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Abstract: In a prior experiment, treatment of goats with the putative PPARγ agonist
2,4-thiazolidinedione (2,4-TZD) ameliorated the response to intramammary infection without evidence
of PPARγ activation. The lack of PPARγ activation was possibly due to deficiency of vitamin A and/or
a poor body condition of the animals. Therefore, the present study hypothesized that activation of
PPARγ by 2,4-TZD in goats supplemented with adequate amounts of vitamin A can improve the
response to sub-clinical mastitis. Lactating goats receiving a diet that met National Research Council
requirements, including vitamin A, were injected with 8 mg/kg BW of 2,4-TZD (n = 6) or saline (n = 6;
control (CTR)) daily. Two weeks into treatment, all goats received Streptococcus uberis (IMI) in the
right mammary gland. Blood biomarkers of metabolism, inflammation, and oxidative status plus
leukocytes phagocytosis were measured. Mammary epithelial cells (MEC) and macrophages were
isolated from milk and liver tissue collected for gene expression analysis. Milk fat was maintained by
treatment with 2,4-TZD, but decreased in CTR, after IMI. Haptoglobin was increased after IMI only in
2,4-TZD without any effect on negative acute phase proteins, indicating an improved liver function.
2,4-TZD vs. CTR had a greater amount of globulin. The expression of inflammation-related genes
was increased by IMI in both macrophages and MEC. Except for decreasing expression of SCD1 in
MEC, 2,4-TZD did not affect the expression of measured genes. Results confirmed the successful
induction of sub-clinical mastitis but did not confirm the positive effect of 2,4-TZD on the response to
IMI in well-fed goats.

Keywords: 2,4-thiazolidinedione; goat; mastitis; macrophages; mammary epithelial cells

1. Introduction

Mastitis is a multifactorial disease that affects dairy animals resulting from an inflammation of the
mammary gland, mostly caused by pathogens [1]. It is the most costly disease in the dairy industry
with negative consequences to animal well-being and milk quantity and quality [2]. Mastitis can be
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treated using antibiotics, but the possibility of antibiotic resistance makes this practice dangerous,
and consumers are requesting that producers avoid or minimize the use of antibiotics [3]. Therefore,
alternatives to antibiotics are in high demand, and approaches to mastitis prevention are a priority for
the dairy industry.

Practices to aid in preventing mastitis include the maintenance of animals in a clean environment
and pre- and post-dip procedures performed during milking. Nutrition plays a key role in mastitis
prevention. Among nutrients, an adequate level of lipophilic vitamins aids in decreasing mastitis
prevalence [4]. Vitamin A and β-carotene are important in mastitis prevention due to the stimulatory
effects on immune cells [5]. A significant inverse association between the risk of clinical mastitis and
serum retinol (vitamin A) were observed in Holstein cows [6]. In addition, β-carotene can acts as an
antioxidant, reducing the damage by superoxide produced during phagocytosis [7].

Nutrition can also help prevent mastitis by a nutrient-gene interaction (a.k.a. nutrigenomics), by
which dietary compounds can affect the animal’s metabolism and performance via interaction with
transcription factors [8]. Clear nutrigenomic roles have been established for ligand-dependent nuclear
receptors, especially the peroxisome proliferator-activated receptors (PPAR). These are known to be
activated by synthetic ligands, such as thiazolidinedione and fenofibrate, and natural ligands, such as
fatty acids [9].

Among PPAR, the isotype PPARγ has been well-studied in monogastrics playing important
anti-inflammatory roles [10]. In our prior experiment [11], the use of the putative PPARγ agonist
2,4-thiazolidinedione (2,4-TZD) in dairy goats with induced sub-clinical intramammary infection
improved overall liver function and increased the level of myeloperoxidase in blood, i.e., the killing
capacity of neutrophils. In that experiment, goats received hay without adequate supplementation
of vitamins. Work from our lab demonstrated that 9-cis-retinoic acid (a metabolite of vitamin A) is
essential for the in vitro activation of PPAR by 2,4-TZD in bovine and goat mammary cells [8].

Based on above, we hypothesized that treatment of lactating dairy goats with 2,4-TZD, while
providing sufficient vitamin A supplementation, would improve the response to a subclinical mammary
infection via the activation of PPARγ. The objectives of this study were to test whether 2,4-TZD-induced
PPARγ activation in dairy goats receiving an adequate amount of vitamin A 1) improves the metabolic
and inflammatory response to induced subclinical mammary infection and 2) affects the expression of
target genes in liver, mammary epithelial cells (MEC), and macrophages.

