Banach space. Then, for all \(x, y, z \in E \) and \(x^*, z^* \in E^* \) the following facts hold:

1. \(\Delta_p(x, y) \geq 0 \) and \(\Delta_p(x, y) = 0 \) iff \(x = y \);
2. \(\Delta_p(x, y) = \Delta_p(x, z) + \Delta_p(z, y) + \langle x^* - z^*, z - y \rangle \).

Lemma 10 ([17]). Let \(E \) be a real uniformly convex Banach space. For arbitrary \(r > 1, \) let \(B_r(0) = \{ x \in E : \|x\| \leq r \} \). Then, there exists a continuous strictly increasing convex function

\[g : [0, \infty) \to [0, \infty), g(0) = 0 \]

such that for every \(x, y \in B_r(0), f_x \in J_p(x), f_y \in J_p(y) \) and \(\lambda \in [0, 1], \) the following inequalities hold:

\[\|\lambda x + (1 - \lambda)y\|^p \leq \lambda\|x\|^p + (1 - \lambda)\|y\|^p - (\lambda^p(1 - \lambda) + (1 - \lambda)^p\lambda)g(\|x - y\|) \]

and

\[\langle x - y, f_x - f_y \rangle \geq g(\|x - y\|). \]

Lemma 11 ([18]). Suppose that \(\sum_{n=1}^{\infty} \sup \{\|T_nz - T_ny\| : z \in C\} < \infty \). Then, for each \(y \in C, \{T_ny\} \) converges strongly to some point of \(C \). Moreover, let \(T \) be a mapping of \(C \) onto itself, defined by \(Ty = \lim_{n \to \infty} T_ny \) for all \(y \in C \). Then, \(\limsup_{n \to \infty} \{\|Tz - T_nz\| : z \in C\} = 0 \). Consequently, by Lemma 3, \(\limsup_{n \to \infty} \{\Delta_p(Tz, T_nz) : z \in C\} = 0 \).

Lemma 12 ([19]). Let \(E \) be a reflexive, strictly convex, and smooth Banach space, and \(C \) be a non-empty, closed convex subset of \(E \). If \(f, g : C \times C \to \mathbb{R} \) be two bifunctions which satisfy the conditions \((A_1) - (A_4), (B_1) - (B_3) \) and \((C) \), in (3), then for every \(x \in E \) and \(r > 0 \), there exists a unique point \(z \in C \) such that \(f(z, y) + g(z, y) + \frac{1}{r}(y - z, jz - jx) \geq 0 \) \(\forall \ y \in C \).

For \(f(x) = \frac{1}{r}\|x\|^p \), Reich and Sabach [20] obtained the following technical result:

Lemma 13. Let \(E \) be a reflexive, strictly convex, and smooth Banach space, and \(C \) be a non-empty, closed, and convex subset of \(E \). Let \(f, g : C \times C \to \mathbb{R} \) be two bifunctions which satisfy the conditions \((A_1) - (A_4), (B_1) - (B_3) \) and \((C) \), in (3), then for every \(x \in E \) and \(r > 0 \), there exists a unique point \(z \in C \) such that

\[f(z, y) + g(z, y) + \frac{1}{r}(y - z, jz - jx) \geq 0 \] \(\forall \ y \in C \).
\((A_4), (B_1) - (B_3)\) and \((C)\), in \((3)\). Then, for every \(x \in E\) and \(r > 0\), we define a mapping \(S_r : E \rightarrow C\) as follows;

\[
S_r(x) = \{z \in C : f(z, y) + g(z, y) + \frac{1}{r} \langle y - z, f_E^p(x - f_E^p) \rangle \geq 0, \forall y \in C\}. \tag{6}
\]

Then, the following conditions hold:

1. \(S_r\) is single-valued;
2. \(S_r\) is a Bregman firmly non-expansive-type mapping, that is,

\[
\forall x, y \in E \langle S_r x - S_r y, f_E^p(x - f_E^p) + f_E^p(y - f_E^p) \rangle \leq \langle S_r x - S_r y, f_E^p(x - f_E^p) \rangle
\]

or equivalently

\[
\triangle_p(S_r x, S_r y) + \triangle_p(S_r y, S_r x) + \triangle_p(S_r x, x) \leq \triangle_p(S_r x, y) + \triangle_p(S_r y, x);
\]
3. \(F(S_r) = \text{MEP}(f, g)\), here \(\text{MEP}\) stands for mixed equilibrium problem;
4. \(\text{MEP}(f, g)\) is closed and convex;
5. for all \(x \in E\) and for all \(v \in F(S_r)\), \(\triangle_p(v, S_r x) + \triangle_p(S_r x, x) \leq \triangle_p(v, x)\).

2. Main Results

Let \(E_1\) and \(E_2\) be uniformly convex and uniformly smooth Banach spaces and \(E_1^*\) and \(E_2^*\) be their duals, respectively. For \(i \in I\), let \(U_i : E_1 \rightarrow 2^{E_1^*}\) and \(T_i : E_2 \rightarrow 2^{E_2^*}\), \(i \in I\) be multi-valued maximal monotone operators. For \(i \in I\), \(\delta, \theta \in (1, \infty)\) and \(K \subseteq E_1\) closed and convex, let \(\Phi_i : K \times K \rightarrow \mathbb{R}, i \in I\), be bifunctions satisfying \((A1) - (A4)\) in \((3)\), let \(B_{\delta_i}^T : E_1 \rightarrow E_1\) be resolvent operators defined by \(B_{\delta_i}^T = (f_{E_1}^\delta + \delta U_i)^{-1}\) and \(B_{\delta_i}^T : E_2 \rightarrow E_2\) be resolvent operators defined by \(B_{\delta_i}^T = (f_{E_2}^\delta + \delta T_i)^{-1}\). Let \(A : E_1 \rightarrow E_2\) be a bounded and linear operator, \(A^*\) denotes the adjoint of \(A\) and \(AK\) be closed and convex. For each \(i \in I\), let \(S_i : E_1 \rightarrow E_1\) be a uniformly continuous Bregman asymptotically non-expansive operator with the sequences \(\{k_{i,j}\} \subset [1, \infty)\) satisfying \(\lim_{n \rightarrow \infty} k_{i,j} = 1\).

