SuperLIB Project – Analysis of the Performances of the Hybrid Lithium HE-HP Architecture For Plug-In Hybrid Electric Vehicles

Noshin Omar¹, Karel Fleurbaey¹, Can Kurtulus², Peter Van den Bossche¹, Thierry Coosemans¹, Joeri Van Mierlo¹

¹Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium, noshomar@vub.ac.be, karel.fleurbaey@vub.ac.be, pvdbos@vub.ac.be, thierry.coosemans@vub.ac.be, jvmierlo@vub.ac.be;
²AVL List GMBH, Hans-List Platz 1, 8020, Graz, Austria, can.kurtulus@avl.com;

Abstract

This paper represents the latest results of the FP7 European Project SuperLIB: Advanced Dual-Cell Battery Concept for Battery Electric Vehicles. The electrical characteristics of the proposed hybrid topology based on high power and high-energy cells are presented. In the framework of project, dedicated research work has been carried out in the field of characterization and modeling. From these characterization results advanced simulation models have been developed for investigation and prediction of the proposed hybrid concept in detail based on innovative simulation tool for evaluation and optimization of the power flow in the driveline.

From the simulation results have been concluded that the performances of the vehicle can be enhanced in terms of power capabilities and range extension. Then, the results also show that the abilities of the high-energy battery can be improved in terms of energy efficiency, voltage drop and heat development inside the battery.

Finally the comparative analysis illustrates that the SuperLIB hybrid architecture has several merits against the hybrid topology based on high-energy batteries and electrical double-layer capacitors in terms of weight and volume.

Keywords: High power batteries, high energy batteries, electrical double-layer capacitors, lifetime, modelling

1 Introduction

Since the beginning of the automobile era, the internal combustion engine (ICE) has been used for vehicular propulsion. In addition, motor vehicles powered by the ICE are significant contributors to air pollutants and greenhouse gases linked to global climate change [1,2]. As the global economy begins to strain under the pressure of rising petroleum prices and environmental concerns, research has spurred the development of various types of clean energy transportation systems such as Hybrid Electric Vehicles (HEVs), Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) [3,4]. But the establishment of the energy storage technology which can support the output power during acceleration, the efficient use of the...
regenerative energy and considerable life cycle are the critical aspects and no current battery technology can meet these often concurrent objectives [4-8].

In the last decennium Electric Double-Layer Capacitors have been considered as an interesting solution in BEVs and HEVs due to their excellent properties in the terms of power density and life cycle. However, the implementation of such system with the associated DC-DC converter is still expensive due to the high cost of the power electronics system.

In order to overcome the limitations of the battery system in BEV applications, a new project, called SuperLIB, has been launched in the framework of the European Seventh Framework Programme (FP7) addressing the combination of high energy and high power Li-ion batteries for the enhancement of the overall system performance as presented by fig. 1, for the improvement of the battery lifetime, the reliability and the cost/performance ratio of the battery system [9,10].

![Figure 1. SuperLIB architecture concept](image1)

The SuperLIB project addresses the combination of high energy and high power Li-ion batteries for the:
- Enhancement of the overall system performance,
- Improvement of the battery lifetime by 30%,
- Development of an advanced control system for the energy distribution within the battery
- Extending the useable energy content from 70% up to 90% depth of discharge,
- Development of smart control system for the highly integrated high energy/high power batteries,
- Increase of the reliability of the battery system,
- Cost/performance ratio of the battery system,

In order to achieve the above-mentioned objectives, a number of European research institutes and industrial stakeholders are involved in this project. Vrije Universiteit Brussel, which has a strong expertise in the field of modelling and estimation techniques for various rechargeable energy storage systems, together with IFPEN and Fraunhofer, will transfer the required scientific knowledge to the industrial oriented partners such as Volvo, CRF, AVL List, Bosch, European Batteries and Valeo.

2 Benchmark study battery performances

In the framework of this project, an extended benchmark analysis has been performed, assessing various lithium-ion battery performances against the performances of the SuperLIB dual cell architecture.

The SuperLIB battery architecture consists of a high-energy lithium iron phosphate battery (45 Ah) from European Batteries and high-power lithium iron phosphate battery (7 Ah) from EIG Batteries. As we can observe in fig. 2, the SuperLIB dual cell concept has high performances in terms of power (1200 W/kg) and energy density (120 Wh/kg). Moreover, the proposed concept has the advantage that the used cell chemistry (lithium iron phosphate) is significantly safe and less expensive than other popular chemistries such as lithium nickel manganese cobalt oxide and lithium nickel cobalt aluminium oxide [8].