2. Materials and Methods

2.1. Experimental Design and Animal Management

The present experiment is part of a larger project where the same animals were used to accomplish
two main objectives. The first objective was to assess the effect of 2,4-TZD on milk fat synthesis [12]
and the second objective was to assess the effect of 2,4-TZD on the response of goats to intramammary
infection (present manuscript). See the companion manuscript [12] for overall experimental design
and animal management. Briefly, the experimental design involved injecting the treated goats daily
with 8 mg of 2,4-TZD/kg of BW dissolved in 10 mL of sterile saline (TZD; n = 6) and injecting the same
amount of saline only to control goats (CTR; n = 6) until the end of the trial. For the first 10 days of the
experiment, each goat nursed kids.

To induce subclinical mastitis, after two weeks of daily i.v. injections of 2,4-TZD or saline, all goats
received an intramammary infection (IMI) with an infusion of 1.7 × 108 cfu of Streptococcus uberis (Strep.
uberis) in 10 mL sterile physiological saline (002479, Henry Schein, Melville, NY, USA) in the right half
of the mammary gland. The left half of the mammary gland was left untouched and used as control.
The choice of not infusing the left gland with saline was due to its previously observed induction of
slight inflammation when infused in the mammary gland [11]. The pre-dosed aliquots of Strep. uberis
(strain 0140J, see [11]) in 1.5 mL sterile vials were provided by the laboratory of Peggy Dearing, College
of Veterinary Medicine, Oregon State University. Prior to IMI, the teat ends were carefully cleaned with
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individual moistened towels and disinfected with swabs containing 70% ethanol. The infusion was
performed with the aid of a disposable sterile TOMCAT urinary open 3.5fr catheter. After infusion, the
inoculate was thoroughly massaged upward into the gland cistern for 30 s.

After IMI, there were 4 groups for all parameters measured in milk plus MEC and macrophages:

- CTR-control, untouched left mammary gland from goats receiving an intrajugular injection
of saline;

- CTR-IMI, right mammary gland infused with Strep uberis from goats receiving an intrajugular
injection of saline;

- TZD-control, untouched left mammary gland from goats receiving an intrajugular injection
of 2,4-TZD;

- TZD-IMI, right mammary gland infused with Strep uberis from goats receiving an intrajugular
injection of 2,4-TZD.

For blood parameters and gene expression in the liver, only two groups were available: TZD
and CTR.

2.2. Measurements, Sample Collection, and Blood Metabolites

Materials and methods regarding dry matter intake, milk analyses, and isolation of MEC from the
milk are detailed in the companion manuscript [12].

Milk was collected aseptically from both halves of the mammary gland for bacteriological analysis
3 days prior to IMI. Before sampling, teats were cleaned using iodine solution and disposable paper
towels. The orifice of the teat was disinfected with swabs containing 70% ethanol. Approximately
1 mL of milk was collected in sterile 1.5 mL tubes. The samples were immediately placed on ice and
shipped overnight to Ag Health Laboratories, Inc. (Sunnyside, WA, USA) for a milk bacterial culture
on Bovine blood agar plates. All the samples were negative for any pathogen. To ascertain the status of
the mammary gland a California Mastitis Test to estimate milk somatic cell count (SCC) was performed
at the last milking prior to IMI.

Goats were milked using a portable machine with two claws. To avoid cross-contamination,
before IMI each goat was milked using one claw; after IMI both claws were used to milk one goat with
one claw exclusively used to milk the right gland (i.e., the infected half) and the other claw was used
to milk the healthy gland (Figure S1) of each goat. Milk yield from both halves at each milking was
recorded, and milk samples were collected just before IMI, at 12 h post-IMI, and then at 1, 2, 5, 6, and
7 days post-IMI as described in the companion manuscript [12].

Rectal temperature (RT) was checked using a digital rectal thermometer prior to IMI, 12 h post-IMI
and subsequently twice a day (A.M. and P.M. milking) until the end of the experiment.

2.3. Blood Metabolites and Inflammatory Markers

Collection, handling, and analysis of blood samples were as described in the companion
manuscript [12]. For the present objective, samples were also collected at 12 h post-IMI and the following
parameters were also measured besides glucose, non-esterified fatty acids (NEFA), triglycerides
(TG), β-hydroxybutyrate (BHBA), cholesterol, creatinine, and urea [12]: inflammatory-related
parameters albumin, haptoglobin, ceruloplasmin, paraoxonase, myeloperoxidase, and total bilirubin;
the oxidative-related parameters total reactive oxygen metabolites (ROM), ferric reducing antioxidant
power (FRAP) and Zn; plus aspartate aminotransferase, gamma-glutamyl transferase, and total protein.
In addition, globulin was obtained by subtracting albumin from total protein [13]. These analyses
were performed following the procedures described previously [13,14] using a clinical auto-analyzer
(ILAB 650, Instrumentation Laboratory, USA Spa, Werfen Co., Milan, Italy). The intra- and inter-assay
variation for the parameters measured are available in Table S1.
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2.4. Phagocytosis and Percent Leukocytes

The proportion of granulocytes and monocytes and their phagocytosis were performed prior to
IMI and, to have a similar time point as MEC and macrophages isolation (see below), 6 d post-IMI as
previously described [11].