Denote by \(Y : E_1^* \rightarrow E_1^*\) a firmly non-expansive mapping. Suppose that, for \(i \in I\), \(\theta_i : K \rightarrow R\) are convex and lower semicontinuous functions, \(G_i : K \rightarrow E_1\) are \(\epsilon\)- inverse strongly monotone mappings and \(C_i : K \rightarrow E_1\) are monotone and Lipschitz continuous mappings. Let \(f : E_1 \rightarrow E_1\) be a \(\zeta\)-contraction mapping, where \(\xi \in (0, 1)\). Suppose that \(\Pi_{AK}^p : E_2 \rightarrow AK\) is a generalized Bregman projection onto \(AK\). Let \(\Omega = \{x^* \in \cap_{i=1}^\infty \text{SOLVIP}(U_i) : Ax^* \in \cap_{i=1}^\infty \text{SOLVIP}(T_i)\}\) be the set of solution of the split variational inclusion problem, \(\omega = \{x^* \in \cap_{i=1}^\infty \text{GMEP}(G_i, C_i, \theta_i, g)\}\) be the solution set of a system of generalized mixed equilibrium problems, and \(\Xi = \{x^* \in \cap_{i=1}^\infty \text{F}(S_i)\}\) be the common fixed-point set of \(S_i\) for each \(i \in I\). Let the sequence \(\{x_n\}\) be defined as follows:

\[
\begin{align*}
\Phi_l(x_{n+1}) &+ \langle f_{E_1} G_n x_n, y - u_{n,l} \rangle + \frac{1}{\delta} \langle y - u_{n,l}, f_{E_1}^p x_n - f_{E_1}^p x_{n+1} \rangle \geq 0, \forall y \in K, \\
\forall l &
i, \\
x_{n+1} &- I_{E_1^*} \left(\sum_{i=0}^\infty s_{n,i} B_{\delta_i}^T \left(f_{E_1} x_n - \sum_{i=0}^\infty \beta_{n,i} \lambda_n \lambda_n A^* f_{E_1}^p \left(I - \Pi_{AK}^p B_{\delta_i}^T \right) A u_{n,i} \right) \right), \tag{7}
\end{align*}
\]

where \(\Phi_l(x, y) = g_l(x, y) + \langle f_{E_1} C_l x, y - x \rangle + \theta_i(x) - \theta_i(x)\).

We shall strictly employ the above terminology in the sequel.

Lemma 14. Suppose that \(\overline{\zeta}\) is the function \((5)\) in Lemma 6 for the characteristic inequality of the uniformly smooth dual \(E_1^*\). For the sequence \(\{x_n\} \subset E_1\) defined by \((7)\), let \(0 \neq x_n \in E_1, 0 \neq A, 0 \neq f_{E_1} G_n x_n \in E_1^*\) and \(0 \neq \sum_{i=0}^\infty \beta_{n,i} f_{E_1}^p \left(I - \Pi_{AK}^p B_{\delta_i}^T \right) A u_{n,i} \in E_2^*\), \(i \in I\). Let \(\lambda_{n,i} > 0\) and \(r_{n,i} > 0\), \(i \in I\) be defined by

\[
\lambda_{n,i} = \frac{1}{\|A\| \|\sum_{i=0}^\infty \beta_{n,i} f_{E_1}^p \left(I - \Pi_{AK}^p B_{\delta_i}^T \right) A u_{n,i}\|}, \quad \text{and} \tag{8}
\]

\[
r_{n,i} = \frac{1}{\|f_{E_1} G_n x_n\|}, \tag{9}
\]

respectively.
Then for \(\mu_{n,i} = \frac{1}{\|x_n\|^{p-r}} \),

\[
2^d G_q \|J_E^p x_n\|^p \rho_{E_1} (\mu_{n,i}) \geq \begin{cases} \frac{1}{q} \|J_E^p x_n, r_n, J_E^p G_{n,j} x_n \| \\ \frac{1}{q} \|J_E^p x_n, r_n, A^{p-1} \sum_{i=0}^{\infty} \beta_{n,i}\lambda_n A^* \sum_{i=0}^{\infty} \beta_{n,i} J_E^p (I - \Pi_{AK} B_{E_i}^T) A u_{n,i} \| \
\end{cases}
\]

(10)

where \(G_q \) is the constant defined in Lemma 6 and \(\rho_{E_1} \) is the modulus of smoothness of \(E_1 \).

Proof. By Lemma 12, (6) in Lemma 13 and (7), for each \(i \in I \), we have that \(u_{n,i} = J_E^p (Y_{n,i} (J_E^p x_n - r_n J_E^p G_{n,j} x_n)) \). By Lemma 6, we get

\[
\frac{1}{q} \|J_E^p x_n, r_n, J_E^p G_{n,j} x_n \| = G_q \int_0^1 \frac{\||J_E^p x_n - t r_n J_E^p G_{n,j} x_n \| \|J_E^p x_n\|^q}{t} dt,
\]

(11)

for every \(t \in [0, 1] \).

However, by (9) and Definition 1(2), we have

\[
\rho_{E_1} \left(\|J_E^p x_n - t r_n J_E^p G_{n,j} x_n \| \|J_E^p x_n\| \right) \leq \rho_{E_1} \left(\|x_n\|^{p-1} \right) = \rho_{E_1} (t \mu_{n,i}).
\]

(12)

Substituting (12) into (11), and using the nondecreasing of function \(\rho_{E_1} \), we have

\[
\frac{1}{q} \|J_E^p x_n, r_n, J_E^p G_{n,j} x_n \| \leq 2^d G_q \|x_n\|^p \rho_{E_1} (\mu_{n,i}).
\]

(13)

In addition, by Lemma 6, we have

\[
\frac{1}{q} \|J_E^p x_n, \sum_{i=0}^{\infty} \beta_{n,i}\lambda_n A^* \sum_{i=0}^{\infty} \beta_{n,i} J_E^p (I - \Pi_{AK} B_{E_i}^T) A u_{n,i} \|
\]

\[
= G_q \int_0^1 \frac{\| \sum_{i=0}^{\infty} \beta_{n,i}\lambda_n A^* \sum_{i=0}^{\infty} \beta_{n,i} J_E^p (I - \Pi_{AK} B_{E_i}^T) A u_{n,i} \| \|J_E^p x_n\|^q}{t} dt,
\]

(14)

for every \(t \in [0, 1] \).

However, by (8) and Definition 1(2), we have

\[
\rho_{E_1} \left(\| \sum_{i=0}^{\infty} \beta_{n,i}\lambda_n A^* \sum_{i=0}^{\infty} \beta_{n,i} J_E^p (I - \Pi_{AK} B_{E_i}^T) A u_{n,i} \| \right)
\]

\[
\leq \rho_{E_1} \left(\|x_n\|^{p-1} \right) = \rho_{E_1} (t \mu_{n,i}).
\]

(15)
Substituting (15) into (14), and using the nondecreasing of function ρ_{E_1}, we get

$$\frac{1}{q} \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n A^*f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i}$$

$$\leq 2^{1/2} \|x_n\|^p \rho_{E_1}(\mu_{n,i}).$$

(16)

By (13) and (16), the result follows. □

Lemma 15. For the sequence \(\{x_n\} \subset E_1 \), defined by (7), \(i \in I \), let \(0 \neq \sum_{i=0}^{\infty} \beta_{n,i}f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i} \in E_2^* \), \(0 \neq f_{E_1}G_{n,i}x_n \in E_1^* \), and \(\lambda_n > 0 \) and \(r_{n,i} > 0 \), \(i \in I \), be defined by

$$\lambda_n = \frac{1}{\|A\|} \frac{1}{\|\sum_{i=0}^{\infty} \beta_{n,i}f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i}\|}$$

and

$$r_{n,i} = \frac{1}{\|f_{E_1}G_{n,i}x_n\|},$$

where \(i, \gamma \in (0, 1) \) and \(\mu_{n,i} \) are chosen such that

$$\rho_{E_1}(\mu_{n,i}) = \frac{i}{2^{1/2} \|x_n\|^p \|f_{E_1}G_{n,i}x_n\|} \times \frac{\|\sum_{i=0}^{\infty} \beta_{n,i}f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i}\|^p}{\|x_n\|^p \|\sum_{i=0}^{\infty} \beta_{n,i}f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i}\|^p}.$$