The energy density has been calculated based on the dynamic discharge performance load profile as indicated in the standard IEC 61892-2 from 100% SoC till 0% SoC [11]. The power performance has been investigated based on the Hybrid Pulse Power Characterization Test at 50% SoC.

![Figure 2. Comparison of various lithium-ion battery technologies against SuperLiB hybrid concept](image2)
model in Matlab/Simulink has been developed as presented by fig. 3. The simulation program is based on the “effect cause” also called the “wheel-to-energy source”. The simulation method goes upstream the vehicle components until it reaches the energy sources. It can simulate and optimize the power flow in HEVs and PHEVs. Starting from a given speed profile, the model calculates the requested power from the energy sources.

3.1. Battery model
The extended FreedomCar battery model as presented by fig. 4 has been used in the framework of this study. As we can observe the model exists of two variable ohmic resistances ($R_{o,ch}$ and $R_{o,dis}$), two variable polarization RC circuits composed of polarization resistances $R_{p,ch}$ & $R_{p,dis}$ and two variable polarization capacitors ($C_{ch}$ and $C_{dis}$), a fictive capacitor OCV and an open circuit voltage OCV. The indexes ch and dis represent the charge and discharge, respectively. The split up of the components in charge and discharge takes the hysteresis into account.

Furthermore, the models of the high-power and high-energy batteries include the state of charge (SoC), current rate and operating temperature dependency. This allows to investigate the power behaviour of the energy sources under different operating conditions.

The SoC has been determined based on the following relationship [12]:

$$SoC = 1 - \left\{ \begin{array}{ll} \int_{I_{CH,dis}}^{I_{CH,dis}} \frac{I_s - I_u}{C_{nom} \cdot 3600} \left( \frac{I_s}{I_{nom}} \right)^{k-1} \cdot dt & \text{if } I_s > 0 \\ \theta \cdot \int_{I_{CH,dis}}^{I_{CH,dis}} I_s \cdot dt & \text{if } I_s < 0 \end{array} \right.$$  \hspace{1cm} (1)

where $I_s$ is the current through the battery (A), $C_{nom}$ represents the nominal capacity of the battery (Ah), $\theta$ is the ampère-hour efficiency (%) and $k$ corresponds to the Peukert number.
3.2. DC-DC converter
In this study, the DC-DC converter has not been simulated in detail. Since the objective of this study is to simulate the power flow in the driveline, the converter has been assigned an energy efficiency value equal to 95% as reported in [13].

3.3. Other components
Regarding the other components such as electric motor, converter and the redactor have been simulated by a fixed energy efficiency value equal to 93% [14].

3.4. Vehicle specifications
The considered vehicle in this study is Nissan Leaf. The specifications of the vehicle are presented in Table 1.

Table 1. Chevrolet Volt vehicle specifications [15]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle mass (incl. battery)</td>
<td>1913</td>
<td>kg</td>
</tr>
<tr>
<td>Aerodynamic drag coefficient</td>
<td>0.287</td>
<td>-</td>
</tr>
<tr>
<td>Rolling resistance coefficient</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>Front area</td>
<td>2.16</td>
<td>m²</td>
</tr>
</tbody>
</table>

3.5. Control strategy
In order to simulate the power flow in the proposed electric vehicle based on the SuperLIB architecture, there is a need for a dedicated control strategy for sharing the power between the high-power and high-energy battery systems. Since the high-power batteries in the SuperLIB concept should supply the peak power during acceleration and recuperating of energy during braking events, the high-energy part is only responsible for the supply of the moving average power as presented by equations (2) and (3). Therefore in this study a control strategy has been implemented as presented in figure 5.

\[
P_{\text{high-energy}} = \frac{P_{\text{requested}}}{\tau \cdot s + 1}
\]  

(2)

\[
P_{\text{high-power}} = P_{\text{requested}} - P_{\text{high-energy}}
\]  

(3)

As we can observe, the control of the voltage of the high-power battery is carried out by implementation of a P controller, which generates an extra power signal \( \Delta P \) in order to the voltage of the high-power battery to its reference value, which varies with the velocity of the vehicle. The objective of the voltage control is to be sure that the high-power battery is able to deliver power when the vehicle speed is low and to store power when the vehicle speed is high.