2.5. Macrophages Isolation from Milk

Macrophages were isolated from 250 mL of milk from goats at 5 d post-IMI. Milk was collected
in 250 mL sterile tubes (430776, VWR, Radnor, PA, USA) and immediately placed on ice (4 ◦C) until
isolation (~1 h). The isolation was performed using magnetic sorting with a monoclonal antibody
against CD14 (CAM36A, CT-BOV2027, Monoclonal antibody center, Pullman, WA, USA) [15]. We
obtained 5.5 × 106

± 4.9 × 106 macrophages (22,260 macrophages/mL of milk) as measured using
MoxiZ (Orflo, Ketchum, ID, USA). The evaluation of the enrichment of macrophages after isolation
was assessed via RT-qPCR by measuring the expression of the cluster of differentiation 14 (CD14) in
positive and negative isolated cells.

2.6. Euthanasia and Tissue Collection

At the end of the trial, nine goats (6 in TZD group and 3 in CTR group) were euthanized by
rapid intravenous injection of a barbiturate (Somnasol euthanasia solution, Henry Schein) to harvest
liver for gene expression analysis. The liver was harvested using a sterile scalpel and forceps. The
tissue was immediately cleaned with RNase decontamination solution (RNaseZap®, AM9780, Thermo
Fisher Scientific, Waltham, MA, USA), quickly blotted with sterile gauze to remove residual blood, and
snap-frozen in liquid nitrogen. Samples were then stored at −80 ◦C until RNA extraction.

2.7. RT-qPCR

RNA isolation and RT-qPCR protocol are described in the companion manuscript [12]. The RNA
integrity number (RIN) values had a mean ± SD of 7.4 ± 0.7 for liver, 7.0 ± 1.2 for macrophages,
and 6.9 ± 1.2 for MEC samples. The target genes selected to be evaluated in liver RNA samples
were PPARγ (PPARG), pyruvate dehydrogenase kinase 4 (PDK4, a PPARβ/δ target gene), carnitine
palmitoyl transferase 1A (CPT1A, a PPARα target gene), apolipoprotein E (APOE, a PPARγ target
gene), the acute phase protein haptoglobin (HP), and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). For MEC we measured transcription of inflammatory-related genes interleukin 8 (IL8),
chemokine (C-C Motif) ligand 2 (CCL2), nuclear factor of kappa light polypeptide gene enhancer in
B-cells 1 (NFKB1), and tumor necrosis factor alpha (TNFA). In addition, the transcript abundance of
milk fat synthesis-related genes stearoyl-CoA desaturase (delta-9-desaturase) (SCD1) and cluster of
differentiation 36 (CD36) were measured in MEC. For macrophages the transcripts evaluated were
related to general inflammatory response or classical macrophages activation (IL8, CCL2, NFKB1, TNFA,
nitric oxide synthase 2 (NOS2)), alternative macrophages activation (arginase 1 (ARG1), Mannose
Receptor C-Type 1 (MRC1), and interleukin 4 (IL4)), and transforming growth factor beta 1 (TGFB1)
and interleukin 10 (IL10) as markers of macrophages inactivation [16]. In addition, small ubiquitin-like
modifier 1 (SUMO1), CD14, PPARG, CD36, and GAPDH were measured in macrophages. Primer-pairs
were designed as previously described [11]. Amplicons not previously validated were assessed as
previously described [12]. The details of primer pairs and amplicon sequences are available in Tables S2
and S3.

The genes ribosomal protein 9 (RPS9), ubiquitously-expressed transcript (UXT) and tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ) were
used as internal control genes for liver and macrophages. The reliability of the normalization using
the above three reference genes was determined by the V-value [17] and was 0.04 for liver and 0.13
for macrophages. RPS9, YWHAZ, and GAPDH were used to normalize RT-qPCR data for MEC
(V-value = 0.19).
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2.8. Statistical Analysis

Blood parameters from the entire experiment were analyzed as described in the companion
manuscript [12]. Prior to statistical analysis, all data except percent phagocytosis and gene expression
were arithmetically transformed to have the same mean at time 0 relative to IMI (i.e., baseline) for TZD
and CTR. This was achieved by subtracting from each data point the difference between TZD and CTR
at time 0 relative to IMI [12].