(19)

Then, for all \(v \in \Gamma \), we get

$$\Delta_p(x_{n+1}, v) \leq \Delta_p(x_n, v)$$

$$= [1 - i] \times \left(\frac{\|\sum_{i=0}^{\infty} \beta_{n,i}f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i}\|^p}{\|A\| \|\sum_{i=0}^{\infty} \beta_{n,i}f_{E_2}(I - \Pi_{AK}B_{n,i}^T)Au_{n,i}\|} \right)$$

and

$$\Delta_p(x_n, v) \leq [1 - \gamma] \times \frac{\|f_{E_1}G_{n,i}x_n - v\|}{\|f_{E_1}G_{n,i}x_n\|},$$

(21)

(22)

Proof. By Lemmas 13, 4 and 6, for each \(i \in I \), we get that \(u_{n,i} = (f_{E_1}G_{n,i}x_n - r_{n,i}f_{E_1}G_{n,i}x_n) \), and hence it follows that

$$\Delta_p(u_{n,i}, v) \leq V_p(f_{E_1}x_n - r_{n,i}f_{E_1}G_{n,i}x_n, v)$$

$$= -\langle f_{E_1}x_n, v \rangle + r_{n,i} \langle f_{E_1}G_{n,i}x_n, v \rangle$$

$$+ \frac{1}{q} \|f_{E_1}x_n - r_{n,i}f_{E_1}G_{n,i}x_n\|^q + \frac{1}{p} \|v\|^p.$$
By Lemmas 6 and 14, we have
\[
\frac{1}{q} \| J_{E_i}^p x_n - r_{n,i} J_{E_i}^p G_{n,i} x_n \|^q \\
\leq \frac{1}{q} \| J_{E_i}^p x_n \|^q - r_{n,i} \langle J_{E_i}^p G_{n,i} x_n, x_n \rangle + 2^q G_q \| J_{E_i}^p x_n \|^q \rho_{E_i}(\mu_{n,i}). \tag{24}
\]
Substituting (24) into (23), we have, by Lemma 4
\[
\triangle_p(u_{n,i}, v) \leq \triangle_p(x_n, v) + 2^q G_q \| J_{E_i}^p x_n \|^q \rho_{E_i}(\mu_{n,i}) \\
- r_{n,i} \langle J_{E_i}^p G_{n,i} x_n, x_n - v \rangle.
\tag{25}
\]
Substituting (18) and (20) into (25), we have
\[
\triangle_p(u_{n,i}, v) \leq \triangle_p(x_n, v) + \gamma \langle J_{E_i}^p G_{n,i} x_n, x_n - v \rangle \frac{\| J_{E_i}^p G_{n,i} x_n \|}{\| J_{E_i}^p G_{n,i} x_n \|} - \frac{\langle J_{E_i}^p G_{n,i} x_n, x_n - v \rangle}{\| J_{E_i}^p G_{n,i} x_n \|}
\]
\[
= \triangle_p(x_n, v) - [1 - \gamma] \times \frac{\langle J_{E_i}^p G_{n,i} x_n, x_n - v \rangle}{\| J_{E_i}^p G_{n,i} x_n \|}.
\]
Thus, (22) holds.

Now, for each \(i \in I \), let \(v = B_i^T v \) and \(Av = B_i^T Av \). By Lemma 4, we have
\[
\triangle_p(y_n, v) \leq \frac{1}{q} \left\| J_{E_i}^p u_{n,j} - \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n A^* J_{E_i}^p (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i} \right\|^q + \frac{1}{p} \| v \|^p
\]
\[
- \langle J_{E_i}^p u_{n,j}, v \rangle + \left\langle \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n A^* J_{E_i}^p (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i}, v \right\rangle,
\tag{26}
\]
where,
\[
\left\langle \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n A^* J_{E_i}^p (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i}, v \right\rangle
\]
\[
= - \left\langle \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n J_{E_i}^p (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i}, (Av - \sum_{i=0}^{\infty} \beta_{n,i} A u_{n,i}) - \sum_{i=0}^{\infty} \beta_{n,i} (\Pi_{\mathcal{A}_i} B_i^{T_i} - I) A u_{n,i} \right\rangle
\]
\[
- \left\langle \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n J_{E_i}^p (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i}, \sum_{i=0}^{\infty} \beta_{n,i} (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i} \right\rangle
\]
\[
+ \left\langle \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n J_{E_i}^p (I - \Pi_{\mathcal{A}_i} B_i^{T_i}) A u_{n,i}, u_{n,i} \right\rangle.
\]
As \(\mathcal{A}_i \) is closed and convex, by Lemma 5 and the variational inequality for the Bregman projection of zero onto \(\mathcal{A}_i - \sum_{i=0}^{\infty} \beta_{n,i} A u_{n,i} \), we arrive at
\[
\left\langle \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n J_{E_i}^p (\Pi_{\mathcal{A}_i} B_i^{T_i} - I) A u_{n,i}, (Av - \sum_{i=0}^{\infty} \beta_{n,i} A u_{n,i}) - \sum_{i=0}^{\infty} \beta_{n,i} (\Pi_{\mathcal{A}_i} B_i^{T_i} - I) A u_{n,i} \right\rangle \geq 0
\]
Theorem 1.

Let $g_i : K \times K \to R$, $i \in I$, be bifunctions satisfying (A1) – (A4) in (3). For $\delta > 0$ and $p, q \in (1, \infty)$, let $(I - \Pi_{Ak}B_{\delta_i}^T)$, $i \in I$, be demi-closed at zero. Let $x_1 \in E_1$ be chosen arbitrarily and the sequence $\{x_n\}$ be defined as follows:

$$
\begin{align*}
&g_i(u_{n,i}, y) + \langle f_i^{p_i} G_{n,i} u_{n,i} + f_i^{p_i} G_{n,i} x_{n,y} - u_{n,i} \rangle + \theta_i(y) - \theta_i(u_{n,i}) \\
&\quad + \frac{1}{\rho_i} (y - u_{n,i}) - f_i^{p_i} u_{n,i} - f_i^{p_i} x_n \geq 0 \forall y \in K, \forall i \in I, \\
y_n = f_i^{p_i} \left(\sum_{i=0}^{\infty} \beta_{n,i} f_i^{p_i} \left(I - \Pi_{Ak}B_{\delta_i}^T \right) A u_{n,i} \right), \\
x_{n+1} = f_i^{p_i} \left(\eta_{n,i} f_i^{p_i} f_i^{p_i} (f(x_n)) + \sum_{i=1}^{\infty} \eta_{n,i} f_i^{p_i} (S_{n,i}(y_n)) \right),
\end{align*}
$$

where $r_{n,i} = \frac{1}{\|f_i^{p_i} G_{n,i} x_{n,y} - y\|}$, $\mu_{n,i} = \frac{1}{\|x_n\|}$, and $\gamma \in (0, 1)$ such that $\rho_{E_1}^n (\mu_{n,i}) = \frac{\gamma (\|f_i^{p_i} G_{n,i} x_{n,y} - y\|)}{2 \|f_i^{p_i} G_{n,i} x_{n,y} - y\|}$.