4 Simulation results
In order to evaluate the performances of the SuperLIB hybrid architecture against the stand-alone system and hybrid architecture existing of high-energy and EDLCs, a comparative analysis has been performed based on the New European Driving Cycle (NEDC), Highway Fuel Economy Driving Schedule (FWFET) and Federal Test Procedure Driving Cycle (FTP-75).

According to the simulation results, the hybrid architecture is able to enhance the overall vehicle system performances in terms of power capabilities as illustrated in figure 5. As one can observe the high-energy battery only supplies the moving average, while the high-power battery acts as a peak power unit in providing peak powers during acceleration and recuperating energy during braking events. Due to this association, the energy efficiency of the high-energy battery can be enhanced from 86%, 83.6% and 86.3% (for stand-alone) to 90.2%, 86% and 88.1% (for SuperLIB hybrid architecture) based on NEDC, FTP-75 and FWFET driving cycles, respectively as can be seen in Table 2.

Moreover, one can observe that the range of the vehicle based on the SuperLIB hybrid architecture can be extended by 14.2%, 18.1% and 13.2%.
according to the NEDC, FTP-75 and FWFET driving cycles, respectively. The time constant of the control strategy as presented by fig. 4 has been set up at 58s. This value has been derived based on fig. 6, whereby the range extension has been investigated at different time constants. From fig. 6, we can conclude that the highest range based on the NEDC is highest at 58s.

Furthermore, the analysis has been extended, whereby the evolution of the voltage over the high-energy battery based on the SuperLIB hybrid architecture and stand-alone has been investigated. From this analysis we can observe that the voltage drop on the SuperLIB hybrid architecture varies between 330V and 306V against 352V and 295V for the stand-alone system.

The lower voltage drop over the high-energy battery has several advantages:

- The energy efficiency of the battery can be enhanced as illustrated in table 2,
- The heat development can be reduced due to the lower current through the battery,
- The lower voltage drop also will have a positive impact on the overall energy efficiency of the driveline and particularly on the efficient working of the electric motor [17,18],
- Due to the lower voltage drop, the battery will be able to provide longer time energy to the electric motor, which will extend the range of the vehicle as one can observe in table 2.

![Figure 5. Power distribution between the high-energy and high-power batteries based on the New European Driving Cycle](image)

Table 2. Simulation results based on 3 driving cycles

<table>
<thead>
<tr>
<th></th>
<th>AER (km)</th>
<th>Max &amp; min voltage over HE battery (V)</th>
<th>ηRESS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NEDC</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stand-alone</td>
<td>54,7</td>
<td>352-295</td>
<td>86,0</td>
</tr>
<tr>
<td>HE-EDLC</td>
<td>57,7</td>
<td>330-306</td>
<td>92,4</td>
</tr>
<tr>
<td>HE-HP</td>
<td>62,5</td>
<td>330-306</td>
<td>90,2</td>
</tr>
<tr>
<td><strong>FTP-75</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stand-alone</td>
<td>55,1</td>
<td>345-294</td>
<td>83,6</td>
</tr>
<tr>
<td>HE-EDLC</td>
<td>63,1</td>
<td>330-313</td>
<td>90,2</td>
</tr>
<tr>
<td>HE-HP</td>
<td>65,1</td>
<td>330-313</td>
<td>86,0</td>
</tr>
<tr>
<td><strong>HWFET</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td>AER (km)</td>
<td>Time constant (s)</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Stand-alone</td>
<td>79.2</td>
<td>352-295</td>
<td></td>
</tr>
<tr>
<td>HE-EDLC</td>
<td>84.7</td>
<td>91.3</td>
<td></td>
</tr>
<tr>
<td>HE-HP</td>
<td>89.7</td>
<td>330-325</td>
<td></td>
</tr>
</tbody>
</table>
4.1. Weight & volume

In the field of electric vehicles, the weight and volume can be considered as key issues. Therefore, in fig. 8 and fig. 9 the volume and the weight of the stand-alone, SuperLIB hybrid architecture and hybrid system composed of HE batteries with EDLCs have been compared and analysed.

In fig. 8, one can observe that the SuperLIB hybrid concept has significant advantages against the hybrid association based on HE batteries and EDLCs.

The total volume for the SuperLIB concept is 0.135 m³ for SuperLIB concept and 0.248 m³ for the other hybrid system.

These results indicate the main merit of the SuperLIB concept from the integration point of view of the energy storage systems in the vehicle.

Regarding the weight, the SuperLIB concept still shows improvement against the association HE and EDLCs. The weight of the total energy storage systems according to SuperLIB approach is 216kg against 292.7kg for the other hybrid system.