For milk data, the correction was done relative to the left mammary gland of the CTR group using
the same approach as above. Detection of outliers and check for normal distribution were as performed
in the companion manuscript [12]. Data were analyzed with the PROC GLIMMIX procedure of SAS 9.4
(SAS Institute, Inc., Cary, NC, USA). Fixed effects in the model were treatment (i.e., TZD or CTR), time
relative to 2,4-TZD or IMI, and all interactions. For milk yield and milk composition, SCC and MEC
and macrophage gene expression, IMI was also included in the main effect (including interactions).
The goat was considered a random effect in all analyses. The best covariance structure was selected as
described in the companion manuscript [12]. Significance and tendencies were declared at p ≤ 0.05 and
0.05 < p ≤ 0.10, respectively.

3. Results

3.1. Body Temperature and Feed Intake

Dry matter intake was not affected by IMI or 2,4-TZD while rectal temperature increased within
12 h post-IMI and remained higher than pre-IMI for the first 5 days post-IMI (Figure 1). Goats treated
with 2,4-TZD had an overall greater temperature compared to CTR goats, especially during the first
5 days post-IMI.
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Milk yield was affected by time and tended (p = 0.07) to be lower in the mammary gland 
receiving IMI (Figure 2). Milk yield was higher in TZD-control compared with TZD-IMI during the 
first 3 days post-IMI, i.e., a significant TZD × IMI interaction. SCC was increased and remained ≥10-
fold higher in IMI than non-IMI mammary glands until the end of the trial (Figure 2). SCC during the 
whole experiment had a tendency (p = 0.06) to be affected by the interaction TZD × Time, due to a 3-
fold lower SCC in CTR vs. TZD in the first week after starting 2,4-TZD injection (Figure S2). 

Figure 1. Rectal temperature and dry matter intake (kg/d) in Saanen goats treated with 2,4-thiazolidinedione
(TZD) or saline (CTR) after intramammary infusion of Strep. Uberis. Letters in the graph denote
significant (p < 0.05) effects of time (T), mastitis (M), 2,4-thiazolidinedione treatment (Z), and interactions
(Z × T). The reported p-value is for tendencies.

3.2. Milk yield, SCC and Milk Composition

Milk yield was affected by time and tended (p = 0.07) to be lower in the mammary gland receiving
IMI (Figure 2). Milk yield was higher in TZD-control compared with TZD-IMI during the first 3 days
post-IMI, i.e., a significant TZD × IMI interaction. SCC was increased and remained ≥10-fold higher
in IMI than non-IMI mammary glands until the end of the trial (Figure 2). SCC during the whole
experiment had a tendency (p = 0.06) to be affected by the interaction TZD × Time, due to a 3-fold
lower SCC in CTR vs. TZD in the first week after starting 2,4-TZD injection (Figure S2).

Milk fat percentage was affected by 2,4-TZD in a time-dependent manner (TZD × Time) with
8% larger fat percentage in TZD compared to CTR (Figure 3). Lactose and protein percentages were
affected by the interaction Time × IMI, where IMI decreased lactose and increased protein during the
first 2 days post-IMI (Figure 3). Lactose yield tended to decrease (p = 0.08), and fat yield was decreased
by IMI.
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Figure 3. Effect on milk components of a daily injection of 2,4-thiazolidinedione (TZD) and saline (CTR)
in Saanen dairy goats plus intramammary infusion in the right half of the mammary gland with Strep.
uberis (Mastitis) while the left half of the mammary was left untouched (Control). Overall statistical
significance (p ≤ 0.05) is indicated in the plot as follows: T = time effect; M = IMI effect; Z = effect
of 2,4-thiazolidinedione injection. When a significant (p ≤ 0.05) interaction was present for T × M,
* denotes the difference between groups at each time point.
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3.3. Blood Biomarkers

The pattern of glucose, NEFA, TG, BHBA, cholesterol, creatinine, and urea concentration in plasma
was not affected by 2,4-TZD treatment after IMI, but several parameters were affected by Time (i.e.,
IMI) (Table 1). IMI decreased the concentrations of TG and increased the concentration of glucose,
reaching a peak at 12 d post-IMI.

Table 1. Blood metabolic parameters in goats treated with 2,4-thiazolidinedione (TZD) or saline (CTR)
after infusion in the right gland of 7 × 108 colonies of Streptococcus uberis (i.e., IMI).

Parameter Group Day from IMI
SEM 1 p-Value 2

0 0.5 1 2 3 6 11 Z Time Z × T

Glucose (mM) CTR 3.57 3.86 3.47 3.58 3.32 3.48 3.47 0.10 0.79 <0.01 0.58
TZD 3.57 3.72 3.56 3.52 3.36 3.50 3.33