$$
\lambda_n = \begin{cases}
\frac{1}{\|A\|} & \frac{1}{\|f_i^{p_i} G_{n,i} x_{n,y} - y\|} \neq 0 \\
\frac{1}{\|A\|^{p_i}} & \frac{1}{\|f_i^{p_i} G_{n,i} x_{n,y} - y\|} = 0,
\end{cases}
$$

\(i \in (0, 1)\) and $\tau_{n,i} = \frac{1}{\|u_{n,i}\|}$ are chosen such that

$$
\rho_{E_1}^n (\tau_{n,i}) = \frac{i}{2 \|A\|^{p_i}} \times \frac{\| \sum_{i=0}^{\infty} \beta_{n,i} f_i^{p_i} (I - \Pi_{Ak}B_{\delta_i}^T) A u_{n,i} \|^{p_i}}{\|A\|^{p_i}}.
$$
with, \(\lim_{n \to \infty} \eta_{n,0} = 0, \eta_{n,0} \leq \sum_{i=1}^{\infty} \eta_{n,i} \) for \(M \geq 0, \eta_{n-1,0} \leq \sum_{i=1}^{\infty} \eta_{n-1,i} \leq \sum_{i=1}^{\infty} \eta_{n-1,i} M < \infty, \sum_{i=1}^{\infty} \eta_{n,i} = \sum_{i=1}^{\infty} a_{n,i} = \sum_{i=1}^{\infty} b_{n,i} = 1 \) and \(k_n = \max \{ k_{n,i} \} \). If \(\Gamma \cap \Omega \cap \Theta \neq \emptyset \), then \(\{ x_n \} \) converges strongly to \(x^* \in \Gamma \), where \(\sum_{i=0}^{\infty} b_{n,i} \Pi_{\beta_{n,i}}^{p} B_{\delta_{n,i}}^{T}(x^*) = \sum_{i=0}^{\infty} \beta_{n,i} B_{\delta_{n,i}}^{T}(x^*) \), for each \(i \in I \).

Proof. For \(x, y \in K \) and \(i \in I \), let \(\Phi_i(x, y) = g_i(x, y) + (\| f_{E_1}^{p} \|_C x, y - x \) + \(\theta_i(y) - \theta_i(x) \)). Since \(g_i \) are bi-functions satisfying (A1) - (A4) in (3) and \(C \) are monotone and Lipschitz continuous mappings, and \(\theta_i \) are convex and lower semicontinuous functions, therefore \(\Phi_i(i \in I) \) satisfy the conditions (A1) - (A4) in (3), and hence the algorithm (29) can be written as follows:

\[
\begin{align*}
\Phi_i(u_{n,i}, y) + \| f_{E_1}^{p} \|_C x_n, y - u_{n,i} \rangle + \frac{1}{r_{n,i}} \langle y - u_{n,i}, f_{E_1}^{p} u_{n,i} - f_{E_1}^{p} x_n \rangle & \geq 0 \\
\forall y \in K, \forall i \in I,
\end{align*}
\]

(32)

We will divide the proof into four steps.

Step One: We show that \(\{ x_n \} \) is a bounded sequence.

Assume that \(\| \sum_{i=0}^{\infty} \beta_{n,i} \Pi_{\beta_{n,i}}^{p} B_{\delta_{n,i}}^{T}(x_n) \| = 0 \) and \(\| f_{E_1}^{p} G_{n,i} x_n \| = 0 \). Then, by (32), we have

\[
\Phi_i(u_{n,i}, y) + \frac{1}{r_{n,i}} \langle y - u_{n,i}, f_{E_1}^{p} u_{n,i} - f_{E_1}^{p} x_n \rangle \geq 0 \forall y \in K, \forall i \in I.
\]

(33)

By (33) and Lemma 13, for each \(i \in I \), we have that \(u_{n,i} = \Pi_{\beta_{n,i}}^{p} (Y_{r_{n,i}}(f_{E_1}^{p} x_n)) \). By Lemma 4 and for \(v \in \Gamma \) and \(v = Y_{r_{n,i}} \), we have

\[
\Delta_p(u_{n,i}, v) = V_{p}(Y_{r_{n,i}}(f_{E_1}^{p} x_n), v) \leq V_{p}(f_{E_1}^{p} x_n, v) = \Delta_p(x_n, v).
\]

(34)

In addition, for each \(i \in I \), let \(v = B_{\delta_{n,i}}^{T} v \). By Lemma 4 and for \(v \in \Gamma \), we have

\[
\Delta_p(y_n, v) = V_{p}(\sum_{i=0}^{\infty} \beta_{n,i} B_{\delta_{n,i}}^{T} v) \leq \Delta_p(u_{n,i}, v).
\]

(35)

Now assume that \(\| \sum_{i=0}^{\infty} \beta_{n,i} \Pi_{\beta_{n,i}}^{p} B_{\delta_{n,i}}^{T}(x_n) \| \neq 0 \) and \(\| f_{E_1}^{p} G_{n,i} x_n \| \neq 0 \). Then by (32), we have that

\[
\Phi_i(u_{n,i}, y) + \frac{1}{r_{n,i}} \langle y - u_{n,i}, f_{E_1}^{p} u_{n,i} - (f_{E_1}^{p} x_n - r_{n,i} f_{E_1}^{p} G_{n,i} x_n) \rangle \geq 0 \forall y \in K, \forall i \in I.
\]

(36)

By (36) and Lemma 13, for each \(i \in I \), we have \(u_{n,i} = \Pi_{\beta_{n,i}}^{p} (Y_{r_{n,i}}(f_{E_1}^{p} x_n - r_{n,i} f_{E_1}^{p} G_{n,i} x_n)) \). For \(v \in \Gamma \), by (22) in Lemma 15, we get

\[
\Delta_p(u_{n,i}, v) \leq \Delta_p(x_n, v).
\]

(37)

In addition, for each \(i \in I \), \(v \in \Gamma \), (21) in Lemma 15 gives

\[
\Delta_p(y_n, v) \leq \Delta_p(u_{n,i}, v).
\]