Here it should be noted that the total voltage of the EDLC system is 250V against 330V for the high-power battery system.

![Figure 8. Volume comparison](image)

Conclusions

In this paper, the last research results in the field of the innovative SuperLIB hybrid concept existing of high-power and high-energy are presented. Therefore, an extended benchmark study of the performances of existing lithium-ion batteries has been performed and compared to the SuperLIB dual-cell concept.

Then, a new simulation model has been developed for evaluation and optimization of the power flow in the driveline.

From the simulation results, we can conclude that the SuperLIB approach has several merits against the conventional hybrid systems composed of high-energy and EDLCs, in terms of range extension, volume and weight, which can be considered as a key parameters in electric vehicles.

![Figure 9. Weight comparison](image)

Acknowledgments

On behalf of all partners in the project, the authors would like to express their gratitude to the European Commission for the financial support of the project.

References


Dr. Eng. Omar Noshin  
Vrije Universiteit Brussel  
Email: noshomar@vub.ac.be  
Omar Noshin was born in Kurdistan, in 1982. He obtained the M.S. degree in Electronics and Mechanics from Erasmus University College Brussels. He is currently pursuing the PhD degree in the department of Electrical Engineering and Energy Technology (ETEC), at the Vrije Universiteit Brussel, Belgium. His research interests include applications of supercapacitors and batteries in BEV’s, HEV’s and PHEV’s. He is also active in several international standardization committees such as IEC TC21/22.

Ir. Karel Fleurbaey  
Vrije Universiteit Brussel  
Email: karel.fleurbaey@vub.ac.be  
Karel Fleurbaey graduated in September 2013 as an electromechanical engineer from the Vrije Universiteit Brussel, Belgium. He is currently pursuing the PhD degree in the department of Electrical Engineering and Energy Technology (ETEC) at the Vrije Universiteit Brussel. His research focusses on energy storage systems for PHEV applications.

Eng. Can Kurtulus  
AVL List GMBH  
Email: can.kurtulus@avl.com  
Can Kurtulus is with AVL since 2008 and primarily focuses on controls and estimation systems development, with the main application area of battery management systems. In his role as a Team Leader, he has managed several R&D projects, and is a part of the Global Battery Competence team. He holds a B.Sc. and a M.Sc. in engineering from Istanbul Technical University with a dynamical systems and control specialization, where he is also a PhD candidate. Previously he was a research assistant at the same university.

Prof. Dr. ir. Thierry Coosemans  
Vrije Universiteit Brussel  
Email: thierry.coosemans@vub.ac.be  
Thierry Coosemans obtained his PhD in Engineering Sciences from Ghent University in 2006. After several years in the industry, he now became a member of the ETEC research team on transport technology at the VUB, where he works as a scientific project manager.

Prof. Dr. ir. Thierry Coosemans  
Vrije Universiteit Brussel  
Email: thierry.coosemans@vub.ac.be  
Thierry Coosemans obtained his PhD in Engineering Sciences from Ghent University in 2006. After several years in the industry, he now became a member of the ETEC research team on transport technology at the VUB, where he works as a scientific project manager.

Prof. Dr. ir. Joeri Van Mierlo  
Vrije Universiteit Brussel  
Email: jvmierlo@vub.ac.be  
Joeri Van Mierlo obtained his Ph.D. in electromechanical Engineering Sciences from the Vrije Universiteit Brussel in 2000. He is now a full-time professor at this university, where he leads the MOBI – Mobility and automotive technology research centre (http://mobi.vub.ac.be). Currently his activities are devoted to the development of hybrid propulsion (power converters, energy storage, energy management, etc.) systems as well as to the environmental comparison of vehicles with different kind of drive trains and fuels (LCA, WTW). He is the author of more than 200 scientific publications. Prof. Van Mierlo chairs the EPE chapter “Hybrid and
electric vehicles” (www.epe-association.org); he is the secretary of the board of the Belgian section of AVERE (ASBE) (www.asbe.be) and is Vice-president of AVERE (www.avere.org). He is editor in chief of the World Electric Vehicle Journal Volume 3 and co-editor of the Journal of Asian Electric Vehicles. He is an active member of EARPA – the European Automotive Research Partner Association. Furthermore he is member of Flanders Drive and of VSWB – Flemish Cooperative on hydrogen and Fuels Cells. Prof. Van Mierlo was Chairman of the International Program Committee of the International Electric, hybrid and fuel cell symposium (EVS24).