NEFA (mM) CTR 0.07 0.05 0.08 0.06 0.07 0.06 0.11 0.03 0.61 <0.01 0.79
TZD 0.07 0.08 0.11 0.08 0.07 0.06 0.13

TAG (mM) CTR 0.19 0.16 0.17 0.18 0.19 0.19 0.13 0.02 0.97 <0.01 0.76
TZD 0.19 0.16 0.19 0.19 0.17 0.16 0.14

BHBA (mM) CTR 0.41 0.43 0.38 0.43 0.42 0.38 0.32 0.03 0.81 <0.01 0.27
TZD 0.41 0.40 0.43 0.41 0.35 0.36 0.34

Urea (mM) CTR 5.97 6.20 6.81 5.61 6.54 6.45 8.05 0.57 0.78 <0.01 0.35
TZD 5.97 6.65 6.77 5.76 6.30 6.40 6.90

Cholesterol (mM) CTR 2.18 2.23 2.28 2.31 2.33 2.40 2.32 0.23 0.90 <0.01 0.88
TZD 2.18 2.26 2.30 2.40 2.40 2.41 2.39

Creatinine (µM) CTR 71.9 70.0 72.6 70.2 70.4 72.2 75.8 2.5 0.69 <0.01 0.33
TZD 71.9 71.2 73.4 72.9 71.8 73.6 77.3

1 SEM= standard error of the LS-means; 2 Z= 2,4-thiazolidinedione effect, T = Time, Z × T = 2,4-thiazolidinedione ×
time effect.

Among positive acute phase proteins, haptoglobin was overall lower (Figure 4) in TZD vs. CTR
during the entire study. However, in the early response to IMI, haptoglobin concentration tended
(p = 0.06) to increase 1.4-fold more in TZD vs. CTR. An interaction TZD × Time was detected for
albumin, globulin, bilirubin, and ROM (Figures 4 and 5) during the entire study.

TZD vs. CTR had higher globulin before IMI and tended (p = 0.06) to have larger ROM after
IMI. The level of bilirubin was lower early after IMI and was larger 11 days post-IMI in TZD vs. CTR.
The concentration of Zn tended (p = 0.10) to be lower in TZD vs. CTR (Figure 5). No significant
effects, except a TZD × Time for total protein, were detected for other inflammatory, metabolic, and
antioxidative-related parameters (Figures S3 and S4).
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Figure 4. Effect on a positive (haptoglobin) and a negative (albumin) acute phase protein and globulin of
daily injection of 2,4-thiazolidinedione (TZD) and saline (CTR) in Saanen dairy goats plus intramammary
infusion in the right half of the mammary gland with Strep. uberis (IMI) while the left half of the
mammary was left untouched (control). The left quadrants report the pattern of each parameter during
the whole study. Arrows indicate time of kid removal and IMI. The quadrants on the right denote the
pattern of the same parameters after IMI (with correction with baseline before IMI, see Materials and
Methods). Overall statistical significance (p ≤ 0.05) is indicated in the plot as follows: T = time effect;
M = IMI effect; Z = effect of 2,4-thiazolidinedione injection.
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Figure 5. Effect of a daily injection of 2,4-thiazolidinedione (TZD) and saline (CTR) in Saanen dairy
goats plus intramammary infusion in the right half of the mammary gland with Strep. uberis (IMI)
while the left half of the mammary was left untouched (control) on reactive oxygen species, zinc, and
bilirubin (as an index of liver function). The left quadrants report the pattern of each parameter during
the whole study. Arrows indicate time of kid removal and IMI. The quadrants on the right denote the
pattern of the same parameters after IMI (with correction with baseline before IMI, see Materials and
Methods). Overall statistical significance (p ≤ 0.05) is indicated in the plot as follows: T = time effect;
M = IMI effect; Z = effect of 2,4-thiazolidinedione injection.

3.4. Differential Leukocyte Count and Phagocytosis

The percentage of granulocytes was not affected by IMI, while the percentage of monocytes tended
(p = 0.06) to decrease after IMI (Figure 6). Monocytes in TZD had greater phagocytosis compared to
CTR (Figure 6).
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injection and intramammary infusion (IMI) with Strep. uberis (IMI) in Saanen dairy goats. Reported are
the percentages of granulocytes (PMN) and monocytes and their percent phagocytosis. Letters in the
graph denote significant (p < 0.05) effects of time (T) and 2,4-thiazolidinedione treatment (Z).

3.5. Gene Expression in Liver and MEC

None of the measured genes in the liver, including the known targets of the three PPAR isotypes,
were transcriptionally affected by 2,4-TZD (Figure S5). In MEC (Figure 7), transcription of all measured
pro-inflammatory related genes was ≥2-fold up-regulated by IMI, and only the expression of CCL2
had a tendency (p = 0.10) to be lower in TZD vs. CTR. The expression of SCD1 was decreased >3-fold
by IMI and was lower in TZD vs. CTR. The expression of CD36 tended (p = 0.08) to be decreased by
IMI but due to a >2-fold decrease only in CTR after IMI (IMI × TZD; p = 0.09).
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Figure 7. Effect on expression of inflammatory (NFKB1, TNFA, CCL2, and IL8) and milk fat synthesis
(SCD1, CD36) related genes in mammary epithelial cells isolated from the milk of Saanen goats receiving
either intrajugular daily injection of 2,4-thiazolidinedione (TZD) or saline (CTR) and intramammary
infection in the right half of the mammary gland by infusing Strep. uberis (Mastitis) while the left half
of the mammary gland was left untouched (Control). Cells were isolated 5 days post-intramammary
infection. Letters in the plot denote overall statistical (p ≤ 0.05) effect for IMI (M), 2,4-thiazolidinedione
treatment (Z), or interaction (M × Z). When a tendency was detected, the p-value is reported.
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3.6. Gene Expression in Macrophages