(38)
Let \(u_{n,i} = 0 \). By Lemma 1, we have
\[
\triangle_p(u_{n,i}, v) = \frac{1}{p} \|v\|^p \tag{39}
\]
and by (27), (39), Lemmas 4 and 15, we have
\[
\triangle_p(y_n, v) \leq \frac{1}{q} \left\| \sum_{i=0}^{\infty} \beta_{n,i} \lambda_n A^* \left(I - \Pi_{A^T_{B_0^T}}^p \right) A u_{n,i} \right\|^p
\]
\[
+ \triangle_p(u_{n,i}, v) + \lambda_n \left(\sum_{i=0}^{\infty} \beta_{n,i} \| E_2 (I - \Pi_{A^T_{B_0^T}}^p) A u_{n,i} \right.
\]
\[- \lambda_n \left(\sum_{i=0}^{\infty} \beta_{n,i} \| E_2 (I - \Pi_{A^T_{B_0^T}}^p) A u_{n,i} \right) \] \((40) \)
However, by (30) and (40), we have
\[
\triangle_p(y_n, v)
\]
\[
\leq \frac{1}{q} \left\| A \right\|^p \left(\sum_{i=0}^{\infty} \beta_{n,i} \| E_2 (I - \Pi_{A^T_{B_0^T}}^p) A u_{n,i} \right)
\]
\[
+ \triangle_p(u_{n,i}, v) + \lambda_n \left(\sum_{i=0}^{\infty} \beta_{n,i} \| E_2 (I - \Pi_{A^T_{B_0^T}}^p) A u_{n,i} \right.
\]
\[- \lambda_n \left(\sum_{i=0}^{\infty} \beta_{n,i} \| E_2 (I - \Pi_{A^T_{B_0^T}}^p) A u_{n,i} \right) \] \((41) \)
This implies that
\[
\triangle_p(y_n, v) \leq \triangle_p(u_{n,i}, v). \tag{42}
\]
By (42) and (37), we get
\[
\triangle_p(y_n, v) \leq \triangle_p(x_n, v). \tag{43}
\]
In addition, it follows from the assumption \(\eta_{n,0} \leq \sum_{i=1}^{\infty} \eta_{n,i} \), Definition 3, Lemmas 9 and 4
\[\Delta_p(x_{n+1}, v) \]
\[= \Delta_p \left(\int_{E_1}^p \left(\eta_{n,0} I_{E_1}^p(f(x_n)) + \sum_{i=1}^\infty \eta_{n,i} I_{E_1}^p(S_{n,i}(y_n)) \right), v \right) \]
\[= V_p \left(\eta_{n,0} I_{E_1}^p(f(x_n)) + \sum_{i=1}^\infty \eta_{n,i} I_{E_1}^p(S_{n,i}(y_n)), v \right) \]
\[\leq \eta_{n,0} V_p \left(I_{E_1}^p(f(x_n)), v \right) + \sum_{i=1}^\infty \eta_{n,i} V_p \left(I_{E_1}^p(S_{n,i}(y_n)), v \right) \)
\[\leq \eta_{n,0} \Delta_p(x_n, v) + \sum_{i=1}^\infty \eta_{n,i} \Delta_p(y_n, v) \]
\[+ \left(\int_{E_1}^p x_n - I_{E_1}^p f(v), f(v) \right) \]
\[\leq \eta_{n,0} \left(\Delta_p(f(v), v) + \left(I_{E_1}^p x_n - I_{E_1}^p f(v), f(v) \right) \right) \]
\[+ \left(\eta_{n,0} \xi + \sum_{i=1}^\infty \eta_{n,i} k_n \right) \Delta_p(x_n, v) \]
\[\leq \eta_{n,0} \left(\Delta_p(f(v), v) + \left(I_{E_1}^p x_n - I_{E_1}^p f(v), f(v) \right) \right) \]
\[+ \left(\sum_{i=1}^\infty \eta_{n,i} (k_n + k_n) \right) \Delta_p(x_n, v) \]
\[\leq \max \left\{ \frac{\Delta_p(f(v), v) + \left(I_{E_1}^p x_n - I_{E_1}^p f(v), f(v) \right)}{\xi + k_n}, \Delta_p(x_1, v) \right\}. \quad (44) \]

By (44), we conclude that \(\{ x_n \} \) is bounded, and hence, from (42), (34), (35), (44), (38), and (37), \(\{ y_n \} \) and \(\{ u_{n,i} \} \) are also bounded.

Step Two: We show that \(\lim_{m \to \infty} \Delta_p(x_{n+1}, x_n) = 0 \). By Lemmas 1, 4, 10, and 7, we have, by the convexity of \(\Delta_p \) in the first argument and for \(\eta_{n-1,0} \leq \sum_{i=1}^\infty \eta_{n-1,1,i} \)

\[\Delta_p(x_{n+1}, x_n) = \Delta_p \left(\int_{E_1}^p \left(\eta_{n,0} I_{E_1}^p(f(x_n)) + \sum_{i=1}^\infty \eta_{n,i} I_{E_1}^p(S_{n,i}(y_n)) \right), v \right) \]
\[\leq \eta_{n,0} \Delta_p \left(\int_{E_1}^p \left(f(x_n), v \right) \right) + \sum_{i=1}^\infty \eta_{n,i} \Delta_p \left(I_{E_1}^p \left(S_{n,i}(y_n), v \right) \right) \]
\[+ \sum_{i=1}^\infty \eta_{n,i} \left(\sum_{i=1}^{\infty} \eta_{n,i} \frac{1}{p} \| S_{n,i}(y_n) \|_p^p + \eta_{n,0} \| f(x_n) \|_p I_{E_1}^p \left(S_{n-1,i}(y_n), v \right) \right) \]
\[+ \eta_{n,0} \left(\sum_{i=1}^\infty \eta_{n,i} \frac{1}{p} \| f(x_n) \|_p + \sum_{i=1}^\infty \eta_{n,i} \| S_n(y_n) \|_p I_{E_1}^p \left(f(x_n), v \right) \right) \]
\[+ \sum_{i=1}^\infty \eta_{n,i} \left(\left(I_{E_1}^p S_{n,i}(y_n), I_{E_1}^p S_{n-1,i}(y_n) \right) \right) \]
\[\leq (1 - \eta_{n,0} (1 - \xi)) \Delta_p(x_n, x_{n+1}) + \sum_{i=1}^\infty \eta_{n,i} \sup_{\eta_{n-1,i} \geq 1} \left\{ \Delta_p(S_{n,i}(y_n), S_{n-1,i}(y_n)) \right\} \]
\[+ \sum_{i=1}^\infty \eta_{n,i} M, \quad (45) \]
where
\[M = \max \left\{ \max \{ \| f(x_n) \|, \| S_{n-1,i}(y_{n-1}) \| \}, \max \{ \| f(x_{n-1}) \|, \| S_{n,i}(y_n) \| \} \right\}. \]

In view of the assumption \(\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \eta_{n-1,i} M < \infty \) and (45), Lemmas 11 and 8 imply
\[\lim_{n \to \infty} \Delta_p(x_{n+1}, x_n) = 0. \tag{46} \]

Step Three: We show that \(\lim_{n \to \infty} \Delta_p(S_n y_n, y_n) = 0. \)

For each \(i \in I \), we have
\[\Delta_p(S_i(y_n), v) \leq \Delta_p(y_n, v). \]

Then,
\[
\begin{align*}
0 & \leq \Delta_p(y_n, v) - \Delta_p(S_i(y_n), v) \\
& = \Delta_p(y_n, v) - \Delta_p(x_{n+1}, v) + \Delta_p(x_{n+1}, v) - \Delta_p(S_i(y_n), v) \\
& \leq \Delta_p(x_n, v) - \Delta_p(x_{n+1}, v) + \Delta_p(x_{n+1}, v) - \Delta_p(S_i(y_n), v) \\
& = \Delta_p(x_n, v) - \Delta_p(x_{n+1}, v) + \Delta_p \left(J^p_{E1} \left(\eta_{n,0} J^p_{E1}(f(x_n)) + \sum_{i=1}^{\infty} \eta_{n,i} J^p_{E1}(S_{n,i}(y_n)) \right), v \right) \\
& \leq \Delta_p(x_n, v) - \Delta_p(x_{n+1}, v) + \eta_{n,0} \Delta_p(f(x_n), v) - \eta_{n,0} \Delta_p(S_i(y_n), v) \\
& \to 0 \text{ as } n \to \infty. \tag{47}
\end{align*}
\]