In macrophages isolated from the milk, the expression of CD14 increased approximately 3.5-fold,
and the enrichment of CD14-expressing cells did not affect the expression of cytokeratin 8 (Figure S6).

Compared to MEC, the CD14-positive cells (i.e., macrophages) had a higher mRNA abundance of
the measured pro-inflammatory-related genes NFKB1, TNFA, CCL2, and IL8 (Figure S7).

2,4-TZD did not affect the expression of any measured genes in macrophages (Figure 8). Compared
to control, IMI increased the expression of the measured genes related to the classical macrophage
activation (i.e., NFKB1, TNFA, IL8, and CCL2) as well as the expression of TGFB1 and the expression of
genes related to macrophage deactivation, CD14, GAPDH, and NOS2 (Figure 8). The expression of
markers for the alternative activation of macrophages was either not affected by IMI (MRC1; Figure 8)
or was below the limit of detection in most of the samples (ARG1 and IL4).
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Figure 8. Effect on expression of genes related to classical (NFKB1, TNFA, CCL2, NOS2, and IL8) or
alternative (MRC1) macrophages activation, macrophages deactivation (IL10, TGFB1), and metabolism
in macrophage isolated from the milk of Saanen goats receiving either intrajugular daily injection
of 2,4-thiazolidinedione (TZD) or saline (CTR) and intramammary infusion in the right half of the
mammary gland of Strep. uberis (Mastitis) while the left half of the mammary was left untouched
(Control). Cells were isolated 5 days post-intramammary infection (IMI). Letters in the plot denote
overall statistical (p ≤ 0.05) effect for IMI (M), 2,4-thiazolidinedione treatment (Z), or interaction (M × Z).
When a tendency was detected, the P-value is reported.

4. Discussion

4.1. Response to IMI in Comparison with the Prior Study

The present experiment was a repeat of a previously published experiment [11]. However, the two
experiments present important differences. Compared to the prior experiment, the present experiment
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had: (a) goats in an earlier stage of lactation (early–mid vs. late lactation); (b) well-fed vs. poorly-fed
goats; (c) initial body condition score of 2.6 vs. 1.6 (1–5 scale); d) IMI in one mammary gland vs.
both glands; (e) the gland kept as control did not receive any infusion vs. infusion of sterile saline;
(f) 2,4-TZD was injected for 2 weeks vs. 1 week prior IMI; (g) 2,4-TZD was injected daily at 10:00 a.m.
vs. 12:00 a.m.; (h) goats were milked twice a day vs. one milking per day (3.6 vs. 1 kg/d); and (i) goats
were individually fed vs. group fed. Despite the above differences, it is important to compare the
two studies.

Similar to what was observed in the prior experiment [11], in the present experiment, IMI induced
a consistent increase in SCC that remained higher than the control gland until the end of the trial.
The SCC was high with no clinical sign of mastitis, milk yield changed, although for a shorter period
of time (first 3 days post-IMI), and in a less pronounced amount in the present compared to the
prior experiment, where the reduction of milk yield was detected until the end of the trial in the
goats receiving Strep uberis. This can be partly due to the infection being induced in only one of the
two halves of the mammary gland in the present experiment compared to both mammary halves
in the prior experiment. Other indicators of a temporary inflammation in our experiment were the
spike in glycemia, the decrease of Zn [18], and the increase in haptoglobin [13,19]. Furthermore, we
detected an increase in expression of most of the measured pro-inflammatory related genes in MEC
and macrophages, indicating a robust inflammatory response. However, the response was smaller
compared to the prior experiment with little-to-no effect on leukocytes, especially the percentage of
PMN, which was decreased in the prior experiment [11]. Despite the differences compared to the
prior experiment, all of the above data are supportive of successful induction of subclinical mammary
infection in the present experiment.