By (47) and Definition 2, we get
\[\lim_{n \to \infty} \Delta_p(S_i y_n, y_n) = 0. \tag{48} \]

By uniform continuity of \(S \), we have
\[\lim_{n \to \infty} \Delta_p(S_n y_n, y_n) = 0. \tag{49} \]

Step Four: We show that \(x_n \to x^* \in \Gamma. \)

Note that,
\[
\begin{align*}
\Delta_p(x_{n+1}, y_n) &= \Delta_p \left(J^p_{E1} \left(\eta_{n,0} J^p_{E1}(f(x_n)) + \sum_{i=1}^{\infty} \eta_{n,i} J^p_{E1}(S_{n,i}(y_n)) \right), y_n \right) \\
& \leq \eta_{n,0} \Delta_p(f(x_n), y_n) + \sum_{i=1}^{\infty} \eta_{n,i} \Delta_p(S_{n,i}(y_n), y_n) \\
& \leq \eta_{n,0} \zeta \Delta_p(x_n, y_n) + \Delta_p(f(y_n), y_n) + (f(x_n) - f(y_n), J^p_{E1} f(y_n) - J^p_{E1} y_n) \\
& + \sum_{i=1}^{\infty} \eta_{n,i} \Delta_p(S_{n,i}(y_n), y_n) \\
& \leq (1 - \eta_{n,0}(1 - \zeta)) \Delta_p(x_n, y_n) \\
& + \eta_{n,0}(\Delta_p(f(y_n), y_n) + (f(x_n) - f(y_n), J^p_{E1} f(y_n) - J^p_{E1} y_n)) \\
& + \sum_{i=1}^{\infty} \eta_{n,i} \Delta_p(S_{n,i}(y_n), y_n). \tag{50}
\end{align*}
\]
By (49), (50), and Lemma 8, we have
\[
\lim_{n \to \infty} \Delta_p(x_n, y_n) = 0.
\] (51)

Therefore, by (51) and the boundedness of \(\{y_n\} \), and since by (46), \(\{x_n\} \) is Cauchy, we can assume without loss of generality that \(y_n \to x^* \) for some \(x^* \in E_1 \). It follows from Lemmas 2, 3, and (48) that \(x^* = S_i x^*, \) for each \(i \in I \). This means that \(x^* \in \Omega \).

In addition, by (31) and the fact that \(u_{n,i} \to x^* \) as \(n \to \infty \), we arrive at
\[
\frac{(J_{E_1}^p u_{n,i} - J_{E_1}^p y_n) - \sum_{i=0}^\infty \beta_{n,i} \lambda_n A^* B_{E_2}^T (I - \Pi_{Ak}^p B_{E_0}^T) A u_{n,i}}{\delta_n} \in \sum_{i=0}^\infty \alpha_{n,i} U_i(y_n).
\] (52)

By (21), we have
\[
\| \sum_{i=0}^\infty \beta_{n,i} (I - \Pi_{Ak}^p B_{E_0}^T) A u_{n,i} \| \leq \left[\frac{\Delta_p(u_{n,i}, v) - \Delta_p(y_n, v)}{\|A\|^{-1} |1 - t|} \right] \to 0 \text{ as } n \to \infty,
\] (53)
and by (41), we have
\[
\| \sum_{i=0}^\infty \beta_{n,i} (I - \Pi_{Ak}^p B_{E_0}^T) A u_{n,i} \| \leq \left[\frac{\Delta_p(u_{n,i}, v) - \Delta_p(y_n, v)}{(p \|A\|)^{-1}} \right] \to 0 \text{ as } n \to \infty.
\] (54)

From (53), (54), and (52), by passing \(n \) to infinity in (52), we have that \(0 \in \sum_{i=0}^\infty \sum_{i=0}^\infty \sum_{i=0}^\infty \sum_{i=0}^\infty \beta_{n,i}(I - \Pi_{Ak}^p B_{E_0}^T) \) at zero, we have that \(0 \in \sum_{i=0}^\infty \beta_{n,i} T_i(Ax^*). \) Therefore, \(Ax \in SOLVIP(T_i) \) as \(\sum_{i=0}^\infty \beta_i = \sum_{i=0}^\infty \beta_{n,i} B_{E_0}^T (Ax^*) = \sum_{i=0}^\infty \beta_{n,i} B_{E_0}^T (Ax^*). \) This means that \(x^* \in \Omega. \)

Now, we show that \(x^* \in (\bigcap_{i=1}^\infty \text{GMEP}(\theta_i, C_i, G_i, \delta_i)). \) By (32), we have
\[
\Phi_i(u_{n,i}, y) + \langle J_{E_1}^p G_{n,i} x_n, y - u_{n,i} \rangle + \frac{1}{r_{n,i}} (y - u_{n,i}, J_{E_1}^p u_{n,i} - J_{E_1}^p x_n) \geq 0
\forall y \in K, \forall i \in I,
\]

Since \(\Phi_i \), for each \(i \in I \), are monotone, that is, for all \(y \in K, \)
\[
\Phi_i(u_{n,i}, y) + \Phi_i(y, u_{n,i}) \leq 0
\]
\[
\Rightarrow \frac{1}{r_{n,i}} (y - u_{n,i}, J_{E_1}^p u_{n,i} - J_{E_1}^p x_n) \geq \Phi_i(y, u_{n,i}) + \langle J_{E_1}^p G_{n,i} x_n, y - u_{n,i} \rangle,
\]
therefore,
\[
\frac{1}{r_{n,i}} (y - u_{n,i}, J_{E_1}^p u_{n,i} - J_{E_1}^p x_n) \geq \Phi_i(y, u_{n,i}) + \langle J_{E_1}^p G_{n,i} x_n, y - u_{n,i} \rangle.
\]

By the lower semicontinuity of \(\Phi_i \), for each \(i \in I \), the weak upper semicontinuity of \(G \), and the facts that, for each \(i \in I \), \(u_{n,i} \to x^* \) as \(n \to \infty \) and \(J^p \) is norm – lo – weak* uniformly continuous on a bounded subset of \(E_1 \), we have
\[
0 \geq \Phi_i(y, x^*) + \langle J_{E_1}^p G_{n,i} x^*, y - x^* \rangle.
\] (55)
Now, we set \(y = ty + (1 - t)x^* \in K \). From (55), we get
\[
0 \geq \Phi_i(y, x^*) + \langle f_{E_i}^p, G_{n,j}x^*, y - x^* \rangle.
\] (56)

From (56), and by the convexity of \(\Phi_i \), for each \(i \in I \), in the second variable, we arrive at
\[
0 = \Phi_i(y_i, y_i) \leq t \Phi_i(y_i, y) + (1 - t)\Phi_i(y_i, x^*)
\]
\[
\leq t \Phi_i(y_i, y) + (1 - t)\langle f_{E_i}^p, G_{n,j}x^*, y - x^* \rangle
\]
\[
\leq t \Phi_i(y_i, y) + (1 - t)\langle f_{E_i}^p, G_{n,j}^*x^*, y - x^* \rangle,
\]
which implies that
\[
\Phi_i(y_i, y) + (1 - t)\langle f_{E_i}^p, G_{n,j}^*x^*, y - x^* \rangle \geq 0.
\] (57)

From (57), by the lower semicontinuity of \(\Phi_i \), for each \(i \in I \), we have for \(y_i \to x^* \) as \(t \to 0 \)
\[
\Phi_i(x^*, y) + \langle f_{E_i}^p, G_{n,j}x^*, y - x^* \rangle \geq 0.
\] (58)

Therefore, by (58) we can conclude that \(x^* \in (\cap_{i=1}^\infty \text{GMEP}(\theta_i, C_i, G_i, g_i)). \) This means that \(x^* \in \omega \). Hence, \(x^* \in \Gamma \).

Finally, we show that \(x_n \to x^* \), as \(n \to \infty \). By Definition 3, we have
\[
\Delta_p(x_{n+1}, x^*)
\]
\[
= \Delta_p(f_{E_i}^p) \left(\eta_{n,0} f_{E_i}^p(f(x_n)) + \sum_{i=1}^{\infty} \eta_{n,i} f_{E_i}^p(G_{n,j}(y_n)) \right), x^*)
\]
\[
\leq \eta_{n,0} \Delta_p^q(f_{E_i}^p(f(u_n)), f_{E_i}^p(x^*)) + \sum_{i=1}^{\infty} \eta_{n,i} \Delta_p^q(f_{E_i}^p(G_{n,j}(y_n)), f_{E_i}^p(x^*)
\]
\[
\leq \eta_{n,0} \Delta_p(x_n, x^*) + \eta_{n,0} \Delta_p(f(x^*, x^*) + \sum_{i=1}^{\infty} \eta_{n,i} k_n \Delta_p(y_n, x^*)
\]
\[
+ \langle f_{E_i}^p(x_n) - f_{E_i}^p, f(x^*) - x^* \rangle + \sum_{i=1}^{\infty} \eta_{n,i} k_n \Delta_p(y_n, x^*)
\]
\[
\leq \eta_{n,0} \Delta_p(f(x^*, x^*) + \langle f_{E_i}^p(x_n) - f_{E_i}^p, f(x^*) - x^* \rangle
\]
\[
+ \left(1 - \sum_{i=1}^{\infty} \eta_{n,i} (1 - k_n) \right) \Delta_p(x_n, x^*).
\] (59)

By (59) and Lemma 8, we have that
\[
\lim_{n \to \infty} \Delta_p(x_n, x^*) = 0.
\]

The proof is completed. \(\square \)

In Theorem 1, \(i = 0 \) leads to the following new result.

Corollary 1. Let \(g : K \times K \to R \) be bifunctions satisfying (A1) – (A4) in (3). Let \((1 - \Pi_{AK}^p B_{\delta}^T) \) be demiclosed at zero. Suppose that \(x_1 \in E_1 \) is chosen arbitrarily and the sequence \(\{x_n\} \) is defined as follows:
\[
\begin{align*}
&\varrho(u_n, y) + \langle f_{E_i}^p, C_{u_n} + f_{E_i}^p, G_{n,xn}, y - u_n \rangle + \theta(y) = \theta(u_n) \\
&+ \frac{1}{t_n}(y - u_n) f_{E_i}^p, u_n - f_{E_i}^p, x_n \rangle \geq 0 \forall y \in K, \\
&y_n = f_{E_i}^p \left(B_{\delta}^T \left(f_{E_i}^p, u_n - \lambda_n A^T \right) I_{E_i}^p (1 - \Pi_{AK}^p B_{\delta}^T), \right) \\
x_{n+1} = f_{E_i}^p \left(\eta_n f_{E_i}^p(f(x_n)) + (1 - \eta_n) f_{E_i}^p(S_n(y_n)) \right) n \geq 1,
\end{align*}
\] (60)
Then, the mapping D is maximal monotone.

Let E be a Banach space. Let $F, K : E \to E$ be bounded and maximal monotone operators. Let $D : E \times E^* \to E^* \times E$ be defined by $D(x, y) = (Fx - y, Ky + x)$ for all $(x, y) \in E \times E^*$. Then, the mapping D is maximal monotone.

Lemma 16 ([21])

Let E be a Banach space. Let $F : E \to E^*$, $K : E^* \to E$ be bounded and maximal monotone operators. Let $D : E \times E^* \to E^* \times E$ be defined by $D(x, y) = (Fx - y, Ky + x)$ for all $(x, y) \in E \times E^*$. Then, the mapping D is maximal monotone.
By Lemma 16, if \(K, K', \) and \(F, F' \) are multi-valued maximal monotone operators then, we have two resolvent mappings,

\[
B^D_\delta = (J^p_{E_1} + \delta J^p_{E_1})^{-1} J^p_{E_1}, \quad \text{and} \quad B^{D'}_\delta = (J^p_{E_2} + \delta J^p_{E_2})^{-1} J^p_{E_2},
\]

where \(F : E_1 \rightarrow E_1^* \), \(K : E_1^* \rightarrow E_1 \) are multi-valued and maximal monotone operators, \(D : E_1 \times E_1^* \rightarrow E_1 \) is defined by \(D(x,y) = (Fx - y, Ky + x) \) for all \((x,y) \in E_1 \times E_1^* \), and \(F' : E_2 \rightarrow E_2^* \), \(K' : E_2^* \rightarrow E_2 \) are multi-valued and maximal monotone operators, \(D' : E_2 \times E_2^* \rightarrow E_2 \times E_2 \) is defined by \(D'(Ax,Ay) = (F'Ax - Ay, K'Ay + Ax) \) for all \((Ax,Ay) \in E_2 \times E_2^* \). Then \(D \) and \(D' \) are maximal monotone by Lemma 16.

When \(U = D \) and \(T = D \) in Corollary 1, the algorithm (60) becomes

\[
\begin{align*}
&\left\{ g(u_n, y) + \langle J^p_{E_1} C_n u_n + J^p_{E_1} G_n x_n, y - u_n \rangle + \theta(y) - \theta(u_n) \\
&\quad + \frac{1}{r_n} \langle y - u_n, J^p_{E_1} u_n - J^p_{E_1} x_n \rangle \geq 0 \quad \forall y \in K,
\end{align*}
\]

\[
\begin{align*}
&y_n = J^p_{E_1} \left(\frac{b_{S_n}}{p} \left(J^p_{E_1} u_n - \lambda_n A^* J^p_{E_2} (I - \Pi_{A_{n+1}}^p B^D_{S_n}) A u_n \right) \right), \\
x_{n+1} = J^p_{E_1} \left(\eta_n J^p_{E_1} (f(x_n)) + (1 - \eta_n) J^p_{E_1} (S_n(y_n)) \right) \\
\end{align*}
\]

and its strong convergence is guaranteed, which solves the problem of a common solution of a system of generalized mixed equilibrium problems, split Hammerstein integral equations, and fixed-point problems for the mappings involved in this algorithm.