4.2. Treatment with 2,4-TZD Allows Maintaining Milk Fat Synthesis after IMI but Not through SCD1

More evident in the present experiment compared to the prior experiment [11] was the maintenance
of milk fat percent after IMI in TZD vs. CTR. This observation appears to partly support the proposed
role of PPARγ in controlling milk fat synthesis [8,9]; however, SCD1, a putative PPARγ target gene [9],
was lower in TZD vs. CTR. The above data indicate that either this gene is not a PPARγ target gene or
that PPARγ was not activated by 2,4-TZD, as supported by the lack of change in expression of the
putative PPAR target gene CD36 in MEC and the findings reported in the companion manuscript [12].
The down-regulation of SCD1 despite the maintenance of milk fat production further support the
indication from the companion manuscript [12] of a not essential role of SCD1 for milk fat production
in goats.

In goats receiving a saline injection, milk fat was decreased in both mammary glands after IMI, the
one with infection and the healthy gland. This is consistent with previously observed detrimental effect
on milk synthesis of mastitis in one gland to the other adjacent mammary glands [19]. However, milk fat
did not decrease in the milk from the control gland in the TZD group. The reason for such “uncoupling”
in our experiment is unclear, but it appears that 2,4-TZD prevented any negative consequence of IMI
on milk fat synthesis in the healthy gland.

4.3. Treatment with 2,4-TZD Modestly Improves the Liver Response to Mammary Infection

The response of haptoglobin to IMI was different between the two experiments. In the prior
experiment, the increase in haptoglobin after IMI was more pronounced, and it remained high (i.e.,
>0.3 g/L) until the end of the trial with a somewhat similar pattern in all animals [11]; in the present
experiment the change in haptoglobin after IMI was relatively modest and with a quick spike only
in TZD group. The results of the present experiment are somewhat similar to another study where
goats received an intramammary infusion of Staphilococcus aureus in one of the two halves of the
mammary gland [20], although in that experiment haptoglobin returned to baseline after 6 days instead
of 3 days post-IMI.
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None of the negative acute phase proteins were different between the two groups in the present
experiment, while differences were observed in the prior experiment [11]. Bilirubin is cleared by the
liver, and an increase in the blood can be ascribed to a decreased liver function, as was already known
at the beginning of the 20th century [21]. Thus, the bilirubin level in blood is also an important index
for the evaluation of liver function in animals experiencing inflammatory-like conditions [13,14]. The
detection of numerically lower bilirubin in TZD vs. CTR despite a higher level of haptoglobin during
the first 3 days post-IMI is indicative of the improved ability of the liver in TZD vs. CTR to handle the
negative consequence of an induced inflammation [22]. An improved liver condition after TZD was
also among the major findings in the prior experiment [11], although the effect was more pronounced
compared to the present experiment.

From the above data, it is clear that the effect of 2,4-TZD in the liver in the present experiment was
very modest compared to the prior experiment [11]. This is also supported by the lack of any change in
measured transcripts in the liver, although the number of liver samples in the CTR group was limited
(n = 3).

Overall, the modest metabolic and inflammatory responses detected in the present experiment
after IMI compared to the prior experiment is indicative of a better, more robust, faster, and more
effective response to mastitis in the animals used in the present vs. the prior experiment likely due to
better nutrition and body condition.

4.4. Treatment with 2,4-Thiazolidinedione Increases Plasma Globulin and Increases Monocyte Phagocytosis

Goats treated with 2,4-TZD had an increased production of globulin compared to CTR. Globulin
in the blood is made up of four fractions; however, change in plasma globulin is associated with
a change in the level of immunoglobulins [23]. Increase proportion of immunoglobulin is often
associated with health disorders in humans [24], and higher globulin level has been associated with
poor udder health in cows with high SCC in milk but with no bacterial growth in culture [25]. In our
experiment, we did observe a tendency for higher SCC in TZD vs. CTR during the first few days of
2,4-TZD injection, mostly due to a decrease in the CTR; however, the lower level of haptoglobin in
TZD vs. CTR is indicative of lack of any sign of inflammation. Therefore, the higher globulin level
remains unexplained.

Our data indicated significantly larger phagocytosis in monocytes in goats treated with 2,4-TZD
compared to control. Activation of PPARγ in human increases phagocytosis in monocytes [26]. PPARγ
activation by curcumin and consequent up-regulation of CD36 was also associated with higher human
monocytes phagocytosis [27]. It is difficult to infer if 2,4-TZD activated PPARγ in monocytes in our
study. We did not measure the expression of CD36 in blood monocytes; however, its expression was
not affected by 2,4-TZD in milk macrophages, but, different than the control goats, CD36 expression
tended to be not affected by IMI in MEC. Furthermore, none of the other data indicated the activation
of PPARγ by 2,4-TZD. Therefore, it is still possible that 2,4-TZD affected monocytes phagocytosis
via activation of PPARγ but very unlikely. Overall, increase phagocytosis by monocytes can be a
favorable effect for goats due to the larger persistence and ability to respond to stimuli compared to
neutrophils [28].