4. A Numerical Example

Let \(i = 0, E_1 = E_2 = \mathbb{R}, \) and \(K = AK = [0, \infty), \) for \(Ax = x \ \forall x \in E_1. \) The generalized mixed equilibrium problem is formulated as finding a point \(x \in K \) such that,

\[
g_0(x, y) + \langle G_0 y - x \rangle + \theta_0(y) - \theta_0(x) \geq 0, \quad \forall y \in K. \quad (64)
\]

Let \(r_0 \in (0, 1] \) and define \(\theta_0 = 0, g_0(x, y) = \frac{y^2}{r_0} + \frac{2x^2}{r_0} \) and \(G_0(x) = S_0(x) = \frac{1}{r_0} x. \)

Clearly, \(g_0(x, y) \) satisfies the conditions \((A1) - (A4)\) and \(G_0(x) = S_0(x) \) is a Bregman asymptotically non-expansive mapping, as well as a \(1 \)- inverse strongly monotone mapping. Since \(Y_{r_0} \) is single-valued, therefore for \(y \in K, \) we have that

\[
g_0(u_0, y) + \langle G_0 y - u_0 \rangle + \frac{1}{r_0} (y - u_0, u_0 - x) \geq 0
\]

\[
\iff \frac{y^2}{r_0} + \frac{2u_0^2}{r_0} + \frac{1}{r_0} (y - u_0, u_0) \geq 0 \\
\iff \frac{y^2}{r_0} + \frac{2|u_0|^2}{r_0^2} + \frac{x^2}{r_0} \geq 0. \quad (65)
\]

As (65) is a nonnegative quadratic function with respect to \(y \) variable, so it implies that the coefficient of \(y^2 \) is positive and the discriminant \(\frac{4u_0^2}{r_0^2} - \frac{4x^2}{r_0^2} \leq 0, \) and therefore \(u_0 = x \sqrt{r_0}. \) Hence,

\[
Y_{r_0}(x) = x \sqrt{r_0}. \quad (66)
\]
By Lemma 13 and (66), $F(Y_{r_0}) = GEP(g_0, G_0) = \{0\}$ and $F(S_0) = \{0\}$. Define

$$U_0, T_0 : \mathbb{R} \rightarrow \mathbb{R} \text{ by } U_0(x) = T_0(Ax) \begin{cases} (0, 1), x \geq 0 \\ (1), x < 0, \end{cases}$$

$$P_{[0, \infty)} : \mathbb{R} \rightarrow [0, \infty) \text{ by } P_{[0, \infty)}(Ax) = \begin{cases} 0, Ax \in (-\infty, 0) \\ Ax, Ax \in [0, \infty), \end{cases}$$

$$B^T_0 : \mathbb{R} \rightarrow \mathbb{R} \text{ by } B^T_0(y) = \frac{\frac{y}{1+y}}{1+y}, y \geq 0,$$

$$P_{[0, \infty)}B^T_0 : \mathbb{R} \rightarrow [0, \infty) \text{ by } P_{[0, \infty)}B^T_0(y) = \begin{cases} \frac{Ay}{1+y}, Ay \geq 0 \\ 0, Ay < 0. \end{cases}$$

It is clear that U_0 and T_0 are multi-valued maximal monotone mappings, such that $0 \in SOLVIP(U_0)$ and $0 \in SOLVIP(T_0)$. We define the ζ-contraction mapping by $f(x) = \frac{x}{2}$, $\delta_n = \frac{1}{2^{n+1}}$, $\eta_{n,0} = \frac{1}{n+1}$, $r_{n,0} = \frac{1}{2n}$ and $\zeta = \frac{1}{2}$. Hence, for

$$\lambda_n = \begin{cases} 1 + \left(0, \frac{1}{2^{n+1}}\right) - u_{n,0}, & u_{n,0} > 0, \\ 1, u_{n,0} = 0, \\ \frac{1}{|u_{n,0}|}, u_{n,0} < 0, \end{cases}$$

$$\begin{cases} u_{n,0} = \frac{1}{2} x_n, \\ y_n = \frac{u_{n,0}}{1 + \left(0, \frac{1}{2^{n+1}}\right)} (u_{n,0} - 1), u_{n,0} > 0, \\ y_n^2 = \left[\frac{u_{n,0}}{1 + \left(0, \frac{1}{2^{n+1}}\right)}\right]^2, u_{n,0} = 0, \\ y_n^3 = \frac{2u_{n,0} + 1}{2^{n+1}}, u_{n,0} > 0, \\ x_{n+1} = \frac{x_n}{2(n+1)} + \frac{2a_{n,y_n}}{(n+1)}, n \geq 1, \end{cases}$$

we get,

$$x_{n+1} = \begin{cases} \frac{x_n}{2(n+1)} + \frac{a_{n,y_n}^2 - 2a_{n,y_n}}{(n+1)\left(1 + \left(0, \frac{1}{2^{n+1}}\right)\right)}, x_n > 0, \\ \frac{x_n}{2(n+1)} + \frac{a_{n,y_n}^2}{(n+1)\left(1 + \left(0, \frac{1}{2^{n+1}}\right)\right)}, x_n = 0, \\ \frac{x_n}{2(n+1)} + \frac{n^{2n+1}a_{n,y_n}}{(2n+1)^2}, x_n < 0. \end{cases}$$

In particular,

$$x_{n+1} = \begin{cases} \frac{x_n}{2(n+1)} + \frac{5(n^{2n+1}a_{n,y_n})}{6(n+1)}, x_n > 0, \\ \frac{x_n}{2(n+1)} + \frac{5n^{2n+1}a_{n,y_n}}{6(n+1)}, x_n = 0, \\ \frac{x_n}{2(n+1)} + \frac{n^{2n+1}a_{n,y_n}^2}{2^{n+1}}, x_n < 0. \end{cases}$$

By Theorem 1, the sequence $\{x_n\}$ converges strongly to $0 \in \Gamma$. The Figures 1 and 2 below obtained by (MATLAB) software indicate convergence of $\{x_n\}$ given by (32) with $x_1 = -10.0$ and $x_1 = 10.0$, respectively.
Figure 1. Sequence convergence with initial condition -10.0.

Figure 2. Sequence convergence with initial condition 10.0

Remark 1. Our results generalize and complement the corresponding ones in [2,7,9,10,22,23].

Author Contributions: all the authors contribute equally to all the parts of the manuscript

Funding: This work has been co-funded by the Deanship of Scientific Research (DSR) at University of Petroleum and Minerals (King Fahd University of Petroleum and Minerals KFUPM, Saudi Arabia) through Project No. IN141047 and by the Spanish Government and European Commission through Grant RTI2018-094336-B-I00 (MINECO/FEDER, UE).

Acknowledgments: The author A.R. Khan would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at University of Petroleum and Minerals (KFUPM) for funding this work through project No. IN141047.

Conflicts of Interest: The authors declare no conflict of interest.
References

20. Reich, S.; Sabach, S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. *Nonlinear Anal.* 2010, 73, 122–135. [CrossRef]
23. Ogwuisi, E.U.; Mewomo, O.T. On split generalized mixed equilibrium problem and fixed point problems with no prior knowledge of operator norm. *J. Fixed Point Theory Appl.* 2017, 19, 2109–2128. [CrossRef]