4.5. Treatment with 2,4-TZD Has a Moderate Effect on Oxidative Parameters

Despite never reaching a statistical significance in any of the time points collected, the goats
treated with 2,4-TZD had numerically greater ROM. The reason for such an increase is unclear. It is
plausible that the higher amount of ROM was caused by a greater catabolic state in TZD vs. CTR; this
is somewhat supported by the detected greater rectal temperature in TZD vs. CTR. The numerically
higher ROM had likely no biological effect considering the lack of any detected difference in the
measured antioxidant parameters compared to CTR.
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4.6. IMI but Not 2,4-TZD Affects the Transcriptome of MEC and Macrophages

As MEC and resident macrophages in the mammary gland are the first line of defense against
mastitis [29], as expected, the transcripts measured in MEC and macrophages coding for proteins
with main inflammatory/immune response functions were all increased by IMI. These findings are
in agreement with other studies that demonstrated up-regulation of genes coding for proteins that
stimulate the chemotaxis of neutrophils and monocytes, such as IL8 and CCL2, upon intramammary
infection in bovine mammary tissue [30,31]. However, 2,4-TZD did not affect the expression of the
inflammation-related genes measured, with the exception of a tendency in TZD vs. CTR for a lower
expression of CCL2, a major chemoattractant of monocytes, macrophages, and lymphocytes [32].

In rodents, PPARγ plays an important role in preventing macrophage activation [33]. Further,
PPARγ activation prevents the production of inflammatory cytokines in human monocytes [34].
Macrophages can be activated through the classical and the alternative activation pathways [16]. TNFα
and inducible nitric oxide synthase are markers of the classical activation of macrophages stimulated
by interferon gamma, while arginase 1 and dectin 1 are markers of the alternative activation induced
by interleukins 4 and 13. The macrophage deactivation is initiated by IL10 and TGFβ, which in turn
induce the production by macrophages of IL10 and TNFβ [16]. The use of a PPARγ agonist induced
the alternative activation of macrophages but also induced macrophages deactivation in mice [35].
In our study, we did not observe any effect of 2,4-TZD on the above markers.

The activity of PPARγ can also be modulated by SUMOylation via small ubiquitin-related modifier
1 [36]. The SUMOylation generally has a negative effect on the activation of PPARγ by repressing
its basal and induced activation [37]; however, the activation of PPARγ by ligands can prevent
SUMOylation [37]. The repression of the inflammatory response of macrophages in mice involves, as
the first step, a SUMOylation of the PPARγ ligand domain [38]. Therefore, it is possible that the lack
of response to 2,4-TZD by macrophages in our experiment was due to an increase in SUMOylation
that could have prevented the binding of the 2,4-TZD to the ligand binding domain of the PPARγ.
However, we did not detect any effect of 2,4-TZD on the transcription of SUMO1, the gene coding for
SUMOylation proteins with a major role in the transcriptional activation of PPARγ [39]. Thus, it remains
unclear if SUMOylation played a role in preventing PPARγ response to 2,4-TZD in our experiment.

Overall, our data indicated that 2,4-TZD did not affect the inflammatory response of macrophages
and MEC.

5. Conclusions

Treatment of goats with 2,4-TZD had a modest effect on the immune system with a slight increase
in liver function. However, the magnitude of the effects observed was lower compared to goats
receiving the same treatments but in less-then-optimal conditions [11]. A lack of response could be
due to the balanced ration used in the present experiment. The optimal nutritional status might have
already maximized the activation of PPARγ. If this were true, it would suggest that interventions
to modulate transcription factors might be more beneficial during a state of nutritional deficiency.
However, it is very unlikely that PPARγ cannot be further activated if a potent agonist is used. The
lack of effects by 2,4-TZD on the expression of PPAR target genes in the liver, MEC, and macrophages
despite optimal supplementation of vitamin A confirms the inability of 2,4-TZD to activate PPARγ
in vivo.

The lack of activation of PPARγ by 2,4-TZD despite the goats being in optimal condition and
well-fed prevented the testing of our hypothesis that activation of PPARγ can aid in the response to
intramammary infection. Despite not activating PPARγ, 2,4-TZD treatment allowed to preserve milk
fat percentage after IMI. The mechanism of such an effect remains elusive. A study using true PPARγ
agonists in goats should be performed to test the original hypothesis.
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of intramammary infection in the right mammary gland, Figure S2. SCC during the whole experiment, Figure S3.
Results for ceruloplasmin, paraoxonase, Gamma-Glutamyl Transferase (GGT), and Aspartate Aminotransferase
(AST/GOT), Figure S4. Results for total protein, ferric reducing ability of the plasma (FRAP), and myeloperoxidase,
Figure S5. Gene expression in liver, Figure S6. Expression of KRT8 and CD14 in macrophages, Figure S7. Expression
of pro-inflammatory related genes between macrophages and mammary epithelial cells (MEC).
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